wxWidgets/include/wx/vector.h
Vadim Zeitlin 516066939a Add trivial wxVectorContains() helper
This is nicer than using std::find() when only a test for presence is
required.
2020-11-16 16:48:47 +01:00

731 lines
21 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Name: wx/vector.h
// Purpose: STL vector clone
// Author: Lindsay Mathieson
// Modified by: Vaclav Slavik - make it a template
// Created: 30.07.2001
// Copyright: (c) 2001 Lindsay Mathieson <lindsay@mathieson.org>,
// 2007 Vaclav Slavik <vslavik@fastmail.fm>
// Licence: wxWindows licence
///////////////////////////////////////////////////////////////////////////////
#ifndef _WX_VECTOR_H_
#define _WX_VECTOR_H_
#include "wx/defs.h"
#if wxUSE_STD_CONTAINERS
#include <vector>
#include <algorithm>
#define wxVector std::vector
template<typename T>
inline void wxVectorSort(wxVector<T>& v)
{
std::sort(v.begin(), v.end());
}
template<typename T>
inline bool wxVectorContains(const wxVector<T>& v, const T& obj)
{
return std::find(v.begin(), v.end(), obj) != v.end();
}
#else // !wxUSE_STD_CONTAINERS
#include "wx/scopeguard.h"
#include "wx/meta/movable.h"
#include "wx/meta/if.h"
#include "wx/beforestd.h"
#if wxUSE_STD_CONTAINERS_COMPATIBLY
#include <iterator>
#endif
#include <new> // for placement new
#include "wx/afterstd.h"
// wxQsort is declared in wx/utils.h, but can't include that file here,
// it indirectly includes this file. Just lovely...
//
// Moreover, just declaring it here unconditionally results in gcc
// -Wredundant-decls warning, so use a preprocessor guard to avoid this.
#ifndef wxQSORT_DECLARED
#define wxQSORT_DECLARED
typedef int (*wxSortCallback)(const void* pItem1,
const void* pItem2,
const void* user_data);
WXDLLIMPEXP_BASE void wxQsort(void* pbase, size_t total_elems,
size_t size, wxSortCallback cmp,
const void* user_data);
#endif // !wxQSORT_DECLARED
namespace wxPrivate
{
// These templates encapsulate memory operations for use by wxVector; there are
// two implementations, both in generic way for any C++ types and as an
// optimized version for "movable" types that uses realloc() and memmove().
// version for movable types:
template<typename T>
struct wxVectorMemOpsMovable
{
static void Free(T* array)
{ free(array); }
static T* Realloc(T* old, size_t newCapacity, size_t WXUNUSED(occupiedSize))
{ return (T*)realloc(old, newCapacity * sizeof(T)); }
static void MemmoveBackward(T* dest, T* source, size_t count)
{ memmove(dest, source, count * sizeof(T)); }
static void MemmoveForward(T* dest, T* source, size_t count)
{ memmove(dest, source, count * sizeof(T)); }
};
// generic version for non-movable types:
template<typename T>
struct wxVectorMemOpsGeneric
{
static void Free(T* array)
{ ::operator delete(array); }
static T* Realloc(T* old, size_t newCapacity, size_t occupiedSize)
{
T *mem = (T*)::operator new(newCapacity * sizeof(T));
for ( size_t i = 0; i < occupiedSize; i++ )
{
::new(mem + i) T(old[i]);
old[i].~T();
}
::operator delete(old);
return mem;
}
static void MemmoveBackward(T* dest, T* source, size_t count)
{
wxASSERT( dest < source );
T* destptr = dest;
T* sourceptr = source;
for ( size_t i = count; i > 0; --i, ++destptr, ++sourceptr )
{
::new(destptr) T(*sourceptr);
sourceptr->~T();
}
}
static void MemmoveForward(T* dest, T* source, size_t count)
{
wxASSERT( dest > source );
T* destptr = dest + count - 1;
T* sourceptr = source + count - 1;
for ( size_t i = count; i > 0; --i, --destptr, --sourceptr )
{
::new(destptr) T(*sourceptr);
sourceptr->~T();
}
}
};
// We need to distinguish integers from iterators in assign() overloads and the
// simplest way to do it would be by using std::iterator_traits<>, however this
// might break existing code using custom iterator classes but not specializing
// iterator_traits<> for them, so we approach the problem from the other end
// and use our own traits that we specialize for all integer types.
struct IsIntType {};
struct IsNotIntType {};
template <typename T> struct IsInt : IsNotIntType {};
#define WX_DECLARE_TYPE_IS_INT(type) \
template <> struct IsInt<type> : IsIntType {}
WX_DECLARE_TYPE_IS_INT(unsigned char);
WX_DECLARE_TYPE_IS_INT(signed char);
WX_DECLARE_TYPE_IS_INT(unsigned short int);
WX_DECLARE_TYPE_IS_INT(signed short int);
WX_DECLARE_TYPE_IS_INT(unsigned int);
WX_DECLARE_TYPE_IS_INT(signed int);
WX_DECLARE_TYPE_IS_INT(unsigned long int);
WX_DECLARE_TYPE_IS_INT(signed long int);
#ifdef wxLongLong_t
WX_DECLARE_TYPE_IS_INT(wxLongLong_t);
WX_DECLARE_TYPE_IS_INT(wxULongLong_t);
#endif
#undef WX_DECLARE_TYPE_IS_INT
} // namespace wxPrivate
template<typename T>
class wxVector
{
private:
// This cryptic expression means "typedef Ops to wxVectorMemOpsMovable if
// type T is movable type, otherwise to wxVectorMemOpsGeneric".
//
typedef typename wxIf< wxIsMovable<T>::value,
wxPrivate::wxVectorMemOpsMovable<T>,
wxPrivate::wxVectorMemOpsGeneric<T> >::value
Ops;
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
class reverse_iterator
{
public:
#if wxUSE_STD_CONTAINERS_COMPATIBLY
typedef std::random_access_iterator_tag iterator_category;
#endif
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
reverse_iterator() : m_ptr(NULL) { }
explicit reverse_iterator(iterator it) : m_ptr(it) { }
reference operator*() const { return *m_ptr; }
pointer operator->() const { return m_ptr; }
iterator base() const { return m_ptr + 1; }
reverse_iterator& operator++()
{ --m_ptr; return *this; }
reverse_iterator operator++(int)
{ reverse_iterator tmp = *this; --m_ptr; return tmp; }
reverse_iterator& operator--()
{ ++m_ptr; return *this; }
reverse_iterator operator--(int)
{ reverse_iterator tmp = *this; ++m_ptr; return tmp; }
reverse_iterator operator+(difference_type n) const
{ return reverse_iterator(m_ptr - n); }
reverse_iterator& operator+=(difference_type n)
{ m_ptr -= n; return *this; }
reverse_iterator operator-(difference_type n) const
{ return reverse_iterator(m_ptr + n); }
reverse_iterator& operator-=(difference_type n)
{ m_ptr += n; return *this; }
difference_type operator-(const reverse_iterator& it) const
{ return it.m_ptr - m_ptr; }
reference operator[](difference_type n) const
{ return *(*this + n); }
bool operator ==(const reverse_iterator& it) const
{ return m_ptr == it.m_ptr; }
bool operator !=(const reverse_iterator& it) const
{ return m_ptr != it.m_ptr; }
bool operator<(const reverse_iterator& it) const
{ return m_ptr > it.m_ptr; }
bool operator>(const reverse_iterator& it) const
{ return m_ptr < it.m_ptr; }
bool operator<=(const reverse_iterator& it) const
{ return m_ptr >= it.m_ptr; }
bool operator>=(const reverse_iterator& it) const
{ return m_ptr <= it.m_ptr; }
private:
value_type *m_ptr;
friend class const_reverse_iterator;
};
class const_reverse_iterator
{
public:
#if wxUSE_STD_CONTAINERS_COMPATIBLY
typedef std::random_access_iterator_tag iterator_category;
#endif
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef const value_type* pointer;
typedef const value_type& reference;
const_reverse_iterator() : m_ptr(NULL) { }
explicit const_reverse_iterator(const_iterator it) : m_ptr(it) { }
const_reverse_iterator(const reverse_iterator& it) : m_ptr(it.m_ptr) { }
const_reverse_iterator(const const_reverse_iterator& it) : m_ptr(it.m_ptr) { }
const_reference operator*() const { return *m_ptr; }
const_pointer operator->() const { return m_ptr; }
const_iterator base() const { return m_ptr + 1; }
const_reverse_iterator& operator++()
{ --m_ptr; return *this; }
const_reverse_iterator operator++(int)
{ const_reverse_iterator tmp = *this; --m_ptr; return tmp; }
const_reverse_iterator& operator--()
{ ++m_ptr; return *this; }
const_reverse_iterator operator--(int)
{ const_reverse_iterator tmp = *this; ++m_ptr; return tmp; }
const_reverse_iterator operator+(difference_type n) const
{ return const_reverse_iterator(m_ptr - n); }
const_reverse_iterator& operator+=(difference_type n)
{ m_ptr -= n; return *this; }
const_reverse_iterator operator-(difference_type n) const
{ return const_reverse_iterator(m_ptr + n); }
const_reverse_iterator& operator-=(difference_type n)
{ m_ptr += n; return *this; }
difference_type operator-(const const_reverse_iterator& it) const
{ return it.m_ptr - m_ptr; }
const_reference operator[](difference_type n) const
{ return *(*this + n); }
bool operator ==(const const_reverse_iterator& it) const
{ return m_ptr == it.m_ptr; }
bool operator !=(const const_reverse_iterator& it) const
{ return m_ptr != it.m_ptr; }
bool operator<(const const_reverse_iterator& it) const
{ return m_ptr > it.m_ptr; }
bool operator>(const const_reverse_iterator& it) const
{ return m_ptr < it.m_ptr; }
bool operator<=(const const_reverse_iterator& it) const
{ return m_ptr >= it.m_ptr; }
bool operator>=(const const_reverse_iterator& it) const
{ return m_ptr <= it.m_ptr; }
protected:
const value_type *m_ptr;
};
wxVector() : m_size(0), m_capacity(0), m_values(NULL) {}
wxVector(size_type p_size)
: m_size(0), m_capacity(0), m_values(NULL)
{
reserve(p_size);
for ( size_t n = 0; n < p_size; n++ )
push_back(value_type());
}
wxVector(size_type p_size, const value_type& v)
: m_size(0), m_capacity(0), m_values(NULL)
{
reserve(p_size);
for ( size_t n = 0; n < p_size; n++ )
push_back(v);
}
wxVector(const wxVector& c) : m_size(0), m_capacity(0), m_values(NULL)
{
Copy(c);
}
template <class InputIterator>
wxVector(InputIterator first, InputIterator last)
: m_size(0), m_capacity(0), m_values(NULL)
{
assign(first, last);
}
~wxVector()
{
clear();
}
void assign(size_type p_size, const value_type& v)
{
AssignFromValue(p_size, v);
}
template <typename InputIterator>
void assign(InputIterator first, InputIterator last)
{
AssignDispatch(first, last, typename wxPrivate::IsInt<InputIterator>());
}
void swap(wxVector& v)
{
wxSwap(m_size, v.m_size);
wxSwap(m_capacity, v.m_capacity);
wxSwap(m_values, v.m_values);
}
void clear()
{
// call destructors of stored objects:
for ( size_type i = 0; i < m_size; i++ )
{
m_values[i].~T();
}
Ops::Free(m_values);
m_values = NULL;
m_size =
m_capacity = 0;
}
void reserve(size_type n)
{
if ( n <= m_capacity )
return;
// increase the size twice, unless we're already too big or unless
// more is requested
//
// NB: casts to size_type are needed to suppress warnings about
// mixing enumeral and non-enumeral type in conditional expression
const size_type increment = m_size > ALLOC_INITIAL_SIZE
? m_size
: (size_type)ALLOC_INITIAL_SIZE;
if ( m_capacity + increment > n )
n = m_capacity + increment;
m_values = Ops::Realloc(m_values, n, m_size);
m_capacity = n;
}
void resize(size_type n)
{
if ( n < m_size )
Shrink(n);
else if ( n > m_size )
Extend(n, value_type());
}
void resize(size_type n, const value_type& v)
{
if ( n < m_size )
Shrink(n);
else if ( n > m_size )
Extend(n, v);
}
size_type size() const
{
return m_size;
}
size_type capacity() const
{
return m_capacity;
}
void shrink_to_fit()
{
m_values = Ops::Realloc(m_values, m_size, m_size);
m_capacity = m_size;
}
bool empty() const
{
return size() == 0;
}
wxVector& operator=(const wxVector& vb)
{
if (this != &vb)
{
clear();
Copy(vb);
}
return *this;
}
bool operator==(const wxVector& vb) const
{
if ( vb.m_size != m_size )
return false;
for ( size_type i = 0; i < m_size; i++ )
{
if ( vb.m_values[i] != m_values[i] )
return false;
}
return true;
}
bool operator!=(const wxVector& vb) const
{
return !(*this == vb);
}
void push_back(const value_type& v)
{
reserve(size() + 1);
// use placement new to initialize new object in preallocated place in
// m_values and store 'v' in it:
void* const place = m_values + m_size;
::new(place) value_type(v);
// only increase m_size if the ctor didn't throw an exception; notice
// that if it _did_ throw, everything is OK, because we only increased
// vector's capacity so far and possibly written some data to
// uninitialized memory at the end of m_values
m_size++;
}
void pop_back()
{
erase(end() - 1);
}
const value_type& at(size_type idx) const
{
wxASSERT(idx < m_size);
return m_values[idx];
}
value_type& at(size_type idx)
{
wxASSERT(idx < m_size);
return m_values[idx];
}
const value_type& operator[](size_type idx) const { return at(idx); }
value_type& operator[](size_type idx) { return at(idx); }
const value_type& front() const { return at(0); }
value_type& front() { return at(0); }
const value_type& back() const { return at(size() - 1); }
value_type& back() { return at(size() - 1); }
const_iterator begin() const { return m_values; }
iterator begin() { return m_values; }
const_iterator end() const { return m_values + size(); }
iterator end() { return m_values + size(); }
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end() - 1); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin() - 1); }
iterator insert(iterator it, size_type count, const value_type& v)
{
// NB: this must be done before reserve(), because reserve()
// invalidates iterators!
const size_t idx = it - begin();
const size_t after = end() - it;
reserve(size() + count);
// the place where the new element is going to be inserted
value_type * const place = m_values + idx;
// unless we're inserting at the end, move following elements out of
// the way:
if ( after > 0 )
Ops::MemmoveForward(place + count, place, after);
// if the ctor called below throws an exception, we need to move all
// the elements back to their original positions in m_values
wxScopeGuard moveBack = wxMakeGuard(
Ops::MemmoveBackward, place, place + count, after);
if ( !after )
moveBack.Dismiss();
// use placement new to initialize new object in preallocated place in
// m_values and store 'v' in it:
for ( size_type i = 0; i < count; i++ )
::new(place + i) value_type(v);
// now that we did successfully add the new element, increment the size
// and disable moving the items back
moveBack.Dismiss();
m_size += count;
return begin() + idx;
}
iterator insert(iterator it, const value_type& v = value_type())
{
return insert(it, 1, v);
}
iterator erase(iterator it)
{
return erase(it, it + 1);
}
iterator erase(iterator first, iterator last)
{
if ( first == last )
return first;
wxASSERT( first < end() && last <= end() );
const size_type idx = first - begin();
const size_type count = last - first;
const size_type after = end() - last;
// erase elements by calling their destructors:
for ( iterator i = first; i < last; ++i )
i->~T();
// once that's done, move following elements over to the freed space:
if ( after > 0 )
{
Ops::MemmoveBackward(m_values + idx, m_values + idx + count, after);
}
m_size -= count;
return begin() + idx;
}
#if WXWIN_COMPATIBILITY_2_8
wxDEPRECATED( size_type erase(size_type n) );
#endif // WXWIN_COMPATIBILITY_2_8
private:
static const size_type ALLOC_INITIAL_SIZE = 16;
void Copy(const wxVector& vb)
{
reserve(vb.size());
for ( const_iterator i = vb.begin(); i != vb.end(); ++i )
push_back(*i);
}
private:
void Shrink(size_type n)
{
for ( size_type i = n; i < m_size; i++ )
m_values[i].~T();
m_size = n;
}
void Extend(size_type n, const value_type& v)
{
reserve(n);
for ( size_type i = m_size; i < n; i++ )
push_back(v);
}
void AssignFromValue(size_type p_size, const value_type& v)
{
clear();
reserve(p_size);
for ( size_t n = 0; n < p_size; n++ )
push_back(v);
}
template <typename InputIterator>
void AssignDispatch(InputIterator first, InputIterator last,
wxPrivate::IsIntType)
{
AssignFromValue(static_cast<size_type>(first),
static_cast<const value_type&>(last));
}
template <typename InputIterator>
void AssignDispatch(InputIterator first, InputIterator last,
wxPrivate::IsNotIntType)
{
clear();
// Notice that it would be nice to call reserve() here but we can't do
// it for arbitrary input iterators, we should have a dispatch on
// iterator type and call it if possible.
for ( InputIterator it = first; it != last; ++it )
push_back(*it);
}
size_type m_size,
m_capacity;
value_type *m_values;
};
#if WXWIN_COMPATIBILITY_2_8
template<typename T>
inline typename wxVector<T>::size_type wxVector<T>::erase(size_type n)
{
erase(begin() + n);
return n;
}
#endif // WXWIN_COMPATIBILITY_2_8
namespace wxPrivate
{
// This is a helper for the wxVectorSort function, and should not be used
// directly in user's code.
template<typename T>
struct wxVectorComparator
{
static int
Compare(const void* pitem1, const void* pitem2, const void* )
{
const T& item1 = *reinterpret_cast<const T*>(pitem1);
const T& item2 = *reinterpret_cast<const T*>(pitem2);
if (item1 < item2)
return -1;
else if (item2 < item1)
return 1;
else
return 0;
}
};
} // namespace wxPrivate
template<typename T>
void wxVectorSort(wxVector<T>& v)
{
wxQsort(v.begin(), v.size(), sizeof(T),
wxPrivate::wxVectorComparator<T>::Compare, NULL);
}
template<typename T>
inline bool wxVectorContains(const wxVector<T>& v, const T& obj)
{
for ( size_t n = 0; n < v.size(); ++n )
{
if ( v[n] == obj )
return true;
}
return false;
}
#endif // wxUSE_STD_CONTAINERS/!wxUSE_STD_CONTAINERS
// Define vector::shrink_to_fit() equivalent which can be always used, even
// when using pre-C++11 std::vector.
template<typename T>
inline void wxShrinkToFit(wxVector<T>& v)
{
#if !wxUSE_STD_CONTAINERS || __cplusplus >= 201103L || wxCHECK_VISUALC_VERSION(10)
v.shrink_to_fit();
#else
wxVector<T> tmp(v);
v.swap(tmp);
#endif
}
#if WXWIN_COMPATIBILITY_2_8
#define WX_DECLARE_VECTORBASE(obj, cls) typedef wxVector<obj> cls
#define _WX_DECLARE_VECTOR(obj, cls, exp) WX_DECLARE_VECTORBASE(obj, cls)
#define WX_DECLARE_VECTOR(obj, cls) WX_DECLARE_VECTORBASE(obj, cls)
#endif // WXWIN_COMPATIBILITY_2_8
#endif // _WX_VECTOR_H_