mpir/mpn/generic/inv_divappr_q_n.c

99 lines
2.9 KiB
C
Raw Normal View History

/* inv_divappr_q_n - approximate quotient using a precomputed inverse
Copyright 2010 William Hart
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include <mpir.h>
#include "gmp-impl.h"
#include "longlong.h"
/*
Computes an approximate quotient of { np, 2*dn } by { dp, dn } which is
either correct or one too large. We require dp to be normalised and inv
to be a precomputed inverse given by mpn_invert.
*/
2010-02-11 11:49:43 -05:00
mp_limb_t
mpn_inv_divappr_q_n(mp_ptr qp, mp_ptr np,
mp_srcptr dp, mp_size_t dn, mp_srcptr inv)
{
mp_limb_t cy, lo, ret = 0;
2010-02-11 13:52:17 -05:00
mp_ptr tp;
TMP_DECL;
2010-02-11 13:52:17 -05:00
TMP_MARK;
2010-03-16 15:28:45 -04:00
ASSERT(mpn_is_invert(inv, dp, dn));
2010-02-11 11:49:43 -05:00
if (mpn_cmp(np + dn, dp, dn) >= 0)
{
ret = 1;
mpn_sub_n(np + dn, np + dn, dp, dn);
}
tp = TMP_ALLOC_LIMBS(2*dn + 1);
mpn_mul(tp, np + dn - 1, dn + 1, inv, dn);
add_ssaaaa(cy, lo, 0, np[dn - 1], 0, tp[dn]);
2010-02-13 12:13:29 -05:00
ret += mpn_add_n(qp, tp + dn + 1, np + dn, dn);
ret += mpn_add_1(qp, qp, dn, cy + 1);
/*
Let X = B^dn + inv, D = { dp, dn }, N = { np, 2*dn }, then
DX < B^{2*dn} <= D(X+1), thus
2010-02-13 12:13:29 -05:00
Let N' = { np + n - 1, n + 1 }
N'X/B^{dn+1} < B^{dn-1}N'/D <= N'X/B^{dn+1} + N'/B^{dn+1} < N'X/B^{dn+1} + 1
N'X/B^{dn+1} < N/D <= N'X/B^{dn+1} + 1 + 2/B
2010-02-13 12:13:29 -05:00
There is either one integer in this range, or two. However, in the latter case
the left hand bound is either an integer or < 2/B below one.
*/
2010-03-16 12:54:26 -04:00
2010-03-16 13:41:34 -04:00
ASSERT(ret <= 2);
2010-03-16 12:54:26 -04:00
if (UNLIKELY(ret == 2))
{
2010-03-16 13:02:40 -04:00
ret -= mpn_sub_1(qp, qp, dn, 1);
ASSERT(ret == 1);
}
2010-03-16 15:28:45 -04:00
2010-02-13 12:13:29 -05:00
if (UNLIKELY((lo == ~CNST_LIMB(0)) || (lo == ~CNST_LIMB(1))))
{
/* Special case, multiply out to get accurate quotient */
ret -= mpn_sub_1(qp, qp, dn, 1);
if (UNLIKELY(ret == ~CNST_LIMB(0)))
ret += mpn_add_1(qp, qp, dn, 1);
/* ret is now guaranteed to be 0 or 1*/
ASSERT(ret <= 1);
2010-03-16 12:45:54 -04:00
mpn_mul_n(tp, qp, dp, dn);
if (ret) tp[dn] += dp[0];
2010-02-13 12:13:29 -05:00
mpn_sub_n(tp, np, tp, dn + 1);
while (tp[dn] || mpn_cmp(tp, dp, dn) >= 0)
{
ret += mpn_add_1(qp, qp, dn, 1);
tp[dn] -= mpn_sub_n(tp, tp, dp, dn);
}
/* Not possible for ret == 2 as we have qp*dp <= np */
2010-03-16 12:45:54 -04:00
ASSERT(ret < 2);
2010-02-13 12:13:29 -05:00
}
TMP_FREE;
return ret;
2010-02-11 11:49:43 -05:00
}