wxWidgets/demos/life/game.cpp
2004-04-06 13:19:42 +00:00

1508 lines
34 KiB
C++

/////////////////////////////////////////////////////////////////////////////
// Name: game.cpp
// Purpose: Life! game logic
// Author: Guillermo Rodriguez Garcia, <guille@iies.es>
// Modified by:
// Created: Jan/2000
// RCS-ID: $Id$
// Copyright: (c) 2000, Guillermo Rodriguez Garcia
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
// ==========================================================================
// headers, declarations, constants
// ==========================================================================
#ifdef __GNUG__
#pragma implementation "game.h"
#endif
// For compilers that support precompilation, includes "wx/wx.h".
#include "wx/wxprec.h"
#ifdef __BORLANDC__
#pragma hdrstop
#endif
#ifndef WX_PRECOMP
#include "wx/wx.h"
#endif
#include "wx/log.h"
#include "wx/module.h"
#include "game.h"
#include <string.h> // for memset
#define ARRAYSIZE 1024 // static array for BeginFind & co.
#define ALLOCBOXES 16 // number of cellboxes to alloc at once
#define MAXDEAD 8 // tics before removing cellbox from list
// ==========================================================================
// CellBox
// ==========================================================================
#define HASH(x, y) (((x >> 3) & 0x7f) << 7) + ((y >> 3) & 0x7f)
#define HASHSIZE 16384 // hash table size (do not change!)
#define CELLBOX 8 // cells in a cellbox (do not change!)
class LifeCellBox
{
public:
// members
inline bool IsAlive(int dx, int dy) const;
inline bool SetCell(int dx, int dy, bool alive);
// attributes
wxInt32 m_x, m_y; // position in universe
wxUint32 m_live1, m_live2; // alive cells (1 bit per cell)
wxUint32 m_old1, m_old2; // old values for m_live1, 2
wxUint32 m_on[8]; // neighbouring info
wxUint32 m_dead; // been dead for n generations
LifeCellBox *m_up, *m_dn, *m_lf, *m_rt; // neighbour CellBoxes
LifeCellBox *m_prev, *m_next; // in linked list
LifeCellBox *m_hprev, *m_hnext; // in hash table
};
// IsAlive:
// Returns whether cell dx, dy in this box is alive
//
bool LifeCellBox::IsAlive(int dx, int dy) const
{
if (dy > 3)
return (bool)(m_live2 & 1 << ((dy - 4) * 8 + dx));
else
return (bool)(m_live1 & 1 << ((dy) * 8 + dx));
}
// SetCell:
// Sets cell dx, dy in this box to 'alive', returns TRUE if
// the previous value was different, FALSE if it was the same.
//
bool LifeCellBox::SetCell(int dx, int dy, bool alive)
{
if (IsAlive(dx, dy) != alive)
{
if (dy > 3)
m_live2 ^= 1 << ((dy - 4) * 8 + dx);
else
m_live1 ^= 1 << ((dy) * 8 + dx);
// reset this here to avoid updating problems
m_dead = 0;
return TRUE;
}
else
return FALSE;
}
// ==========================================================================
// Life
// ==========================================================================
// --------------------------------------------------------------------------
// Ctor and dtor
// --------------------------------------------------------------------------
Life::Life()
{
// pattern description
m_name = _("");
m_rules = _("");
m_description = _("");
// pattern data
m_numcells = 0;
m_boxes = new LifeCellBox *[HASHSIZE];
m_head = NULL;
m_available = NULL;
for (int i = 0; i < HASHSIZE; i++)
m_boxes[i] = NULL;
// state vars for BeginFind & FindMore
m_cells = new LifeCell[ARRAYSIZE];
m_ncells = 0;
m_findmore = FALSE;
m_changed = FALSE;
}
Life::~Life()
{
Clear();
delete[] m_boxes;
delete[] m_cells;
}
// Clear:
// Clears the board, freeing all storage.
//
void Life::Clear()
{
LifeCellBox *c, *nc;
// clear the hash table pointers
for (int i = 0; i < HASHSIZE; i++)
m_boxes[i] = NULL;
// free used boxes
c = m_head;
while (c)
{
nc = c->m_next;
delete c;
c = nc;
}
m_head = NULL;
// free available boxes
c = m_available;
while (c)
{
nc = c->m_next;
delete c;
c = nc;
}
m_available = NULL;
// reset state
m_name = _("");
m_rules = _("");
m_description = _("");
m_numcells = 0;
}
// --------------------------------------------------------------------------
// Test and set individual cells
// --------------------------------------------------------------------------
// IsAlive:
// Returns whether cell (x, y) is alive.
//
bool Life::IsAlive(wxInt32 x, wxInt32 y)
{
LifeCellBox *c = LinkBox(x, y, FALSE);
return (c && c->IsAlive( x - c->m_x, y - c->m_y ));
}
// SetCell:
// Sets or clears cell (x, y), according to the 'alive' param.
//
void Life::SetCell(wxInt32 x, wxInt32 y, bool alive)
{
LifeCellBox *c = LinkBox(x, y);
wxUint32 dx = x - c->m_x;
wxUint32 dy = y - c->m_y;
if (c->SetCell(dx, dy, alive))
{
if (alive)
m_numcells++;
else
m_numcells--;
}
}
void Life::SetPattern(const LifePattern& pattern)
{
wxArrayString data = pattern.m_shape;
wxString line;
long x = 0,
y = 0;
Clear();
for (size_t n = 0; n < data.GetCount(); n++)
{
line = data[n];
if ( (line.GetChar(0) != wxT('*')) &&
(line.GetChar(0) != wxT('.')) )
{
// assume that it is a digit or a minus sign
line.BeforeFirst(wxT(' ')).ToLong(&x);
line.AfterFirst(wxT(' ')).ToLong(&y);
}
else
{
// pattern data
for (size_t k = 0; k < line.Len(); k++)
SetCell(x + k, y, line.GetChar(k) == wxT('*'));
y++;
}
}
m_name = pattern.m_name;
m_rules = pattern.m_rules;
m_description = pattern.m_description;
}
// --------------------------------------------------------------------------
// Cellbox management functions
// --------------------------------------------------------------------------
// CreateBox:
// Creates a box in x, y, either taking it from the list
// of available boxes, or allocating a new one.
//
LifeCellBox* Life::CreateBox(wxInt32 x, wxInt32 y, wxUint32 hv)
{
LifeCellBox *c;
// if there are no available boxes, alloc a few more
if (!m_available)
for (int i = 1; i <= ALLOCBOXES; i++)
{
c = new LifeCellBox();
if (!c)
{
// TODO: handle memory errors. Note that right now, if we
// couldn't allocate at least one cellbox, we will crash
// before leaving CreateBox(). Probably we should try to
// allocate some boxes *before* the m_available list goes
// empty, so that we have a margin to handle errors
// gracefully.
wxLogFatalError(_("Out of memory! Aborting..."));
// NOTREACHED
}
c->m_next = m_available;
m_available = c;
}
// take a cellbox from the list of available boxes
c = m_available;
m_available = c->m_next;
// reset everything
memset((void *) c, 0, sizeof(LifeCellBox));
c->m_x = x;
c->m_y = y;
// insert c in the list
c->m_next = m_head;
m_head = c;
if (c->m_next) c->m_next->m_prev = c;
// insert c in the hash table
c->m_hnext = m_boxes[hv];
m_boxes[hv] = c;
if (c->m_hnext) c->m_hnext->m_hprev = c;
return c;
}
// LinkBox:
// Returns a pointer to the box (x, y); if it didn't exist yet,
// it returns NULL or creates a new one, depending on the value
// of the 'create' parameter.
//
LifeCellBox* Life::LinkBox(wxInt32 x, wxInt32 y, bool create)
{
wxUint32 hv;
LifeCellBox *c;
x &= 0xfffffff8;
y &= 0xfffffff8;
hv = HASH(x, y);
// search in the hash table
for (c = m_boxes[hv]; c; c = c->m_hnext)
if ((c->m_x == x) && (c->m_y == y)) return c;
// if not found, and (create == TRUE), create a new one
return create? CreateBox(x, y, hv) : (LifeCellBox*) NULL;
}
// KillBox:
// Removes this box from the list and the hash table and
// puts it in the list of available boxes.
//
void Life::KillBox(LifeCellBox *c)
{
wxUint32 hv = HASH(c->m_x, c->m_y);
// remove from the list
if (c != m_head)
c->m_prev->m_next = c->m_next;
else
m_head = c->m_next;
// remove from the hash table
if (c != m_boxes[hv])
c->m_hprev->m_hnext = c->m_hnext;
else
m_boxes[hv] = c->m_hnext;
// update neighbours
if (c->m_next) c->m_next->m_prev = c->m_prev;
if (c->m_hnext) c->m_hnext->m_hprev = c->m_hprev;
if (c->m_up) c->m_up->m_dn = NULL;
if (c->m_dn) c->m_dn->m_up = NULL;
if (c->m_lf) c->m_lf->m_rt = NULL;
if (c->m_rt) c->m_rt->m_lf = NULL;
// append to the list of available boxes
c->m_next = m_available;
m_available = c;
}
// --------------------------------------------------------------------------
// Navigation
// --------------------------------------------------------------------------
LifeCell Life::FindCenter()
{
double sx, sy;
int n;
sx = 0.0;
sy = 0.0;
n = 0;
LifeCellBox *c;
for (c = m_head; c; c = c->m_next)
if (!c->m_dead)
{
sx += c->m_x;
sy += c->m_y;
n++;
}
if (n > 0)
{
sx = (sx / n) + CELLBOX / 2;
sy = (sy / n) + CELLBOX / 2;
}
LifeCell cell;
cell.i = (wxInt32) sx;
cell.j = (wxInt32) sy;
return cell;
}
LifeCell Life::FindNorth()
{
wxInt32 x = 0, y = 0;
bool first = TRUE;
LifeCellBox *c;
for (c = m_head; c; c = c->m_next)
if (!c->m_dead && ((first) || (c->m_y < y)))
{
x = c->m_x;
y = c->m_y;
first = FALSE;
}
LifeCell cell;
cell.i = first? 0 : x + CELLBOX / 2;
cell.j = first? 0 : y + CELLBOX / 2;
return cell;
}
LifeCell Life::FindSouth()
{
wxInt32 x = 0, y = 0;
bool first = TRUE;
LifeCellBox *c;
for (c = m_head; c; c = c->m_next)
if (!c->m_dead && ((first) || (c->m_y > y)))
{
x = c->m_x;
y = c->m_y;
first = FALSE;
}
LifeCell cell;
cell.i = first? 0 : x + CELLBOX / 2;
cell.j = first? 0 : y + CELLBOX / 2;
return cell;
}
LifeCell Life::FindWest()
{
wxInt32 x = 0, y = 0;
bool first = TRUE;
LifeCellBox *c;
for (c = m_head; c; c = c->m_next)
if (!c->m_dead && ((first) || (c->m_x < x)))
{
x = c->m_x;
y = c->m_y;
first = FALSE;
}
LifeCell cell;
cell.i = first? 0 : x + CELLBOX / 2;
cell.j = first? 0 : y + CELLBOX / 2;
return cell;
}
LifeCell Life::FindEast()
{
wxInt32 x = 0, y = 0;
bool first = TRUE;
LifeCellBox *c;
for (c = m_head; c; c = c->m_next)
if (!c->m_dead && ((first) || (c->m_x > x)))
{
x = c->m_x;
y = c->m_y;
first = FALSE;
}
LifeCell cell;
cell.i = first? 0 : x + CELLBOX / 2;
cell.j = first? 0 : y + CELLBOX / 2;
return cell;
}
// --------------------------------------------------------------------------
// FindMore & co.
// --------------------------------------------------------------------------
// DoLine:
// Post eight cells to the cell arrays - leave out the fourth
// argument (or pass 0, the default value) to post alive cells
// only, else it will post cells which have changed.
//
void Life::DoLine(wxInt32 x, wxInt32 y, wxUint32 live, wxUint32 old)
{
wxUint32 diff = (live ^ old) & 0xff;
if (!diff) return;
for (wxInt32 k = 8; k; k--, x++)
{
if (diff & 0x01)
{
m_cells[m_ncells].i = x;
m_cells[m_ncells].j = y;
m_ncells++;
}
diff >>= 1;
}
}
void Life::BeginFind(wxInt32 x0, wxInt32 y0, wxInt32 x1, wxInt32 y1, bool changed)
{
// TODO: optimize for the case where the maximum number of
// cellboxes that fit in the specified viewport is smaller
// than the current total of boxes; iterating over the list
// should then be faster than searching in the hash table.
m_x0 = m_x = x0 & 0xfffffff8;
m_y0 = m_y = y0 & 0xfffffff8;
m_x1 = (x1 + 7) & 0xfffffff8;
m_y1 = (y1 + 7) & 0xfffffff8;
m_findmore = TRUE;
m_changed = changed;
}
bool Life::FindMore(LifeCell *cells[], size_t *ncells)
{
LifeCellBox *c;
*cells = m_cells;
m_ncells = 0;
if (m_changed)
{
for ( ; m_y <= m_y1; m_y += 8, m_x = m_x0)
for ( ; m_x <= m_x1; m_x += 8)
{
if ((c = LinkBox(m_x, m_y, FALSE)) == NULL)
continue;
// check whether there is enough space left in the array
if (m_ncells > (ARRAYSIZE - 64))
{
*ncells = m_ncells;
return FALSE;
}
DoLine(m_x, m_y , c->m_live1, c->m_old1 );
DoLine(m_x, m_y + 1, c->m_live1 >> 8, c->m_old1 >> 8 );
DoLine(m_x, m_y + 2, c->m_live1 >> 16, c->m_old1 >> 16);
DoLine(m_x, m_y + 3, c->m_live1 >> 24, c->m_old1 >> 24);
DoLine(m_x, m_y + 4, c->m_live2, c->m_old2 );
DoLine(m_x, m_y + 5, c->m_live2 >> 8, c->m_old2 >> 8 );
DoLine(m_x, m_y + 6, c->m_live2 >> 16, c->m_old2 >> 16);
DoLine(m_x, m_y + 7, c->m_live2 >> 24, c->m_old2 >> 24);
}
}
else
{
for ( ; m_y <= m_y1; m_y += 8, m_x = m_x0)
for ( ; m_x <= m_x1; m_x += 8)
{
if ((c = LinkBox(m_x, m_y, FALSE)) == NULL)
continue;
// check whether there is enough space left in the array
if (m_ncells > (ARRAYSIZE - 64))
{
*ncells = m_ncells;
return FALSE;
}
DoLine(m_x, m_y , c->m_live1 );
DoLine(m_x, m_y + 1, c->m_live1 >> 8 );
DoLine(m_x, m_y + 2, c->m_live1 >> 16);
DoLine(m_x, m_y + 3, c->m_live1 >> 24);
DoLine(m_x, m_y + 4, c->m_live2 );
DoLine(m_x, m_y + 5, c->m_live2 >> 8 );
DoLine(m_x, m_y + 6, c->m_live2 >> 16);
DoLine(m_x, m_y + 7, c->m_live2 >> 24);
}
}
*ncells = m_ncells;
m_findmore = FALSE;
return TRUE;
}
// --------------------------------------------------------------------------
// Evolution engine
// --------------------------------------------------------------------------
extern unsigned char *g_tab;
extern int g_tab1[];
extern int g_tab2[];
// NextTic:
// Advance one step in evolution :-)
//
bool Life::NextTic()
{
LifeCellBox *c, *up, *dn, *lf, *rt;
wxUint32 t1, t2, t3, t4;
bool changed = FALSE;
m_numcells = 0;
// Stage 1:
// Compute neighbours of each cell
//
// WARNING: unrolled loops and lengthy code follows!
//
c = m_head;
while (c)
{
if (! (c->m_live1 || c->m_live2))
{
c = c->m_next;
continue;
}
up = c->m_up;
dn = c->m_dn;
lf = c->m_lf;
rt = c->m_rt;
// up
t1 = c->m_live1 & 0x000000ff;
if (t1)
{
if (!up)
{
up = LinkBox(c->m_x, c->m_y - 8);
up->m_dn = c;
}
t2 = g_tab1[t1];
up->m_on[7] += t2;
c->m_on[1] += t2;
c->m_on[0] += g_tab2[t1];
}
// down
t1 = (c->m_live2 & 0xff000000) >> 24;
if (t1)
{
if (!dn)
{
dn = LinkBox(c->m_x, c->m_y + 8);
dn->m_up = c;
}
t2 = g_tab1[t1];
dn->m_on[0] += t2;
c->m_on[6] += t2;
c->m_on[7] += g_tab2[t1];
}
t1 = c->m_live1;
t2 = c->m_live2;
// left
if (t1 & 0x01010101)
{
if (!lf)
{
lf = LinkBox(c->m_x - 8, c->m_y);
lf->m_rt = c;
}
if (t1 & 0x00000001)
{
if (!lf->m_up)
{
lf->m_up = LinkBox(c->m_x - 8, c->m_y - 8);
lf->m_up->m_dn = lf;
}
lf->m_up->m_on[7] += 0x10000000;
lf->m_on[0] += 0x10000000;
lf->m_on[1] += 0x10000000;
}
if (t1 & 0x00000100)
{
lf->m_on[0] += 0x10000000;
lf->m_on[1] += 0x10000000;
lf->m_on[2] += 0x10000000;
}
if (t1 & 0x00010000)
{
lf->m_on[1] += 0x10000000;
lf->m_on[2] += 0x10000000;
lf->m_on[3] += 0x10000000;
}
if (t1 & 0x01000000)
{
lf->m_on[2] += 0x10000000;
lf->m_on[3] += 0x10000000;
lf->m_on[4] += 0x10000000;
}
}
if (t2 & 0x01010101)
{
if (!lf)
{
lf = LinkBox(c->m_x - 8, c->m_y);
lf->m_rt = c;
}
if (t2 & 0x00000001)
{
lf->m_on[3] += 0x10000000;
lf->m_on[4] += 0x10000000;
lf->m_on[5] += 0x10000000;
}
if (t2 & 0x00000100)
{
lf->m_on[4] += 0x10000000;
lf->m_on[5] += 0x10000000;
lf->m_on[6] += 0x10000000;
}
if (t2 & 0x00010000)
{
lf->m_on[5] += 0x10000000;
lf->m_on[6] += 0x10000000;
lf->m_on[7] += 0x10000000;
}
if (t2 & 0x01000000)
{
if (!lf->m_dn)
{
lf->m_dn = LinkBox(c->m_x - 8, c->m_y + 8);
lf->m_dn->m_up = lf;
}
lf->m_on[6] += 0x10000000;
lf->m_on[7] += 0x10000000;
lf->m_dn->m_on[0] += 0x10000000;
}
}
// right
if (t1 & 0x80808080)
{
if (!rt)
{
rt = LinkBox(c->m_x + 8, c->m_y);
rt->m_lf = c;
}
if (t1 & 0x00000080)
{
if (!rt->m_up)
{
rt->m_up = LinkBox(c->m_x + 8, c->m_y - 8);
rt->m_up->m_dn = rt;
}
rt->m_up->m_on[7] += 0x00000001;
rt->m_on[0] += 0x00000001;
rt->m_on[1] += 0x00000001;
}
if (t1 & 0x00008000)
{
rt->m_on[0] += 0x00000001;
rt->m_on[1] += 0x00000001;
rt->m_on[2] += 0x00000001;
}
if (t1 & 0x00800000)
{
rt->m_on[1] += 0x00000001;
rt->m_on[2] += 0x00000001;
rt->m_on[3] += 0x00000001;
}
if (t1 & 0x80000000)
{
rt->m_on[2] += 0x00000001;
rt->m_on[3] += 0x00000001;
rt->m_on[4] += 0x00000001;
}
}
if (t2 & 0x80808080)
{
if (!rt)
{
rt = LinkBox(c->m_x + 8, c->m_y);
rt->m_lf = c;
}
if (t2 & 0x00000080)
{
rt->m_on[3] += 0x00000001;
rt->m_on[4] += 0x00000001;
rt->m_on[5] += 0x00000001;
}
if (t2 & 0x00008000)
{
rt->m_on[4] += 0x00000001;
rt->m_on[5] += 0x00000001;
rt->m_on[6] += 0x00000001;
}
if (t2 & 0x00800000)
{
rt->m_on[5] += 0x00000001;
rt->m_on[6] += 0x00000001;
rt->m_on[7] += 0x00000001;
}
if (t2 & 0x80000000)
{
if (!rt->m_dn)
{
rt->m_dn = LinkBox(c->m_x + 8, c->m_y + 8);
rt->m_dn->m_up = rt;
}
rt->m_on[6] += 0x00000001;
rt->m_on[7] += 0x00000001;
rt->m_dn->m_on[0] += 0x00000001;
}
}
// inner cells
int i;
for (i = 1; i <= 3; i++)
{
t1 = ((c->m_live1) >> (i * 8)) & 0x000000ff;
if (t1)
{
c->m_on[i - 1] += g_tab1[t1];
c->m_on[i ] += g_tab2[t1];
c->m_on[i + 1] += g_tab1[t1];
}
}
for (i = 0; i <= 2; i++)
{
t1 = ((c->m_live2) >> (i * 8)) & 0x000000ff;
if (t1)
{
c->m_on[i + 3] += g_tab1[t1];
c->m_on[i + 4] += g_tab2[t1];
c->m_on[i + 5] += g_tab1[t1];
}
}
c->m_up = up;
c->m_dn = dn;
c->m_lf = lf;
c->m_rt = rt;
c = c->m_next;
}
// Stage 2:
// Stabilize
//
c = m_head;
while (c)
{
t1 = 0;
t2 = 0;
t3 = c->m_live1;
c->m_old1 = t3;
t4 = c->m_on[0];
t1 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 ) & 0xf) ];
t1 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 4 ) & 0xf) ] << 4;
t4 = c->m_on[1];
t1 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 8 ) & 0xf) ] << 8;
t1 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 12) & 0xf) ] << 12;
t4 = c->m_on[2];
t1 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 16) & 0xf) ] << 16;
t1 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 20) & 0xf) ] << 20;
t4 = c->m_on[3];
t1 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 24) & 0xf) ] << 24;
t1 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 28) & 0xf) ] << 28;
t3 = c->m_live2;
c->m_old2 = t3;
t4 = c->m_on[4];
t2 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 ) & 0xf) ];
t2 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 4 ) & 0xf) ] << 4;
t4 = c->m_on[5];
t2 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 8 ) & 0xf) ] << 8;
t2 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 12) & 0xf) ] << 12;
t4 = c->m_on[6];
t2 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 16) & 0xf) ] << 16;
t2 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 20) & 0xf) ] << 20;
t4 = c->m_on[7];
t2 |= g_tab[ ((t4 & 0x0000ffff) << 4 ) + ((t3 >> 24) & 0xf) ] << 24;
t2 |= g_tab[ ((t4 & 0xffff0000) >> 12) + ((t3 >> 28) & 0xf) ] << 28;
c->m_on[0] = c->m_on[1] = c->m_on[2] = c->m_on[3] =
c->m_on[4] = c->m_on[5] = c->m_on[6] = c->m_on[7] = 0;
c->m_live1 = t1;
c->m_live2 = t2;
// count alive cells
#if 1
wxUint32 t1_, t2_;
t1_ = (t1 & 0x55555555) + (t1 >> 1 & 0x55555555);
t1_ = (t1_ & 0x33333333) + (t1_ >> 2 & 0x33333333);
t2_ = (t2 & 0x55555555) + (t2 >> 1 & 0x55555555);
t2_ = (t2_ & 0x33333333) + (t2_ >> 2 & 0x33333333) + t1_;
t2_ = (t2_ & 0x0F0F0F0F) + (t2_ >> 4 & 0x0F0F0F0F);
t2_ = (t2_ & 0x00FF00FF) + (t2_ >> 8 & 0x00FF00FF);
m_numcells += (t2_ & 0xFF) + (t2_ >> 16 & 0xFF);
#else
// Original, slower code
for (int i = 0; i < 32; i++)
{
if (t1 & (1 << i)) m_numcells++;
if (t2 & (1 << i)) m_numcells++;
}
#endif
changed |= ((t1 ^ c->m_old1) || (t2 ^ c->m_old2));
// mark, and discard if necessary, dead boxes
if (t1 || t2)
{
c->m_dead = 0;
c = c->m_next;
}
else
{
LifeCellBox *aux = c->m_next;
if (c->m_dead++ > MAXDEAD)
KillBox(c);
c = aux;
}
}
return changed;
}
// ==========================================================================
// LifeModule
// ==========================================================================
// A module to pregenerate lookup tables without having to do it
// from the application.
class LifeModule: public wxModule
{
DECLARE_DYNAMIC_CLASS(LifeModule)
public:
LifeModule() {};
bool OnInit();
void OnExit();
};
IMPLEMENT_DYNAMIC_CLASS(LifeModule, wxModule)
bool LifeModule::OnInit()
{
// see below
g_tab = new unsigned char [0xfffff];
if (!g_tab) return FALSE;
for (wxUint32 i = 0; i < 0xfffff; i++)
{
wxUint32 val = i >> 4;
wxUint32 old = i & 0x0000f;
wxUint32 live = 0;
for (int j = 0; j < 4; j++)
{
live >>= 1;
if (((val & 0xf) == 3) || (((val & 0xf) == 2) && (old & 0x1)))
live |= 0x8;
old >>= 1;
val >>= 4;
}
g_tab[i] = (unsigned char) live;
}
return TRUE;
}
void LifeModule::OnExit()
{
delete [] g_tab;
}
// This table converts from number of neighbors (like in on[]) to
// bits, for a set of four cells. It takes as index a five-digit
// hexadecimal value (0xNNNNB) where Ns hold number of neighbors
// for each cell and B holds their previous state.
//
unsigned char *g_tab;
// This table converts from bits (like in live1, live2) to number
// of neighbors for each cell in the upper or lower row.
//
int g_tab1[]=
{
0x00000000,
0x00000011,
0x00000111,
0x00000122,
0x00001110,
0x00001121,
0x00001221,
0x00001232,
0x00011100,
0x00011111,
0x00011211,
0x00011222,
0x00012210,
0x00012221,
0x00012321,
0x00012332,
0x00111000,
0x00111011,
0x00111111,
0x00111122,
0x00112110,
0x00112121,
0x00112221,
0x00112232,
0x00122100,
0x00122111,
0x00122211,
0x00122222,
0x00123210,
0x00123221,
0x00123321,
0x00123332,
0x01110000,
0x01110011,
0x01110111,
0x01110122,
0x01111110,
0x01111121,
0x01111221,
0x01111232,
0x01121100,
0x01121111,
0x01121211,
0x01121222,
0x01122210,
0x01122221,
0x01122321,
0x01122332,
0x01221000,
0x01221011,
0x01221111,
0x01221122,
0x01222110,
0x01222121,
0x01222221,
0x01222232,
0x01232100,
0x01232111,
0x01232211,
0x01232222,
0x01233210,
0x01233221,
0x01233321,
0x01233332,
0x11100000,
0x11100011,
0x11100111,
0x11100122,
0x11101110,
0x11101121,
0x11101221,
0x11101232,
0x11111100,
0x11111111,
0x11111211,
0x11111222,
0x11112210,
0x11112221,
0x11112321,
0x11112332,
0x11211000,
0x11211011,
0x11211111,
0x11211122,
0x11212110,
0x11212121,
0x11212221,
0x11212232,
0x11222100,
0x11222111,
0x11222211,
0x11222222,
0x11223210,
0x11223221,
0x11223321,
0x11223332,
0x12210000,
0x12210011,
0x12210111,
0x12210122,
0x12211110,
0x12211121,
0x12211221,
0x12211232,
0x12221100,
0x12221111,
0x12221211,
0x12221222,
0x12222210,
0x12222221,
0x12222321,
0x12222332,
0x12321000,
0x12321011,
0x12321111,
0x12321122,
0x12322110,
0x12322121,
0x12322221,
0x12322232,
0x12332100,
0x12332111,
0x12332211,
0x12332222,
0x12333210,
0x12333221,
0x12333321,
0x12333332,
0x11000000,
0x11000011,
0x11000111,
0x11000122,
0x11001110,
0x11001121,
0x11001221,
0x11001232,
0x11011100,
0x11011111,
0x11011211,
0x11011222,
0x11012210,
0x11012221,
0x11012321,
0x11012332,
0x11111000,
0x11111011,
0x11111111,
0x11111122,
0x11112110,
0x11112121,
0x11112221,
0x11112232,
0x11122100,
0x11122111,
0x11122211,
0x11122222,
0x11123210,
0x11123221,
0x11123321,
0x11123332,
0x12110000,
0x12110011,
0x12110111,
0x12110122,
0x12111110,
0x12111121,
0x12111221,
0x12111232,
0x12121100,
0x12121111,
0x12121211,
0x12121222,
0x12122210,
0x12122221,
0x12122321,
0x12122332,
0x12221000,
0x12221011,
0x12221111,
0x12221122,
0x12222110,
0x12222121,
0x12222221,
0x12222232,
0x12232100,
0x12232111,
0x12232211,
0x12232222,
0x12233210,
0x12233221,
0x12233321,
0x12233332,
0x22100000,
0x22100011,
0x22100111,
0x22100122,
0x22101110,
0x22101121,
0x22101221,
0x22101232,
0x22111100,
0x22111111,
0x22111211,
0x22111222,
0x22112210,
0x22112221,
0x22112321,
0x22112332,
0x22211000,
0x22211011,
0x22211111,
0x22211122,
0x22212110,
0x22212121,
0x22212221,
0x22212232,
0x22222100,
0x22222111,
0x22222211,
0x22222222,
0x22223210,
0x22223221,
0x22223321,
0x22223332,
0x23210000,
0x23210011,
0x23210111,
0x23210122,
0x23211110,
0x23211121,
0x23211221,
0x23211232,
0x23221100,
0x23221111,
0x23221211,
0x23221222,
0x23222210,
0x23222221,
0x23222321,
0x23222332,
0x23321000,
0x23321011,
0x23321111,
0x23321122,
0x23322110,
0x23322121,
0x23322221,
0x23322232,
0x23332100,
0x23332111,
0x23332211,
0x23332222,
0x23333210,
0x23333221,
0x23333321,
0x23333332
};
// This table converts from bits (like in live1, live2) to number
// of neighbors for each cell in the same row (excluding ourselves)
//
int g_tab2[]=
{
0x00000000,
0x00000010,
0x00000101,
0x00000111,
0x00001010,
0x00001020,
0x00001111,
0x00001121,
0x00010100,
0x00010110,
0x00010201,
0x00010211,
0x00011110,
0x00011120,
0x00011211,
0x00011221,
0x00101000,
0x00101010,
0x00101101,
0x00101111,
0x00102010,
0x00102020,
0x00102111,
0x00102121,
0x00111100,
0x00111110,
0x00111201,
0x00111211,
0x00112110,
0x00112120,
0x00112211,
0x00112221,
0x01010000,
0x01010010,
0x01010101,
0x01010111,
0x01011010,
0x01011020,
0x01011111,
0x01011121,
0x01020100,
0x01020110,
0x01020201,
0x01020211,
0x01021110,
0x01021120,
0x01021211,
0x01021221,
0x01111000,
0x01111010,
0x01111101,
0x01111111,
0x01112010,
0x01112020,
0x01112111,
0x01112121,
0x01121100,
0x01121110,
0x01121201,
0x01121211,
0x01122110,
0x01122120,
0x01122211,
0x01122221,
0x10100000,
0x10100010,
0x10100101,
0x10100111,
0x10101010,
0x10101020,
0x10101111,
0x10101121,
0x10110100,
0x10110110,
0x10110201,
0x10110211,
0x10111110,
0x10111120,
0x10111211,
0x10111221,
0x10201000,
0x10201010,
0x10201101,
0x10201111,
0x10202010,
0x10202020,
0x10202111,
0x10202121,
0x10211100,
0x10211110,
0x10211201,
0x10211211,
0x10212110,
0x10212120,
0x10212211,
0x10212221,
0x11110000,
0x11110010,
0x11110101,
0x11110111,
0x11111010,
0x11111020,
0x11111111,
0x11111121,
0x11120100,
0x11120110,
0x11120201,
0x11120211,
0x11121110,
0x11121120,
0x11121211,
0x11121221,
0x11211000,
0x11211010,
0x11211101,
0x11211111,
0x11212010,
0x11212020,
0x11212111,
0x11212121,
0x11221100,
0x11221110,
0x11221201,
0x11221211,
0x11222110,
0x11222120,
0x11222211,
0x11222221,
0x01000000,
0x01000010,
0x01000101,
0x01000111,
0x01001010,
0x01001020,
0x01001111,
0x01001121,
0x01010100,
0x01010110,
0x01010201,
0x01010211,
0x01011110,
0x01011120,
0x01011211,
0x01011221,
0x01101000,
0x01101010,
0x01101101,
0x01101111,
0x01102010,
0x01102020,
0x01102111,
0x01102121,
0x01111100,
0x01111110,
0x01111201,
0x01111211,
0x01112110,
0x01112120,
0x01112211,
0x01112221,
0x02010000,
0x02010010,
0x02010101,
0x02010111,
0x02011010,
0x02011020,
0x02011111,
0x02011121,
0x02020100,
0x02020110,
0x02020201,
0x02020211,
0x02021110,
0x02021120,
0x02021211,
0x02021221,
0x02111000,
0x02111010,
0x02111101,
0x02111111,
0x02112010,
0x02112020,
0x02112111,
0x02112121,
0x02121100,
0x02121110,
0x02121201,
0x02121211,
0x02122110,
0x02122120,
0x02122211,
0x02122221,
0x11100000,
0x11100010,
0x11100101,
0x11100111,
0x11101010,
0x11101020,
0x11101111,
0x11101121,
0x11110100,
0x11110110,
0x11110201,
0x11110211,
0x11111110,
0x11111120,
0x11111211,
0x11111221,
0x11201000,
0x11201010,
0x11201101,
0x11201111,
0x11202010,
0x11202020,
0x11202111,
0x11202121,
0x11211100,
0x11211110,
0x11211201,
0x11211211,
0x11212110,
0x11212120,
0x11212211,
0x11212221,
0x12110000,
0x12110010,
0x12110101,
0x12110111,
0x12111010,
0x12111020,
0x12111111,
0x12111121,
0x12120100,
0x12120110,
0x12120201,
0x12120211,
0x12121110,
0x12121120,
0x12121211,
0x12121221,
0x12211000,
0x12211010,
0x12211101,
0x12211111,
0x12212010,
0x12212020,
0x12212111,
0x12212121,
0x12221100,
0x12221110,
0x12221201,
0x12221211,
0x12222110,
0x12222120,
0x12222211,
0x12222221
};