/* mpz_and -- Logical and. Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2003, 2005 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "gmp.h" #include "gmp-impl.h" void mpz_and (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2) { mp_srcptr op1_ptr, op2_ptr; mp_size_t op1_size, op2_size; mp_ptr res_ptr; mp_size_t res_size; mp_size_t i; TMP_DECL; TMP_MARK; op1_size = op1->_mp_size; op2_size = op2->_mp_size; op1_ptr = op1->_mp_d; op2_ptr = op2->_mp_d; res_ptr = res->_mp_d; if (op1_size >= 0) { if (op2_size >= 0) { res_size = MIN (op1_size, op2_size); /* First loop finds the size of the result. */ for (i = res_size - 1; i >= 0; i--) if ((op1_ptr[i] & op2_ptr[i]) != 0) break; res_size = i + 1; /* Handle allocation, now then we know exactly how much space is needed for the result. */ if (UNLIKELY (res->_mp_alloc < res_size)) { _mpz_realloc (res, res_size); op1_ptr = op1->_mp_d; op2_ptr = op2->_mp_d; res_ptr = res->_mp_d; } res->_mp_size = res_size; if (LIKELY (res_size != 0)) mpn_and_n (res_ptr, op1_ptr, op2_ptr, res_size); return; } else /* op2_size < 0 */ { /* Fall through to the code at the end of the function. */ } } else { if (op2_size < 0) { mp_ptr opx; mp_limb_t cy; mp_size_t res_alloc; /* Both operands are negative, so will be the result. -((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) = = ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 = = ((OP1 - 1) | (OP2 - 1)) + 1 */ /* It might seem as we could end up with an (invalid) result with a leading zero-limb here when one of the operands is of the type 1,,0,,..,,.0. But some analysis shows that we surely would get carry into the zero-limb in this situation... */ op1_size = -op1_size; op2_size = -op2_size; res_alloc = 1 + MAX (op1_size, op2_size); opx = (mp_ptr) TMP_ALLOC (op1_size * BYTES_PER_MP_LIMB); mpn_sub_1 (opx, op1_ptr, op1_size, (mp_limb_t) 1); op1_ptr = opx; opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB); mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1); op2_ptr = opx; if (res->_mp_alloc < res_alloc) { _mpz_realloc (res, res_alloc); res_ptr = res->_mp_d; /* Don't re-read OP1_PTR and OP2_PTR. They point to temporary space--never to the space RES->_mp_d used to point to before reallocation. */ } if (op1_size >= op2_size) { MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size); for (i = op2_size - 1; i >= 0; i--) res_ptr[i] = op1_ptr[i] | op2_ptr[i]; res_size = op1_size; } else { MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size, op2_size - op1_size); for (i = op1_size - 1; i >= 0; i--) res_ptr[i] = op1_ptr[i] | op2_ptr[i]; res_size = op2_size; } cy = mpn_add_1 (res_ptr, res_ptr, res_size, (mp_limb_t) 1); if (cy) { res_ptr[res_size] = cy; res_size++; } res->_mp_size = -res_size; TMP_FREE; return; } else { /* We should compute -OP1 & OP2. Swap OP1 and OP2 and fall through to the code that handles OP1 & -OP2. */ MPZ_SRCPTR_SWAP (op1, op2); MPN_SRCPTR_SWAP (op1_ptr,op1_size, op2_ptr,op2_size); } } { #if ANDNEW mp_size_t op2_lim; mp_size_t count; /* OP2 must be negated as with infinite precision. Scan from the low end for a non-zero limb. The first non-zero limb is simply negated (two's complement). Any subsequent limbs are one's complemented. Of course, we don't need to handle more limbs than there are limbs in the other, positive operand as the result for those limbs is going to become zero anyway. */ /* Scan for the least significant non-zero OP2 limb, and zero the result meanwhile for those limb positions. (We will surely find a non-zero limb, so we can write the loop with one termination condition only.) */ for (i = 0; op2_ptr[i] == 0; i++) res_ptr[i] = 0; op2_lim = i; op2_size = -op2_size; if (op1_size <= op2_size) { /* The ones-extended OP2 is >= than the zero-extended OP1. RES_SIZE <= OP1_SIZE. Find the exact size. */ for (i = op1_size - 1; i > op2_lim; i--) if ((op1_ptr[i] & ~op2_ptr[i]) != 0) break; res_size = i + 1; for (i = res_size - 1; i > op2_lim; i--) res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim]; /* Yes, this *can* happen! */ MPN_NORMALIZE (res_ptr, res_size); } else { /* The ones-extended OP2 is < than the zero-extended OP1. RES_SIZE == OP1_SIZE, since OP1 is normalized. */ res_size = op1_size; MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size); for (i = op2_size - 1; i > op2_lim; i--) res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim]; } res->_mp_size = res_size; #else /* OP1 is positive and zero-extended, OP2 is negative and ones-extended. The result will be positive. OP1 & -OP2 = OP1 & ~(OP2 - 1). */ mp_ptr opx; op2_size = -op2_size; opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB); mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1); op2_ptr = opx; if (op1_size > op2_size) { /* The result has the same size as OP1, since OP1 is normalized and longer than the ones-extended OP2. */ res_size = op1_size; /* Handle allocation, now then we know exactly how much space is needed for the result. */ if (res->_mp_alloc < res_size) { _mpz_realloc (res, res_size); res_ptr = res->_mp_d; op1_ptr = op1->_mp_d; /* Don't re-read OP2_PTR. It points to temporary space--never to the space RES->_mp_d used to point to before reallocation. */ } MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, res_size - op2_size); for (i = op2_size - 1; i >= 0; i--) res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; res->_mp_size = res_size; } else { /* Find out the exact result size. Ignore the high limbs of OP2, OP1 is zero-extended and would make the result zero. */ for (i = op1_size - 1; i >= 0; i--) if ((op1_ptr[i] & ~op2_ptr[i]) != 0) break; res_size = i + 1; /* Handle allocation, now then we know exactly how much space is needed for the result. */ if (res->_mp_alloc < res_size) { _mpz_realloc (res, res_size); res_ptr = res->_mp_d; op1_ptr = op1->_mp_d; /* Don't re-read OP2_PTR. It points to temporary space--never to the space RES->_mp_d used to point to before reallocation. */ } for (i = res_size - 1; i >= 0; i--) res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; res->_mp_size = res_size; } #endif } TMP_FREE; }