wxWidgets/docs/doxygen/overviews/resyntax.h
2008-02-26 09:29:48 +00:00

698 lines
29 KiB
C

/////////////////////////////////////////////////////////////////////////////
// Name: resyntax.h
// Purpose: topic overview
// Author: wxWidgets team
// RCS-ID: $Id$
// Licence: wxWindows license
/////////////////////////////////////////////////////////////////////////////
/*!
@page overview_resyntax Syntax of the Built-in Regular Expression Library
A <em>regular expression</em> describes strings of characters. It's a pattern
that matches certain strings and doesn't match others.
@li @ref overview_resyntax_differentflavors
@li @ref overview_resyntax_syntax
@li @ref overview_resyntax_bracket
@li @ref overview_resyntax_escapes
@li @ref overview_resyntax_metasyntax
@li @ref overview_resyntax_matching
@li @ref overview_resyntax_limits
@li @ref overview_resyntax_bre
@li @ref overview_resyntax_characters
@seealso
@li #wxRegEx
<hr>
@section overview_resyntax_differentflavors Different Flavors of Regular Expressions
Regular expressions (RE), as defined by POSIX, come in two flavors:
<em>extended regular expressions</em> (ERE) and <em>basic regular
expressions</em> (BRE). EREs are roughly those of the traditional @e egrep,
while BREs are roughly those of the traditional @e ed. This implementation
adds a third flavor: <em>advanced regular expressions</em> (ARE), basically
EREs with some significant extensions.
This manual page primarily describes AREs. BREs mostly exist for backward
compatibility in some old programs. POSIX EREs are almost an exact subset of
AREs. Features of AREs that are not present in EREs will be indicated.
@section overview_resyntax_syntax Regular Expression Syntax
These regular expressions are implemented using the package written by Henry
Spencer, based on the 1003.2 spec and some (not quite all) of the Perl5
extensions (thanks, Henry!). Much of the description of regular expressions
below is copied verbatim from his manual entry.
An ARE is one or more @e branches, separated by "|", matching anything that
matches any of the branches.
A branch is zero or more @e constraints or @e quantified atoms, concatenated.
It matches a match for the first, followed by a match for the second, etc; an
empty branch matches the empty string.
A quantified atom is an @e atom possibly followed by a single @e quantifier.
Without a quantifier, it matches a match for the atom. The quantifiers, and
what a so-quantified atom matches, are:
@beginTable
@row2col{ <tt>*</tt> ,
A sequence of 0 or more matches of the atom. }
@row2col{ <tt>+</tt> ,
A sequence of 1 or more matches of the atom. }
@row2col{ <tt>?</tt> ,
A sequence of 0 or 1 matches of the atom. }
@row2col{ <tt>{m}</tt> ,
A sequence of exactly @e m matches of the atom. }
@row2col{ <tt>{m\,}</tt> ,
A sequence of @e m or more matches of the atom. }
@row2col{ <tt>{m\,n}</tt> ,
A sequence of @e m through @e n (inclusive) matches of the atom; @e m may
not exceed @e n. }
@row2col{ <tt>*? +? ?? {m}? {m\,}? {m\,n}?</tt> ,
@e Non-greedy quantifiers, which match the same possibilities, but prefer
the smallest number rather than the largest number of matches (see
@ref overview_resyntax_matching). }
@endTable
The forms using @b { and @b } are known as @e bounds. The numbers @e m and
@e n are unsigned decimal integers with permissible values from 0 to 255
inclusive. An atom is one of:
@beginTable
@row2col{ <tt>(re)</tt> ,
Where @e re is any regular expression, matches for @e re, with the match
captured for possible reporting. }
@row2col{ <tt>(?:re)</tt> ,
As previous, but does no reporting (a "non-capturing" set of
parentheses). }
@row2col{ <tt>()</tt> ,
Matches an empty string, captured for possible reporting. }
@row2col{ <tt>(?:)</tt> ,
Matches an empty string, without reporting. }
@row2col{ <tt>[chars]</tt> ,
A <em>bracket expression</em>, matching any one of the @e chars (see
@ref overview_resyntax_bracket for more details). }
@row2col{ <tt>.</tt> ,
Matches any single character. }
@row2col{ <tt>@\k</tt> ,
Where @e k is a non-alphanumeric character, matches that character taken
as an ordinary character, e.g. @\@\ matches a backslash character. }
@row2col{ <tt>@\c</tt> ,
Where @e c is alphanumeric (possibly followed by other characters), an
@e escape (AREs only), see @ref overview_resyntax_escapes below. }
@row2col{ <tt>@leftCurly</tt> ,
When followed by a character other than a digit, matches the left-brace
character "@leftCurly"; when followed by a digit, it is the beginning of a
@e bound (see above). }
@row2col{ <tt>x</tt> ,
Where @e x is a single character with no other significance, matches that
character. }
@endTable
A @e constraint matches an empty string when specific conditions are met. A
constraint may not be followed by a quantifier. The simple constraints are as
follows; some more constraints are described later, under
@ref overview_resyntax_escapes.
@beginTable
@row2col{ <tt>^</tt> ,
Matches at the beginning of a line. }
@row2col{ <tt>@$</tt> ,
Matches at the end of a line. }
@row2col{ <tt>(?=re)</tt> ,
@e Positive lookahead (AREs only), matches at any point where a substring
matching @e re begins. }
@row2col{ <tt>(?!re)</tt> ,
@e Negative lookahead (AREs only), matches at any point where no substring
matching @e re begins. }
@endTable
The lookahead constraints may not contain back references (see later), and all
parentheses within them are considered non-capturing. A RE may not end with
"\".
@section overview_resyntax_bracket Bracket Expressions
A <em>bracket expression</em> is a list of characters enclosed in <tt>[]</tt>.
It normally matches any single character from the list (but see below). If the
list begins with @c ^, it matches any single character (but see below) @e not
from the rest of the list.
If two characters in the list are separated by <tt>-</tt>, this is shorthand
for the full @e range of characters between those two (inclusive) in the
collating sequence, e.g. <tt>[0-9]</tt> in ASCII matches any decimal digit.
Two ranges may not share an endpoint, so e.g. <tt>a-c-e</tt> is illegal.
Ranges are very collating-sequence-dependent, and portable programs should
avoid relying on them.
To include a literal <tt>]</tt> or <tt>-</tt> in the list, the simplest method
is to enclose it in <tt>[.</tt> and <tt>.]</tt> to make it a collating element
(see below). Alternatively, make it the first character (following a possible
<tt>^</tt>), or (AREs only) precede it with <tt>@\</tt>. Alternatively, for
<tt>-</tt>, make it the last character, or the second endpoint of a range. To
use a literal <tt>-</tt> as the first endpoint of a range, make it a collating
element or (AREs only) precede it with <tt>@\</tt>. With the exception of
these, some combinations using <tt>[</tt> (see next paragraphs), and escapes,
all other special characters lose their special significance within a bracket
expression.
Within a bracket expression, a collating element (a character, a
multi-character sequence that collates as if it were a single character, or a
collating-sequence name for either) enclosed in <tt>[.</tt> and <tt>.]</tt>
stands for the sequence of characters of that collating element.
@e wxWidgets: Currently no multi-character collating elements are defined. So
in <tt>[.X.]</tt>, @c X can either be a single character literal or the name
of a character. For example, the following are both identical:
<tt>[[.0.]-[.9.]]</tt> and <tt>[[.zero.]-[.nine.]]</tt> and mean the same as
<tt>[0-9]</tt>. See @ref overview_resyntax_characters.
Within a bracket expression, a collating element enclosed in <tt>[=</tt> and
<tt>=]</tt> is an equivalence class, standing for the sequences of characters
of all collating elements equivalent to that one, including itself. An
equivalence class may not be an endpoint of a range.
@e wxWidgets: Currently no equivalence classes are defined, so <tt>[=X=]</tt>
stands for just the single character @c X. @c X can either be a single
character literal or the name of a character, see
@ref overview_resyntax_characters.
Within a bracket expression, the name of a @e character class enclosed in
<tt>[:</tt> and <tt>:]</tt> stands for the list of all characters (not all
collating elements!) belonging to that class. Standard character classes are:
@beginTable
@row2col{ <tt>alpha</tt> , A letter. }
@row2col{ <tt>upper</tt> , An upper-case letter. }
@row2col{ <tt>lower</tt> , A lower-case letter. }
@row2col{ <tt>digit</tt> , A decimal digit. }
@row2col{ <tt>xdigit</tt> , A hexadecimal digit. }
@row2col{ <tt>alnum</tt> , An alphanumeric (letter or digit). }
@row2col{ <tt>print</tt> , An alphanumeric (same as alnum). }
@row2col{ <tt>blank</tt> , A space or tab character. }
@row2col{ <tt>space</tt> , A character producing white space in displayed text. }
@row2col{ <tt>punct</tt> , A punctuation character. }
@row2col{ <tt>graph</tt> , A character with a visible representation. }
@row2col{ <tt>cntrl</tt> , A control character. }
@endTable
A character class may not be used as an endpoint of a range.
@e wxWidgets: In a non-Unicode build, these character classifications depend on
the current locale, and correspond to the values return by the ANSI C "is"
functions: <tt>isalpha</tt>, <tt>isupper</tt>, etc. In Unicode mode they are
based on Unicode classifications, and are not affected by the current locale.
There are two special cases of bracket expressions: the bracket expressions
<tt>[[:@<:]]</tt> and <tt>[[:@>:]]</tt> are constraints, matching empty strings at
the beginning and end of a word respectively. A word is defined as a sequence
of word characters that is neither preceded nor followed by word characters. A
word character is an @e alnum character or an underscore (_). These special
bracket expressions are deprecated; users of AREs should use constraint escapes
instead (see escapes below).
@section overview_resyntax_escapes Escapes
Escapes (AREs only), which begin with a <tt>@\</tt> followed by an alphanumeric
character, come in several varieties: character entry, class shorthands,
constraint escapes, and back references. A <tt>@\</tt> followed by an
alphanumeric character but not constituting a valid escape is illegal in AREs.
In EREs, there are no escapes: outside a bracket expression, a <tt>@\</tt>
followed by an alphanumeric character merely stands for that character as an
ordinary character, and inside a bracket expression, <tt>@\</tt> is an ordinary
character. (The latter is the one actual incompatibility between EREs and
AREs.)
Character-entry escapes (AREs only) exist to make it easier to specify
non-printing and otherwise inconvenient characters in REs:
@beginTable
@row2col{ <tt>@\a</tt> , Alert (bell) character, as in C. }
@row2col{ <tt>@\b</tt> , Backspace, as in C. }
@row2col{ <tt>@\B</tt> ,
Synonym for <tt>@\</tt> to help reduce backslash doubling in some
applications where there are multiple levels of backslash processing. }
@row2col{ <tt>@\cX</tt> ,
The character whose low-order 5 bits are the same as those of @e X, and
whose other bits are all zero, where @e X is any character. }
@row2col{ <tt>@\e</tt> ,
The character whose collating-sequence name is @c ESC, or failing that,
the character with octal value 033. }
@row2col{ <tt>@\f</tt> , Formfeed, as in C. }
@row2col{ <tt>@\n</tt> , Newline, as in C. }
@row2col{ <tt>@\r</tt> , Carriage return, as in C. }
@row2col{ <tt>@\t</tt> , Horizontal tab, as in C. }
@row2col{ <tt>@\uwxyz</tt> ,
The Unicode character <tt>U+wxyz</tt> in the local byte ordering, where
@e wxyz is exactly four hexadecimal digits. }
@row2col{ <tt>@\Ustuvwxyz</tt> ,
Reserved for a somewhat-hypothetical Unicode extension to 32 bits, where
@e stuvwxyz is exactly eight hexadecimal digits. }
@row2col{ <tt>@\v</tt> , Vertical tab, as in C are all available. }
@row2col{ <tt>@\xhhh</tt> ,
The single character whose hexadecimal value is @e 0xhhh, where @e hhh is
any sequence of hexadecimal digits. }
@row2col{ <tt>@\0</tt> , The character whose value is 0. }
@row2col{ <tt>@\xy</tt> ,
The character whose octal value is @e 0xy, where @e xy is exactly two octal
digits, and is not a <em>back reference</em> (see below). }
@row2col{ <tt>@\xyz</tt> ,
The character whose octal value is @e 0xyz, where @e xyz is exactly three
octal digits, and is not a <em>back reference</em> (see below). }
@endTable
Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.
The character-entry escapes are always taken as ordinary characters. For
example, <tt>@\135</tt> is <tt>]</tt> in ASCII, but <tt>@\135</tt> does not
terminate a bracket expression. Beware, however, that some applications (e.g.,
C compilers) interpret such sequences themselves before the regular-expression
package gets to see them, which may require doubling (quadrupling, etc.) the
'<tt>@\</tt>'.
Class-shorthand escapes (AREs only) provide shorthands for certain
commonly-used character classes:
@beginTable
@row2col{ <tt>@\d</tt> , <tt>[[:digit:]]</tt> }
@row2col{ <tt>@\s</tt> , <tt>[[:space:]]</tt> }
@row2col{ <tt>@\w</tt> , <tt>[[:alnum:]_]</tt> (note underscore) }
@row2col{ <tt>@\D</tt> , <tt>[^[:digit:]]</tt> }
@row2col{ <tt>@\S</tt> , <tt>[^[:space:]]</tt> }
@row2col{ <tt>@\W</tt> , <tt>[^[:alnum:]_]</tt> (note underscore) }
@endTable
Within bracket expressions, <tt>@\d</tt>, <tt>@\s</tt>, and <tt>@\w</tt> lose
their outer brackets, and <tt>@\D</tt>, <tt>@\S</tt>, <tt>@\W</tt> are illegal.
So, for example, <tt>[a-c@\d]</tt> is equivalent to <tt>[a-c[:digit:]]</tt>.
Also, <tt>[a-c@\D]</tt>, which is equivalent to <tt>[a-c^[:digit:]]</tt>, is
illegal.
A constraint escape (AREs only) is a constraint, matching the empty string if
specific conditions are met, written as an escape:
@beginTable
@row2col{ <tt>@\A</tt> , Matches only at the beginning of the string, see
@ref overview_resyntax_matching for how this differs
from <tt>^</tt>. }
@row2col{ <tt>@\m</tt> , Matches only at the beginning of a word. }
@row2col{ <tt>@\M</tt> , Matches only at the end of a word. }
@row2col{ <tt>@\y</tt> , Matches only at the beginning or end of a word. }
@row2col{ <tt>@\Y</tt> , Matches only at a point that is not the beginning or
end of a word. }
@row2col{ <tt>@\Z</tt> , Matches only at the end of the string, see
@ref overview_resyntax_matching for how this differs
from <tt>@$</tt>. }
@row2col{ <tt>@\m</tt> , A <em>back reference</em>, where @e m is a non-zero
digit. See below. }
@row2col{ <tt>@\mnn</tt> ,
A <em>back reference</em>, where @e m is a nonzero digit, and @e nn is some
more digits, and the decimal value @e mnn is not greater than the number of
closing capturing parentheses seen so far. See below. }
@endTable
A word is defined as in the specification of <tt>[[:@<:]]</tt> and
<tt>[[:>:]]</tt> above. Constraint escapes are illegal within bracket
expressions.
A back reference (AREs only) matches the same string matched by the
parenthesized subexpression specified by the number. For example, "([bc])\1"
matches "bb" or "cc" but not "bc". The subexpression must entirely precede the
back reference in the RE.Subexpressions are numbered in the order of their
leading parentheses. Non-capturing parentheses do not define subexpressions.
There is an inherent historical ambiguity between octal character-entry escapes
and back references, which is resolved by heuristics, as hinted at above. A
leading zero always indicates an octal escape. A single non-zero digit, not
followed by another digit, is always taken as a back reference. A multi-digit
sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e. the number is in the legal range for a
back reference), and otherwise is taken as octal.
@section overview_resyntax_metasyntax Metasyntax
In addition to the main syntax described above,
there are some special forms and miscellaneous syntactic facilities available.
Normally the flavor of RE being used is specified by application-dependent
means. However, this can be overridden by a @e director. If an RE of any flavor
begins with '@b ***:', the rest of the RE is an ARE. If an RE of any flavor begins
with '@b ***=', the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.
An ARE may begin with @e embedded options: a sequence @b (?xyz)
(where @e xyz is one or more alphabetic characters)
specifies options affecting the rest of the RE. These supplement, and can
override, any options specified by the application. The available option
letters are:
@b b
rest of RE is a BRE
@b c
case-sensitive matching (usual default)
@b e
rest of RE is an ERE
@b i
case-insensitive matching (see #Matching, below)
@b m
historical synonym for @b n
@b n
newline-sensitive matching (see #Matching, below)
@b p
partial newline-sensitive matching (see #Matching, below)
@b q
rest of RE
is a literal ("quoted'') string, all ordinary characters
@b s
non-newline-sensitive matching (usual default)
@b t
tight syntax (usual default; see below)
@b w
inverse
partial newline-sensitive ("weird'') matching (see #Matching, below)
@b x
expanded syntax (see below)
Embedded options take effect at the @b ) terminating the
sequence. They are available only at the start of an ARE, and may not be
used later within it.
In addition to the usual (@e tight) RE syntax, in which
all characters are significant, there is an @e expanded syntax, available
in AREs with the embedded
x option. In the expanded syntax, white-space characters are ignored and
all characters between a @b # and the following newline (or the end of the
RE) are ignored, permitting paragraphing and commenting a complex RE. There
are three exceptions to that basic rule:
a white-space character or '@b #' preceded
by '@b \' is retained
white space or '@b #' within a bracket expression is retained
white space and comments are illegal within multi-character symbols like
the ARE '@b (?:' or the BRE '@b \('
Expanded-syntax white-space characters are blank,
tab, newline, and any character that belongs to the @e space character class.
Finally, in an ARE, outside bracket expressions, the sequence '@b (?#ttt)' (where
@e ttt is any text not containing a '@b )') is a comment, completely ignored. Again,
this is not allowed between the characters of multi-character symbols like
'@b (?:'. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.
@e None of these
metasyntax extensions is available if the application (or an initial @b ***=
director) has specified that the user's input be treated as a literal string
rather than as an RE.
@section overview_resyntax_matching Matching
In the event that an RE could match more than
one substring of a given string, the RE matches the one starting earliest
in the string. If the RE could match more than one substring starting at
that point, its choice is determined by its @e preference: either the longest
substring, or the shortest.
Most atoms, and all constraints, have no preference.
A parenthesized RE has the same preference (possibly none) as the RE. A
quantified atom with quantifier @b {m} or @b {m}? has the same preference (possibly
none) as the atom itself. A quantified atom with other normal quantifiers
(including @b {m,n} with @e m equal to @e n) prefers longest match. A quantified
atom with other non-greedy quantifiers (including @b {m,n}? with @e m equal to
@e n) prefers shortest match. A branch has the same preference as the first
quantified atom in it which has a preference. An RE consisting of two or
more branches connected by the @b | operator prefers longest match.
Subject to the constraints imposed by the rules for matching the whole RE, subexpressions
also match the longest or shortest possible substrings, based on their
preferences, with subexpressions starting earlier in the RE taking priority
over ones starting later. Note that outer subexpressions thus take priority
over their component subexpressions.
Note that the quantifiers @b {1,1} and
@b {1,1}? can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.
Match lengths are measured in characters,
not collating elements. An empty string is considered longer than no match
at all. For example, @b bb* matches the three middle characters
of '@b abbbc', @b (week|wee)(night|knights)
matches all ten characters of '@b weeknights', when @b (.*).* is matched against
@b abc the parenthesized subexpression matches all three characters, and when
@b (a*)* is matched against @b bc both the whole RE and the parenthesized subexpression
match an empty string.
If case-independent matching is specified, the effect
is much as if all case distinctions had vanished from the alphabet. When
an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket
expression containing both cases, so that @b x becomes '@b [xX]'. When it appears
inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that @b [x] becomes @b [xX] and @b [^x] becomes '@b [^xX]'.
If newline-sensitive
matching is specified, @b . and bracket expressions using @b ^ will never match
the newline character (so that matches will never cross newlines unless
the RE explicitly arranges it) and @b ^ and @b $ will match the empty string after
and before a newline respectively, in addition to matching at beginning
and end of string respectively. ARE @b \A and @b \Z continue to match beginning
or end of string @e only.
If partial newline-sensitive matching is specified,
this affects @b . and bracket expressions as with newline-sensitive matching,
but not @b ^ and '@b $'.
If inverse partial newline-sensitive matching is specified,
this affects @b ^ and @b $ as with newline-sensitive matching, but not @b . and bracket
expressions. This isn't very useful but is provided for symmetry.
@section overview_resyntax_limits Limits and Compatibility
No particular limit is imposed on the length of REs. Programs
intended to be highly portable should not employ REs longer than 256 bytes,
as a POSIX-compliant implementation can refuse to accept such REs.
The only
feature of AREs that is actually incompatible with POSIX EREs is that @b \
does not lose its special significance inside bracket expressions. All other
ARE features use syntax which is illegal or has undefined or unspecified
effects in POSIX EREs; the @b *** syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.
Many of the ARE extensions are
borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include '@b \b',
'@b \B', the lack of special treatment for a trailing newline, the addition of
complemented bracket expressions to the things affected by newline-sensitive
matching, the restrictions on parentheses and back references in lookahead
constraints, and the longest/shortest-match (rather than first-match) matching
semantics.
The matching rules for REs containing both normal and non-greedy
quantifiers have changed since early beta-test versions of this package.
(The new rules are much simpler and cleaner, but don't work as hard at guessing
the user's real intentions.)
Henry Spencer's original 1986 @e regexp package, still in widespread use,
implemented an early version of today's EREs. There are four incompatibilities between @e regexp's
near-EREs ('RREs' for short) and AREs. In roughly increasing order of significance:
In AREs, @b \ followed by an alphanumeric character is either an escape or
an error, while in RREs, it was just another way of writing the alphanumeric.
This should not be a problem because there was no reason to write such
a sequence in RREs.
@b { followed by a digit in an ARE is the beginning of
a bound, while in RREs, @b { was always an ordinary character. Such sequences
should be rare, and will often result in an error because following characters
will not look like a valid bound.
In AREs, @b \ remains a special character
within '@b []', so a literal @b \ within @b [] must be
written '@b \\'. @b \\ also gives a literal
@b \ within @b [] in RREs, but only truly paranoid programmers routinely doubled
the backslash.
AREs report the longest/shortest match for the RE, rather
than the first found in a specified search order. This may affect some RREs
which were written in the expectation that the first match would be reported.
(The careful crafting of RREs to optimize the search order for fast matching
is obsolete (AREs examine all possible matches in parallel, and their performance
is largely insensitive to their complexity) but cases where the search
order was exploited to deliberately find a match which was @e not the longest/shortest
will need rewriting.)
@section overview_resyntax_bre Basic Regular Expressions
BREs differ from EREs in
several respects. '@b |', '@b +', and @b ? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds
are @b \{ and '@b \}', with @b { and
@b } by themselves ordinary characters. The parentheses for nested subexpressions
are @b \( and '@b \)', with @b ( and @b ) by themselves
ordinary characters. @b ^ is an ordinary
character except at the beginning of the RE or the beginning of a parenthesized
subexpression, @b $ is an ordinary character except at the end of the RE or
the end of a parenthesized subexpression, and @b * is an ordinary character
if it appears at the beginning of the RE or the beginning of a parenthesized
subexpression (after a possible leading '@b ^'). Finally, single-digit back references
are available, and @b \ and @b \ are synonyms
for <tt>[[:@<:]]</tt> and <tt>[[:@>:]]</tt> respectively;
no other escapes are available.
@section overview_resyntax_characters Regular Expression Character Names
Note that the character names are case sensitive.
<center><table class='doctable' border='0' cellspacing='5' cellpadding='4'><tr>
<td>
@beginTable
@row2col{ <tt>NUL</tt> , @\0 }
@row2col{ <tt>SOH</tt> , @\001 }
@row2col{ <tt>STX</tt> , @\002 }
@row2col{ <tt>ETX</tt> , @\003 }
@row2col{ <tt>EOT</tt> , @\004 }
@row2col{ <tt>ENQ</tt> , @\005 }
@row2col{ <tt>ACK</tt> , @\006 }
@row2col{ <tt>BEL</tt> , @\007 }
@row2col{ <tt>alert</tt> , @\007 }
@row2col{ <tt>BS</tt> , @\010 }
@row2col{ <tt>backspace</tt> , @\b }
@row2col{ <tt>HT</tt> , @\011 }
@row2col{ <tt>tab</tt> , @\t }
@row2col{ <tt>LF</tt> , @\012 }
@row2col{ <tt>newline</tt> , @\n }
@row2col{ <tt>VT</tt> , @\013 }
@row2col{ <tt>vertical-tab</tt> , @\v }
@row2col{ <tt>FF</tt> , @\014 }
@row2col{ <tt>form-feed</tt> , @\f }
@endTable
</td>
<td>
@beginTable
@row2col{ <tt>CR</tt> , @\015 }
@row2col{ <tt>carriage-return</tt> , @\r }
@row2col{ <tt>SO</tt> , @\016 }
@row2col{ <tt>SI</tt> , @\017 }
@row2col{ <tt>DLE</tt> , @\020 }
@row2col{ <tt>DC1</tt> , @\021 }
@row2col{ <tt>DC2</tt> , @\022 }
@row2col{ <tt>DC3</tt> , @\023 }
@row2col{ <tt>DC4</tt> , @\024 }
@row2col{ <tt>NAK</tt> , @\025 }
@row2col{ <tt>SYN</tt> , @\026 }
@row2col{ <tt>ETB</tt> , @\027 }
@row2col{ <tt>CAN</tt> , @\030 }
@row2col{ <tt>EM</tt> , @\031 }
@row2col{ <tt>SUB</tt> , @\032 }
@row2col{ <tt>ESC</tt> , @\033 }
@row2col{ <tt>IS4</tt> , @\034 }
@row2col{ <tt>FS</tt> , @\034 }
@row2col{ <tt>IS3</tt> , @\035 }
@endTable
</td>
<td>
@beginTable
@row2col{ <tt>GS</tt> , @\035 }
@row2col{ <tt>IS2</tt> , @\036 }
@row2col{ <tt>RS</tt> , @\036 }
@row2col{ <tt>IS1</tt> , @\037 }
@row2col{ <tt>US</tt> , @\037 }
@row2col{ <tt>space</tt> , " " (space) }
@row2col{ <tt>exclamation-mark</tt> , ! }
@row2col{ <tt>quotation-mark</tt> , " }
@row2col{ <tt>number-sign</tt> , @# }
@row2col{ <tt>dollar-sign</tt> , @$ }
@row2col{ <tt>percent-sign</tt> , @% }
@row2col{ <tt>ampersand</tt> , @& }
@row2col{ <tt>apostrophe</tt> , ' }
@row2col{ <tt>left-parenthesis</tt> , ( }
@row2col{ <tt>right-parenthesis</tt> , ) }
@row2col{ <tt>asterisk</tt> , * }
@row2col{ <tt>plus-sign</tt> , + }
@row2col{ <tt>comma</tt> , \, }
@row2col{ <tt>hyphen</tt> , - }
@endTable
</td>
<td>
@beginTable
@row2col{ <tt>hyphen-minus</tt> , - }
@row2col{ <tt>period</tt> , . }
@row2col{ <tt>full-stop</tt> , . }
@row2col{ <tt>slash</tt> , / }
@row2col{ <tt>solidus</tt> , / }
@row2col{ <tt>zero</tt> , 0 }
@row2col{ <tt>one</tt> , 1 }
@row2col{ <tt>two</tt> , 2 }
@row2col{ <tt>three</tt> , 3 }
@row2col{ <tt>four</tt> , 4 }
@row2col{ <tt>five</tt> , 5 }
@row2col{ <tt>six</tt> , 6 }
@row2col{ <tt>seven</tt> , 7 }
@row2col{ <tt>eight</tt> , 8 }
@row2col{ <tt>nine</tt> , 9 }
@row2col{ <tt>colon</tt> , : }
@row2col{ <tt>semicolon</tt> , ; }
@row2col{ <tt>less-than-sign</tt> , @< }
@row2col{ <tt>equals-sign</tt> , = }
@endTable
</td>
<td>
@beginTable
@row2col{ <tt>greater-than-sign</tt> , @> }
@row2col{ <tt>question-mark</tt> , ? }
@row2col{ <tt>commercial-at</tt> , @@ }
@row2col{ <tt>left-square-bracket</tt> , [ }
@row2col{ <tt>backslash</tt> , @\ }
@row2col{ <tt>reverse-solidus</tt> , @\ }
@row2col{ <tt>right-square-bracket</tt> , ] }
@row2col{ <tt>circumflex</tt> , ^ }
@row2col{ <tt>circumflex-accent</tt> , ^ }
@row2col{ <tt>underscore</tt> , _ }
@row2col{ <tt>low-line</tt> , _ }
@row2col{ <tt>grave-accent</tt> , ' }
@row2col{ <tt>left-brace</tt> , @leftCurly }
@row2col{ <tt>left-curly-bracket</tt> , @leftCurly }
@row2col{ <tt>vertical-line</tt> , | }
@row2col{ <tt>right-brace</tt> , @rightCurly }
@row2col{ <tt>right-curly-bracket</tt> , @rightCurly }
@row2col{ <tt>tilde</tt> , ~ }
@row2col{ <tt>DEL</tt> , @\177 }
@endTable
</td>
</tr></table></center>
*/