/////////////////////////////////////////////////////////////////////////////// // Name: wx/vector.h // Purpose: STL vector clone // Author: Lindsay Mathieson // Modified by: Vaclav Slavik - make it a template // Created: 30.07.2001 // Copyright: (c) 2001 Lindsay Mathieson , // 2007 Vaclav Slavik // Licence: wxWindows licence /////////////////////////////////////////////////////////////////////////////// #ifndef _WX_VECTOR_H_ #define _WX_VECTOR_H_ #include "wx/defs.h" #if wxUSE_STD_CONTAINERS #include #include #define wxVector std::vector template inline void wxVectorSort(wxVector& v) { std::sort(v.begin(), v.end()); } #else // !wxUSE_STD_CONTAINERS #include "wx/scopeguard.h" #include "wx/meta/movable.h" #include "wx/meta/if.h" #include "wx/beforestd.h" #if wxUSE_STD_CONTAINERS_COMPATIBLY #include #endif #include // for placement new #include "wx/afterstd.h" // wxQsort is declared in wx/utils.h, but can't include that file here, // it indirectly includes this file. Just lovely... // // Moreover, just declaring it here unconditionally results in gcc // -Wredundant-decls warning, so use a preprocessor guard to avoid this. #ifndef wxQSORT_DECLARED #define wxQSORT_DECLARED typedef int (*wxSortCallback)(const void* pItem1, const void* pItem2, const void* user_data); WXDLLIMPEXP_BASE void wxQsort(void* pbase, size_t total_elems, size_t size, wxSortCallback cmp, const void* user_data); #endif // !wxQSORT_DECLARED namespace wxPrivate { // These templates encapsulate memory operations for use by wxVector; there are // two implementations, both in generic way for any C++ types and as an // optimized version for "movable" types that uses realloc() and memmove(). // version for movable types: template struct wxVectorMemOpsMovable { static void Free(T* array) { free(array); } static T* Realloc(T* old, size_t newCapacity, size_t WXUNUSED(occupiedSize)) { return (T*)realloc(old, newCapacity * sizeof(T)); } static void MemmoveBackward(T* dest, T* source, size_t count) { memmove(dest, source, count * sizeof(T)); } static void MemmoveForward(T* dest, T* source, size_t count) { memmove(dest, source, count * sizeof(T)); } }; // generic version for non-movable types: template struct wxVectorMemOpsGeneric { static void Free(T* array) { ::operator delete(array); } static T* Realloc(T* old, size_t newCapacity, size_t occupiedSize) { T *mem = (T*)::operator new(newCapacity * sizeof(T)); for ( size_t i = 0; i < occupiedSize; i++ ) { ::new(mem + i) T(old[i]); old[i].~T(); } ::operator delete(old); return mem; } static void MemmoveBackward(T* dest, T* source, size_t count) { wxASSERT( dest < source ); T* destptr = dest; T* sourceptr = source; for ( size_t i = count; i > 0; --i, ++destptr, ++sourceptr ) { ::new(destptr) T(*sourceptr); sourceptr->~T(); } } static void MemmoveForward(T* dest, T* source, size_t count) { wxASSERT( dest > source ); T* destptr = dest + count - 1; T* sourceptr = source + count - 1; for ( size_t i = count; i > 0; --i, --destptr, --sourceptr ) { ::new(destptr) T(*sourceptr); sourceptr->~T(); } } }; // We need to distinguish integers from iterators in assign() overloads and the // simplest way to do it would be by using std::iterator_traits<>, however this // might break existing code using custom iterator classes but not specializing // iterator_traits<> for them, so we approach the problem from the other end // and use our own traits that we specialize for all integer types. struct IsIntType {}; struct IsNotIntType {}; template struct IsInt : IsNotIntType {}; #define WX_DECLARE_TYPE_IS_INT(type) \ template <> struct IsInt : IsIntType {} WX_DECLARE_TYPE_IS_INT(unsigned char); WX_DECLARE_TYPE_IS_INT(signed char); WX_DECLARE_TYPE_IS_INT(unsigned short int); WX_DECLARE_TYPE_IS_INT(signed short int); WX_DECLARE_TYPE_IS_INT(unsigned int); WX_DECLARE_TYPE_IS_INT(signed int); WX_DECLARE_TYPE_IS_INT(unsigned long int); WX_DECLARE_TYPE_IS_INT(signed long int); #ifdef wxLongLong_t WX_DECLARE_TYPE_IS_INT(wxLongLong_t); WX_DECLARE_TYPE_IS_INT(wxULongLong_t); #endif #undef WX_DECLARE_TYPE_IS_INT } // namespace wxPrivate template class wxVector { private: // This cryptic expression means "typedef Ops to wxVectorMemOpsMovable if // type T is movable type, otherwise to wxVectorMemOpsGeneric". // // Note that bcc needs the extra parentheses for non-type template // arguments to compile this expression. typedef typename wxIf< (wxIsMovable::value), wxPrivate::wxVectorMemOpsMovable, wxPrivate::wxVectorMemOpsGeneric >::value Ops; public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type* iterator; typedef const value_type* const_iterator; typedef value_type& reference; typedef const value_type& const_reference; class reverse_iterator { public: #if wxUSE_STD_CONTAINERS_COMPATIBLY typedef std::random_access_iterator_tag iterator_category; #endif typedef ptrdiff_t difference_type; typedef T value_type; typedef value_type* pointer; typedef value_type& reference; reverse_iterator() : m_ptr(NULL) { } explicit reverse_iterator(iterator it) : m_ptr(it) { } reference operator*() const { return *m_ptr; } pointer operator->() const { return m_ptr; } iterator base() const { return m_ptr; } reverse_iterator& operator++() { --m_ptr; return *this; } reverse_iterator operator++(int) { reverse_iterator tmp = *this; --m_ptr; return tmp; } reverse_iterator& operator--() { ++m_ptr; return *this; } reverse_iterator operator--(int) { reverse_iterator tmp = *this; ++m_ptr; return tmp; } reverse_iterator operator+(difference_type n) const { return reverse_iterator(m_ptr - n); } reverse_iterator& operator+=(difference_type n) { m_ptr -= n; return *this; } reverse_iterator operator-(difference_type n) const { return reverse_iterator(m_ptr + n); } reverse_iterator& operator-=(difference_type n) { m_ptr += n; return *this; } difference_type operator-(const reverse_iterator& it) const { return it.m_ptr - m_ptr; } reference operator[](difference_type n) const { return *(*this + n); } bool operator ==(const reverse_iterator& it) const { return m_ptr == it.m_ptr; } bool operator !=(const reverse_iterator& it) const { return m_ptr != it.m_ptr; } bool operator<(const reverse_iterator& it) const { return m_ptr > it.m_ptr; } bool operator>(const reverse_iterator& it) const { return m_ptr < it.m_ptr; } bool operator<=(const reverse_iterator& it) const { return m_ptr >= it.m_ptr; } bool operator>=(const reverse_iterator& it) const { return m_ptr <= it.m_ptr; } private: value_type *m_ptr; friend class const_reverse_iterator; }; class const_reverse_iterator { public: #if wxUSE_STD_CONTAINERS_COMPATIBLY typedef std::random_access_iterator_tag iterator_category; #endif typedef ptrdiff_t difference_type; typedef T value_type; typedef const value_type* pointer; typedef const value_type& reference; const_reverse_iterator() : m_ptr(NULL) { } explicit const_reverse_iterator(const_iterator it) : m_ptr(it) { } const_reverse_iterator(const reverse_iterator& it) : m_ptr(it.m_ptr) { } const_reverse_iterator(const const_reverse_iterator& it) : m_ptr(it.m_ptr) { } const_reference operator*() const { return *m_ptr; } const_pointer operator->() const { return m_ptr; } const_iterator base() const { return m_ptr; } const_reverse_iterator& operator++() { --m_ptr; return *this; } const_reverse_iterator operator++(int) { const_reverse_iterator tmp = *this; --m_ptr; return tmp; } const_reverse_iterator& operator--() { ++m_ptr; return *this; } const_reverse_iterator operator--(int) { const_reverse_iterator tmp = *this; ++m_ptr; return tmp; } const_reverse_iterator operator+(difference_type n) const { return const_reverse_iterator(m_ptr - n); } const_reverse_iterator& operator+=(difference_type n) { m_ptr -= n; return *this; } const_reverse_iterator operator-(difference_type n) const { return const_reverse_iterator(m_ptr + n); } const_reverse_iterator& operator-=(difference_type n) { m_ptr += n; return *this; } difference_type operator-(const const_reverse_iterator& it) const { return it.m_ptr - m_ptr; } const_reference operator[](difference_type n) const { return *(*this + n); } bool operator ==(const const_reverse_iterator& it) const { return m_ptr == it.m_ptr; } bool operator !=(const const_reverse_iterator& it) const { return m_ptr != it.m_ptr; } bool operator<(const const_reverse_iterator& it) const { return m_ptr > it.m_ptr; } bool operator>(const const_reverse_iterator& it) const { return m_ptr < it.m_ptr; } bool operator<=(const const_reverse_iterator& it) const { return m_ptr >= it.m_ptr; } bool operator>=(const const_reverse_iterator& it) const { return m_ptr <= it.m_ptr; } protected: const value_type *m_ptr; }; wxVector() : m_size(0), m_capacity(0), m_values(NULL) {} wxVector(size_type p_size) : m_size(0), m_capacity(0), m_values(NULL) { reserve(p_size); for ( size_t n = 0; n < p_size; n++ ) push_back(value_type()); } wxVector(size_type p_size, const value_type& v) : m_size(0), m_capacity(0), m_values(NULL) { reserve(p_size); for ( size_t n = 0; n < p_size; n++ ) push_back(v); } wxVector(const wxVector& c) : m_size(0), m_capacity(0), m_values(NULL) { Copy(c); } template wxVector(InputIterator first, InputIterator last) : m_size(0), m_capacity(0), m_values(NULL) { assign(first, last); } ~wxVector() { clear(); } void assign(size_type p_size, const value_type& v) { AssignFromValue(p_size, v); } template void assign(InputIterator first, InputIterator last) { AssignDispatch(first, last, typename wxPrivate::IsInt()); } void swap(wxVector& v) { wxSwap(m_size, v.m_size); wxSwap(m_capacity, v.m_capacity); wxSwap(m_values, v.m_values); } void clear() { // call destructors of stored objects: for ( size_type i = 0; i < m_size; i++ ) { m_values[i].~T(); } Ops::Free(m_values); m_values = NULL; m_size = m_capacity = 0; } void reserve(size_type n) { if ( n <= m_capacity ) return; // increase the size twice, unless we're already too big or unless // more is requested // // NB: casts to size_type are needed to suppress warnings about // mixing enumeral and non-enumeral type in conditional expression const size_type increment = m_size > ALLOC_INITIAL_SIZE ? m_size : (size_type)ALLOC_INITIAL_SIZE; if ( m_capacity + increment > n ) n = m_capacity + increment; m_values = Ops::Realloc(m_values, n, m_size); m_capacity = n; } void resize(size_type n) { if ( n < m_size ) Shrink(n); else if ( n > m_size ) Extend(n, value_type()); } void resize(size_type n, const value_type& v) { if ( n < m_size ) Shrink(n); else if ( n > m_size ) Extend(n, v); } size_type size() const { return m_size; } size_type capacity() const { return m_capacity; } void shrink_to_fit() { m_values = Ops::Realloc(m_values, m_size, m_size); m_capacity = m_size; } bool empty() const { return size() == 0; } wxVector& operator=(const wxVector& vb) { if (this != &vb) { clear(); Copy(vb); } return *this; } bool operator==(const wxVector& vb) const { if ( vb.m_size != m_size ) return false; for ( size_type i = 0; i < m_size; i++ ) { if ( vb.m_values[i] != m_values[i] ) return false; } return true; } bool operator!=(const wxVector& vb) const { return !(*this == vb); } void push_back(const value_type& v) { reserve(size() + 1); // use placement new to initialize new object in preallocated place in // m_values and store 'v' in it: void* const place = m_values + m_size; ::new(place) value_type(v); // only increase m_size if the ctor didn't throw an exception; notice // that if it _did_ throw, everything is OK, because we only increased // vector's capacity so far and possibly written some data to // uninitialized memory at the end of m_values m_size++; } void pop_back() { erase(end() - 1); } const value_type& at(size_type idx) const { wxASSERT(idx < m_size); return m_values[idx]; } value_type& at(size_type idx) { wxASSERT(idx < m_size); return m_values[idx]; } const value_type& operator[](size_type idx) const { return at(idx); } value_type& operator[](size_type idx) { return at(idx); } const value_type& front() const { return at(0); } value_type& front() { return at(0); } const value_type& back() const { return at(size() - 1); } value_type& back() { return at(size() - 1); } const_iterator begin() const { return m_values; } iterator begin() { return m_values; } const_iterator end() const { return m_values + size(); } iterator end() { return m_values + size(); } reverse_iterator rbegin() { return reverse_iterator(end() - 1); } reverse_iterator rend() { return reverse_iterator(begin() - 1); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end() - 1); } const_reverse_iterator rend() const { return const_reverse_iterator(begin() - 1); } iterator insert(iterator it, size_type count, const value_type& v) { // NB: this must be done before reserve(), because reserve() // invalidates iterators! const size_t idx = it - begin(); const size_t after = end() - it; reserve(size() + count); // the place where the new element is going to be inserted value_type * const place = m_values + idx; // unless we're inserting at the end, move following elements out of // the way: if ( after > 0 ) Ops::MemmoveForward(place + count, place, after); // if the ctor called below throws an exception, we need to move all // the elements back to their original positions in m_values wxScopeGuard moveBack = wxMakeGuard( Ops::MemmoveBackward, place, place + count, after); if ( !after ) moveBack.Dismiss(); // use placement new to initialize new object in preallocated place in // m_values and store 'v' in it: for ( size_type i = 0; i < count; i++ ) ::new(place + i) value_type(v); // now that we did successfully add the new element, increment the size // and disable moving the items back moveBack.Dismiss(); m_size += count; return begin() + idx; } iterator insert(iterator it, const value_type& v = value_type()) { return insert(it, 1, v); } iterator erase(iterator it) { return erase(it, it + 1); } iterator erase(iterator first, iterator last) { if ( first == last ) return first; wxASSERT( first < end() && last <= end() ); const size_type idx = first - begin(); const size_type count = last - first; const size_type after = end() - last; // erase elements by calling their destructors: for ( iterator i = first; i < last; ++i ) i->~T(); // once that's done, move following elements over to the freed space: if ( after > 0 ) { Ops::MemmoveBackward(m_values + idx, m_values + idx + count, after); } m_size -= count; return begin() + idx; } #if WXWIN_COMPATIBILITY_2_8 wxDEPRECATED( size_type erase(size_type n) ); #endif // WXWIN_COMPATIBILITY_2_8 private: static const size_type ALLOC_INITIAL_SIZE = 16; void Copy(const wxVector& vb) { reserve(vb.size()); for ( const_iterator i = vb.begin(); i != vb.end(); ++i ) push_back(*i); } private: void Shrink(size_type n) { for ( size_type i = n; i < m_size; i++ ) m_values[i].~T(); m_size = n; } void Extend(size_type n, const value_type& v) { reserve(n); for ( size_type i = m_size; i < n; i++ ) push_back(v); } void AssignFromValue(size_type p_size, const value_type& v) { clear(); reserve(p_size); for ( size_t n = 0; n < p_size; n++ ) push_back(v); } template void AssignDispatch(InputIterator first, InputIterator last, wxPrivate::IsIntType) { AssignFromValue(static_cast(first), static_cast(last)); } template void AssignDispatch(InputIterator first, InputIterator last, wxPrivate::IsNotIntType) { clear(); // Notice that it would be nice to call reserve() here but we can't do // it for arbitrary input iterators, we should have a dispatch on // iterator type and call it if possible. for ( InputIterator it = first; it != last; ++it ) push_back(*it); } size_type m_size, m_capacity; value_type *m_values; }; #if WXWIN_COMPATIBILITY_2_8 template inline typename wxVector::size_type wxVector::erase(size_type n) { erase(begin() + n); return n; } #endif // WXWIN_COMPATIBILITY_2_8 namespace wxPrivate { // This is a helper for the wxVectorSort function, and should not be used // directly in user's code. template struct wxVectorComparator { static int Compare(const void* pitem1, const void* pitem2, const void* ) { const T& item1 = *reinterpret_cast(pitem1); const T& item2 = *reinterpret_cast(pitem2); if (item1 < item2) return -1; else if (item2 < item1) return 1; else return 0; } }; } // namespace wxPrivate template void wxVectorSort(wxVector& v) { wxQsort(v.begin(), v.size(), sizeof(T), wxPrivate::wxVectorComparator::Compare, NULL); } #endif // wxUSE_STD_CONTAINERS/!wxUSE_STD_CONTAINERS // Define vector::shrink_to_fit() equivalent which can be always used, even // when using pre-C++11 std::vector. template inline void wxShrinkToFit(wxVector& v) { #if !wxUSE_STD_CONTAINERS || __cplusplus >= 201103L || wxCHECK_VISUALC_VERSION(10) v.shrink_to_fit(); #else wxVector tmp(v); v.swap(tmp); #endif } #if WXWIN_COMPATIBILITY_2_8 #define WX_DECLARE_VECTORBASE(obj, cls) typedef wxVector cls #define _WX_DECLARE_VECTOR(obj, cls, exp) WX_DECLARE_VECTORBASE(obj, cls) #define WX_DECLARE_VECTOR(obj, cls) WX_DECLARE_VECTORBASE(obj, cls) #endif // WXWIN_COMPATIBILITY_2_8 #endif // _WX_VECTOR_H_