a197a2d3eb
Removed directories for no longer supported architectures.
270 lines
7.8 KiB
C
270 lines
7.8 KiB
C
/* mpz_and -- Logical and.
|
|
|
|
Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2003, 2005 Free Software
|
|
Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
|
|
void
|
|
mpz_and (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2)
|
|
{
|
|
mp_srcptr op1_ptr, op2_ptr;
|
|
mp_size_t op1_size, op2_size;
|
|
mp_ptr res_ptr;
|
|
mp_size_t res_size;
|
|
mp_size_t i;
|
|
TMP_DECL;
|
|
|
|
TMP_MARK;
|
|
op1_size = op1->_mp_size;
|
|
op2_size = op2->_mp_size;
|
|
|
|
op1_ptr = op1->_mp_d;
|
|
op2_ptr = op2->_mp_d;
|
|
res_ptr = res->_mp_d;
|
|
|
|
if (op1_size >= 0)
|
|
{
|
|
if (op2_size >= 0)
|
|
{
|
|
res_size = MIN (op1_size, op2_size);
|
|
/* First loop finds the size of the result. */
|
|
for (i = res_size - 1; i >= 0; i--)
|
|
if ((op1_ptr[i] & op2_ptr[i]) != 0)
|
|
break;
|
|
res_size = i + 1;
|
|
|
|
/* Handle allocation, now then we know exactly how much space is
|
|
needed for the result. */
|
|
if (UNLIKELY (res->_mp_alloc < res_size))
|
|
{
|
|
_mpz_realloc (res, res_size);
|
|
op1_ptr = op1->_mp_d;
|
|
op2_ptr = op2->_mp_d;
|
|
res_ptr = res->_mp_d;
|
|
}
|
|
|
|
res->_mp_size = res_size;
|
|
if (LIKELY (res_size != 0))
|
|
mpn_and_n (res_ptr, op1_ptr, op2_ptr, res_size);
|
|
return;
|
|
}
|
|
else /* op2_size < 0 */
|
|
{
|
|
/* Fall through to the code at the end of the function. */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (op2_size < 0)
|
|
{
|
|
mp_ptr opx;
|
|
mp_limb_t cy;
|
|
mp_size_t res_alloc;
|
|
|
|
/* Both operands are negative, so will be the result.
|
|
-((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) =
|
|
= ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 =
|
|
= ((OP1 - 1) | (OP2 - 1)) + 1 */
|
|
|
|
/* It might seem as we could end up with an (invalid) result with
|
|
a leading zero-limb here when one of the operands is of the
|
|
type 1,,0,,..,,.0. But some analysis shows that we surely
|
|
would get carry into the zero-limb in this situation... */
|
|
|
|
op1_size = -op1_size;
|
|
op2_size = -op2_size;
|
|
|
|
res_alloc = 1 + MAX (op1_size, op2_size);
|
|
|
|
opx = (mp_ptr) TMP_ALLOC (op1_size * BYTES_PER_MP_LIMB);
|
|
mpn_sub_1 (opx, op1_ptr, op1_size, (mp_limb_t) 1);
|
|
op1_ptr = opx;
|
|
|
|
opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB);
|
|
mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
|
|
op2_ptr = opx;
|
|
|
|
if (res->_mp_alloc < res_alloc)
|
|
{
|
|
_mpz_realloc (res, res_alloc);
|
|
res_ptr = res->_mp_d;
|
|
/* Don't re-read OP1_PTR and OP2_PTR. They point to
|
|
temporary space--never to the space RES->_mp_d used
|
|
to point to before reallocation. */
|
|
}
|
|
|
|
if (op1_size >= op2_size)
|
|
{
|
|
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
|
|
op1_size - op2_size);
|
|
for (i = op2_size - 1; i >= 0; i--)
|
|
res_ptr[i] = op1_ptr[i] | op2_ptr[i];
|
|
res_size = op1_size;
|
|
}
|
|
else
|
|
{
|
|
MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size,
|
|
op2_size - op1_size);
|
|
for (i = op1_size - 1; i >= 0; i--)
|
|
res_ptr[i] = op1_ptr[i] | op2_ptr[i];
|
|
res_size = op2_size;
|
|
}
|
|
|
|
cy = mpn_add_1 (res_ptr, res_ptr, res_size, (mp_limb_t) 1);
|
|
if (cy)
|
|
{
|
|
res_ptr[res_size] = cy;
|
|
res_size++;
|
|
}
|
|
|
|
res->_mp_size = -res_size;
|
|
TMP_FREE;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* We should compute -OP1 & OP2. Swap OP1 and OP2 and fall
|
|
through to the code that handles OP1 & -OP2. */
|
|
MPZ_SRCPTR_SWAP (op1, op2);
|
|
MPN_SRCPTR_SWAP (op1_ptr,op1_size, op2_ptr,op2_size);
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
#if ANDNEW
|
|
mp_size_t op2_lim;
|
|
mp_size_t count;
|
|
|
|
/* OP2 must be negated as with infinite precision.
|
|
|
|
Scan from the low end for a non-zero limb. The first non-zero
|
|
limb is simply negated (two's complement). Any subsequent
|
|
limbs are one's complemented. Of course, we don't need to
|
|
handle more limbs than there are limbs in the other, positive
|
|
operand as the result for those limbs is going to become zero
|
|
anyway. */
|
|
|
|
/* Scan for the least significant non-zero OP2 limb, and zero the
|
|
result meanwhile for those limb positions. (We will surely
|
|
find a non-zero limb, so we can write the loop with one
|
|
termination condition only.) */
|
|
for (i = 0; op2_ptr[i] == 0; i++)
|
|
res_ptr[i] = 0;
|
|
op2_lim = i;
|
|
|
|
op2_size = -op2_size;
|
|
|
|
if (op1_size <= op2_size)
|
|
{
|
|
/* The ones-extended OP2 is >= than the zero-extended OP1.
|
|
RES_SIZE <= OP1_SIZE. Find the exact size. */
|
|
for (i = op1_size - 1; i > op2_lim; i--)
|
|
if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
|
|
break;
|
|
res_size = i + 1;
|
|
for (i = res_size - 1; i > op2_lim; i--)
|
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
|
res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
|
|
/* Yes, this *can* happen! */
|
|
MPN_NORMALIZE (res_ptr, res_size);
|
|
}
|
|
else
|
|
{
|
|
/* The ones-extended OP2 is < than the zero-extended OP1.
|
|
RES_SIZE == OP1_SIZE, since OP1 is normalized. */
|
|
res_size = op1_size;
|
|
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size);
|
|
for (i = op2_size - 1; i > op2_lim; i--)
|
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
|
res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
|
|
}
|
|
|
|
res->_mp_size = res_size;
|
|
#else
|
|
|
|
/* OP1 is positive and zero-extended,
|
|
OP2 is negative and ones-extended.
|
|
The result will be positive.
|
|
OP1 & -OP2 = OP1 & ~(OP2 - 1). */
|
|
|
|
mp_ptr opx;
|
|
|
|
op2_size = -op2_size;
|
|
opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB);
|
|
mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
|
|
op2_ptr = opx;
|
|
|
|
if (op1_size > op2_size)
|
|
{
|
|
/* The result has the same size as OP1, since OP1 is normalized
|
|
and longer than the ones-extended OP2. */
|
|
res_size = op1_size;
|
|
|
|
/* Handle allocation, now then we know exactly how much space is
|
|
needed for the result. */
|
|
if (res->_mp_alloc < res_size)
|
|
{
|
|
_mpz_realloc (res, res_size);
|
|
res_ptr = res->_mp_d;
|
|
op1_ptr = op1->_mp_d;
|
|
/* Don't re-read OP2_PTR. It points to temporary space--never
|
|
to the space RES->_mp_d used to point to before reallocation. */
|
|
}
|
|
|
|
MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
|
|
res_size - op2_size);
|
|
for (i = op2_size - 1; i >= 0; i--)
|
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
|
|
|
res->_mp_size = res_size;
|
|
}
|
|
else
|
|
{
|
|
/* Find out the exact result size. Ignore the high limbs of OP2,
|
|
OP1 is zero-extended and would make the result zero. */
|
|
for (i = op1_size - 1; i >= 0; i--)
|
|
if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
|
|
break;
|
|
res_size = i + 1;
|
|
|
|
/* Handle allocation, now then we know exactly how much space is
|
|
needed for the result. */
|
|
if (res->_mp_alloc < res_size)
|
|
{
|
|
_mpz_realloc (res, res_size);
|
|
res_ptr = res->_mp_d;
|
|
op1_ptr = op1->_mp_d;
|
|
/* Don't re-read OP2_PTR. It points to temporary space--never
|
|
to the space RES->_mp_d used to point to before reallocation. */
|
|
}
|
|
|
|
for (i = res_size - 1; i >= 0; i--)
|
|
res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
|
|
|
|
res->_mp_size = res_size;
|
|
}
|
|
#endif
|
|
}
|
|
TMP_FREE;
|
|
}
|