///////////////////////////////////////////////////////////////////////////// // Name: datetime.h // Purpose: interface of wxDateTime // Author: wxWidgets team // RCS-ID: $Id$ // Licence: wxWindows licence ///////////////////////////////////////////////////////////////////////////// /** @class wxDateTime wxDateTime class represents an absolute moment in time. The type @c wxDateTime_t is typedefed as unsigned short and is used to contain the number of years, hours, minutes, seconds and milliseconds. Global constant ::wxDefaultDateTime and synonym for it ::wxInvalidDateTime are defined. This constant will be different from any valid wxDateTime object. @section datetime_static Static Functions All static functions either set or return the static variables of wxDateSpan (the country), return the current moment, year, month or number of days in it, or do some general calendar-related actions. Please note that although several function accept an extra Calendar parameter, it is currently ignored as only the Gregorian calendar is supported. Future versions will support other calendars. @section datetime_formatting Date Formatting and Parsing The date formatting and parsing functions convert wxDateTime objects to and from text. The conversions to text are mostly trivial: you can either do it using the default date and time representations for the current locale (FormatDate() and FormatTime()), using the international standard representation defined by ISO 8601 (FormatISODate(), FormatISOTime() and FormatISOCombined()) or by specifying any format at all and using Format() directly. The conversions from text are more interesting, as there are much more possibilities to care about. The simplest cases can be taken care of with ParseFormat() which can parse any date in the given (rigid) format. ParseRfc822Date() is another function for parsing dates in predefined format -- the one of RFC 822 which (still...) defines the format of email messages on the Internet. This format cannot be described with @c strptime(3)-like format strings used by Format(), hence the need for a separate function. But the most interesting functions are ParseTime(), ParseDate() and ParseDateTime(). They try to parse the date and time (or only one of them) in 'free' format, i.e. allow them to be specified in any of possible ways. These functions will usually be used to parse the (interactive) user input which is not bound to be in any predefined format. As an example, ParseDate() can parse the strings such as "tomorrow", "March first" and even "next Sunday". Finally notice that each of the parsing functions is available in several overloads: if the input string is a narrow (@c char *) string, then a narrow pointer is returned. If the input string is a wide string, a wide char pointer is returned. Finally, if the input parameter is a wxString, a narrow char pointer is also returned for backwards compatibility but there is also an additional argument of wxString::const_iterator type in which, if it is not @NULL, an iterator pointing to the end of the scanned string part is returned. @library{wxbase} @category{data} @stdobjects - ::wxDefaultDateTime @see @ref overview_datetime, wxTimeSpan, wxDateSpan, wxCalendarCtrl */ class wxDateTime { public: /** A small unsigned integer type for storing things like minutes, seconds &c. It should be at least short (i.e. not char) to contain the number of milliseconds - it may also be 'int' because there is no size penalty associated with it in our code, we don't store any data in this format. */ typedef unsigned short wxDateTime_t; /** Time zone symbolic names. */ enum TZ { /// the time in the current time zone Local, //@{ /// zones from GMT (= Greenwich Mean Time): they're guaranteed to be /// consequent numbers, so writing something like `GMT0 + offset' is /// safe if abs(offset) <= 12 // underscore stands for minus GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7, GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1, GMT0, GMT1, GMT2, GMT3, GMT4, GMT5, GMT6, GMT7, GMT8, GMT9, GMT10, GMT11, GMT12, GMT13, // Note that GMT12 and GMT_12 are not the same: there is a difference // of exactly one day between them //@} // some symbolic names for TZ // Europe WET = GMT0, //!< Western Europe Time WEST = GMT1, //!< Western Europe Summer Time CET = GMT1, //!< Central Europe Time CEST = GMT2, //!< Central Europe Summer Time EET = GMT2, //!< Eastern Europe Time EEST = GMT3, //!< Eastern Europe Summer Time MSK = GMT3, //!< Moscow Time MSD = GMT4, //!< Moscow Summer Time // US and Canada AST = GMT_4, //!< Atlantic Standard Time ADT = GMT_3, //!< Atlantic Daylight Time EST = GMT_5, //!< Eastern Standard Time EDT = GMT_4, //!< Eastern Daylight Saving Time CST = GMT_6, //!< Central Standard Time CDT = GMT_5, //!< Central Daylight Saving Time MST = GMT_7, //!< Mountain Standard Time MDT = GMT_6, //!< Mountain Daylight Saving Time PST = GMT_8, //!< Pacific Standard Time PDT = GMT_7, //!< Pacific Daylight Saving Time HST = GMT_10, //!< Hawaiian Standard Time AKST = GMT_9, //!< Alaska Standard Time AKDT = GMT_8, //!< Alaska Daylight Saving Time // Australia A_WST = GMT8, //!< Western Standard Time A_CST = GMT13 + 1, //!< Central Standard Time (+9.5) A_EST = GMT10, //!< Eastern Standard Time A_ESST = GMT11, //!< Eastern Summer Time // New Zealand NZST = GMT12, //!< Standard Time NZDT = GMT13, //!< Daylight Saving Time /// Universal Coordinated Time = the new and politically correct name /// for GMT. UTC = GMT0 }; /** Several functions accept an extra parameter specifying the calendar to use (although most of them only support now the Gregorian calendar). This parameters is one of the following values. */ enum Calendar { Gregorian, ///< calendar currently in use in Western countries Julian ///< calendar in use since -45 until the 1582 (or later) }; /** Values corresponding to different dates of adoption of the Gregorian calendar. @see IsGregorianDate */ enum GregorianAdoption { Gr_Unknown, ///< no data for this country or it's too uncertain to use Gr_Standard, ///< on the day 0 of Gregorian calendar: 15 Oct 1582 Gr_Alaska, ///< Oct 1867 when Alaska became part of the USA Gr_Albania, ///< Dec 1912 Gr_Austria = Gr_Unknown, ///< Different regions on different dates Gr_Austria_Brixen, ///< 5 Oct 1583 -> 16 Oct 1583 Gr_Austria_Salzburg = Gr_Austria_Brixen, Gr_Austria_Tyrol = Gr_Austria_Brixen, Gr_Austria_Carinthia, ///< 14 Dec 1583 -> 25 Dec 1583 Gr_Austria_Styria = Gr_Austria_Carinthia, Gr_Belgium, ///< Then part of the Netherlands Gr_Bulgaria = Gr_Unknown, ///< Unknown precisely (from 1915 to 1920) Gr_Bulgaria_1, ///< 18 Mar 1916 -> 1 Apr 1916 Gr_Bulgaria_2, ///< 31 Mar 1916 -> 14 Apr 1916 Gr_Bulgaria_3, ///< 3 Sep 1920 -> 17 Sep 1920 Gr_Canada = Gr_Unknown, ///< Different regions followed the changes in ///< Great Britain or France Gr_China = Gr_Unknown, ///< Different authorities say: Gr_China_1, ///< 18 Dec 1911 -> 1 Jan 1912 Gr_China_2, ///< 18 Dec 1928 -> 1 Jan 1929 Gr_Czechoslovakia, ///< (Bohemia and Moravia) 6 Jan 1584 -> 17 Jan 1584 Gr_Denmark, ///< (including Norway) 18 Feb 1700 -> 1 Mar 1700 Gr_Egypt, ///< 1875 Gr_Estonia, ///< 1918 Gr_Finland, ///< Then part of Sweden Gr_France, ///< 9 Dec 1582 -> 20 Dec 1582 Gr_France_Alsace, ///< 4 Feb 1682 -> 16 Feb 1682 Gr_France_Lorraine, ///< 16 Feb 1760 -> 28 Feb 1760 Gr_France_Strasbourg, ///< February 1682 Gr_Germany = Gr_Unknown, ///< Different states on different dates: Gr_Germany_Catholic, ///< 1583-1585 (we take 1584) Gr_Germany_Prussia, ///< 22 Aug 1610 -> 2 Sep 1610 Gr_Germany_Protestant, ///< 18 Feb 1700 -> 1 Mar 1700 Gr_GreatBritain, ///< 2 Sep 1752 -> 14 Sep 1752 (use 'cal(1)') Gr_Greece, ///< 9 Mar 1924 -> 23 Mar 1924 Gr_Hungary, ///< 21 Oct 1587 -> 1 Nov 1587 Gr_Ireland = Gr_GreatBritain, Gr_Italy = Gr_Standard, Gr_Japan = Gr_Unknown, ///< Different authorities say: Gr_Japan_1, ///< 19 Dec 1872 -> 1 Jan 1873 Gr_Japan_2, ///< 19 Dec 1892 -> 1 Jan 1893 Gr_Japan_3, ///< 18 Dec 1918 -> 1 Jan 1919 Gr_Latvia, ///< 1915-1918 (we take 1915) Gr_Lithuania, ///< 1915 Gr_Luxemburg, ///< 14 Dec 1582 -> 25 Dec 1582 Gr_Netherlands = Gr_Belgium, ///< (including Belgium) 1 Jan 1583 /** Special case of Groningen. The Gregorian calendar was introduced twice in Groningen, first time 28 Feb 1583 was followed by 11 Mar 1583, then it has gone back to Julian in the summer of 1584 and then 13 Dec 1700 was followed by 12 Jan 1701 -- which is the date we take into account here. */ Gr_Netherlands_Groningen, ///< 13 Dec 1700 -> 12 Jan 1701 Gr_Netherlands_Gelderland, ///< 30 Jun 1700 -> 12 Jul 1700 Gr_Netherlands_Utrecht, ///< (and Overijssel) 30 Nov 1700->12 Dec 1700 Gr_Netherlands_Friesland, ///< (and Drenthe) 31 Dec 1700 -> 12 Jan 1701 Gr_Norway = Gr_Denmark, ///< Then part of Denmark Gr_Poland = Gr_Standard, Gr_Portugal = Gr_Standard, Gr_Romania, ///< 31 Mar 1919 -> 14 Apr 1919 Gr_Russia, ///< 31 Jan 1918 -> 14 Feb 1918 Gr_Scotland = Gr_GreatBritain, Gr_Spain = Gr_Standard, /** Special case of Sweden. Sweden has a curious history. Sweden decided to make a gradual change from the Julian to the Gregorian calendar. By dropping every leap year from 1700 through 1740 the eleven superfluous days would be omitted and from 1 Mar 1740 they would be in sync with the Gregorian calendar. (But in the meantime they would be in sync with nobody!) So 1700 (which should have been a leap year in the Julian calendar) was not a leap year in Sweden. However, by mistake 1704 and 1708 became leap years. This left Sweden out of synchronisation with both the Julian and the Gregorian world, so they decided to go back to the Julian calendar. In order to do this, they inserted an extra day in 1712, making that year a double leap year! So in 1712, February had 30 days in Sweden. Later, in 1753, Sweden changed to the Gregorian calendar by dropping 11 days like everyone else and this is what we use here. */ Gr_Sweden = Gr_Finland, ///< 17 Feb 1753 -> 1 Mar 1753 Gr_Switzerland = Gr_Unknown,///< Different cantons used different dates Gr_Switzerland_Catholic, ///< 1583, 1584 or 1597 (we take 1584) Gr_Switzerland_Protestant, ///< 31 Dec 1700 -> 12 Jan 1701 Gr_Turkey, ///< 1 Jan 1927 Gr_USA = Gr_GreatBritain, Gr_Wales = Gr_GreatBritain, Gr_Yugoslavia ///< 1919 }; /** Date calculations often depend on the country and wxDateTime allows to set the country whose conventions should be used using SetCountry(). It takes one of the following values as parameter. */ enum Country { Country_Unknown, ///< no special information for this country Country_Default, ///< set the default country with SetCountry() method ///< or use the default country with any other Country_WesternEurope_Start, Country_EEC = Country_WesternEurope_Start, France, Germany, UK, Country_WesternEurope_End = UK, Russia, USA }; /// symbolic names for the months enum Month { Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec, /// Invalid month value. Inv_Month }; /// symbolic names for the weekdays enum WeekDay { Sun, Mon, Tue, Wed, Thu, Fri, Sat, /// Invalid week day value. Inv_WeekDay }; /// invalid value for the year enum Year { Inv_Year = SHRT_MIN // should hold in wxDateTime_t }; /** Flags to be used with GetMonthName() and GetWeekDayName() functions. */ enum NameFlags { Name_Full = 0x01, ///< return full name Name_Abbr = 0x02 ///< return abbreviated name }; /** Different parts of the world use different conventions for the week start. In some countries, the week starts on Sunday, while in others -- on Monday. The ISO standard doesn't address this issue, so we support both conventions in the functions whose result depends on it (GetWeekOfYear() and GetWeekOfMonth()). The desired behaviour may be specified by giving one of the following constants as argument to these functions. */ enum WeekFlags { Default_First, ///< Sunday_First for US, Monday_First for the rest Monday_First, ///< week starts with a Monday Sunday_First ///< week starts with a Sunday }; /** Class representing a time zone. The representation is simply the offset, in seconds, from UTC. */ class WXDLLIMPEXP_BASE TimeZone { public: /// Constructor for a named time zone. TimeZone(TZ tz); /// Constructor for the given offset in seconds. TimeZone(long offset = 0); /// Create a time zone with the given offset in seconds. static TimeZone Make(long offset); /// Return the offset of this time zone from UTC, in seconds. long GetOffset() const; }; /** Contains broken down date-time representation. This struct is analogous to standard C struct tm and uses the same, not always immediately obvious, conventions for its members: notably its mon and mday fields count from 0 while yday counts from 1. */ struct Tm { wxDateTime_t msec, ///< Number of milliseconds. sec, ///< Seconds in 0..59 (60 with leap seconds) range. min, ///< Minutes in 0..59 range. hour, ///< Hours since midnight in 0..23 range. mday, ///< Day of the month in 1..31 range. yday; ///< Day of the year in 0..365 range. Month mon; ///< Month, as an enumerated constant. int year; ///< Year. /** Check if the given date/time is valid (in Gregorian calendar). Return @false if the components don't correspond to a correct date. */ bool IsValid() const; /** Return the week day corresponding to this date. Unlike the other fields, the week day is not always available and so must be accessed using this method as it is computed on demand when it is called. */ WeekDay GetWeekDay(); }; /** @name Constructors, Assignment Operators and Setters Constructors and various Set() methods are collected here. If you construct a date object from separate values for day, month and year, you should use IsValid() method to check that the values were correct as constructors cannot return an error code. */ //@{ /** Default constructor. Use one of the Set() functions to initialize the object later. */ wxDateTime(); /** Copy constructor. */ wxDateTime(const wxDateTime& date); /** Same as Set(). */ wxDateTime(time_t timet); /** Same as Set(). */ wxDateTime(const struct tm& tm); /** Same as Set(). */ wxDateTime(double jdn); /** Same as Set(). */ wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec = 0); /** Same as Set(). */ wxDateTime(wxDateTime_t day, Month month, int year = Inv_Year, wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec = 0); /** Same as SetFromMSWSysTime. @param st Input, Windows SYSTEMTIME reference @since 2.9.0 @remarks MSW only @onlyfor{wxmsw} */ wxDateTime(const struct _SYSTEMTIME& st); /** Reset time to midnight (00:00:00) without changing the date. */ wxDateTime& ResetTime(); /** Constructs the object from @a timet value holding the number of seconds since Jan 1, 1970. */ wxDateTime& Set(time_t timet); /** Sets the date and time from the broken down representation in the standard @a tm structure. */ wxDateTime& Set(const struct tm& tm); /** Sets the date and time from the broken down representation in the @a wxDateTime::Tm structure. */ wxDateTime& Set(const Tm& tm); /** Sets the date from the so-called Julian Day Number. By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich mean noon) on January 1 of the year -4712 in the Julian proleptic calendar. */ wxDateTime& Set(double jdn); /** Sets the date to be equal to Today() and the time from supplied parameters. */ wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec = 0); /** Sets the date and time from the parameters. */ wxDateTime& Set(wxDateTime_t day, Month month, int year = Inv_Year, wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec = 0); /** Sets the day without changing other date components. */ wxDateTime& SetDay(unsigned short day); /** Sets the date from the date and time in DOS format. */ wxDateTime& SetFromDOS(unsigned long ddt); /** Sets the hour without changing other date components. */ wxDateTime& SetHour(unsigned short hour); /** Sets the millisecond without changing other date components. */ wxDateTime& SetMillisecond(unsigned short millisecond); /** Sets the minute without changing other date components. */ wxDateTime& SetMinute(unsigned short minute); /** Sets the month without changing other date components. */ wxDateTime& SetMonth(Month month); /** Sets the second without changing other date components. */ wxDateTime& SetSecond(unsigned short second); /** Sets the date and time of to the current values. Same as assigning the result of Now() to this object. */ wxDateTime& SetToCurrent(); /** Sets the year without changing other date components. */ wxDateTime& SetYear(int year); /** Same as Set(). */ wxDateTime& operator=(time_t timet); /** Same as Set(). */ wxDateTime& operator=(const struct tm& tm); //@} /** @name Accessors Here are the trivial accessors. Other functions, which might have to perform some more complicated calculations to find the answer are under the "Date Arithmetics" section. */ //@{ /** Returns the date and time in DOS format. */ unsigned long GetAsDOS() const; /** Initialize using the Windows SYSTEMTIME structure. @param st Input, Windows SYSTEMTIME reference @since 2.9.0 @remarks MSW only @onlyfor{wxmsw} */ wxDateTime& SetFromMSWSysTime(const struct _SYSTEMTIME& st); /** Returns the date and time in the Windows SYSTEMTIME format. @param st Output, pointer to Windows SYSTEMTIME @since 2.9.0 @remarks MSW only @onlyfor{wxmsw} */ void GetAsMSWSysTime(struct _SYSTEMTIME* st) const; /** Returns the century of this date. */ int GetCentury(const TimeZone& tz = Local) const; /** Returns the object having the same date component as this one but time of 00:00:00. @since 2.8.2 @see ResetTime() */ wxDateTime GetDateOnly() const; /** Returns the day in the given timezone (local one by default). */ unsigned short GetDay(const TimeZone& tz = Local) const; /** Returns the day of the year (in 1-366 range) in the given timezone (local one by default). */ unsigned short GetDayOfYear(const TimeZone& tz = Local) const; /** Returns the hour in the given timezone (local one by default). */ unsigned short GetHour(const TimeZone& tz = Local) const; /** Returns the milliseconds in the given timezone (local one by default). */ unsigned short GetMillisecond(const TimeZone& tz = Local) const; /** Returns the minute in the given timezone (local one by default). */ unsigned short GetMinute(const TimeZone& tz = Local) const; /** Returns the month in the given timezone (local one by default). */ Month GetMonth(const TimeZone& tz = Local) const; /** Returns the seconds in the given timezone (local one by default). */ unsigned short GetSecond(const TimeZone& tz = Local) const; /** Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date is not in the range covered by @c time_t type. */ time_t GetTicks() const; /** Returns broken down representation of the date and time. */ Tm GetTm(const TimeZone& tz = Local) const; /** Returns the week day in the given timezone (local one by default). */ WeekDay GetWeekDay(const TimeZone& tz = Local) const; /** Returns the ordinal number of the week in the month (in 1-5 range). As GetWeekOfYear(), this function supports both conventions for the week start. */ wxDateTime_t GetWeekOfMonth(WeekFlags flags = Monday_First, const TimeZone& tz = Local) const; /** Returns the number of the week of the year this date is in. The first week of the year is, according to international standards, the one containing Jan 4 or, equivalently, the first week which has Thursday in this year. Both of these definitions are the same as saying that the first week of the year must contain more than half of its days in this year. Accordingly, the week number will always be in 1-53 range (52 for non-leap years). The function depends on the week start convention specified by the @a flags argument but its results for @c Sunday_First are not well-defined as the ISO definition quoted above applies to the weeks starting on Monday only. */ wxDateTime_t GetWeekOfYear(WeekFlags flags = Monday_First, const TimeZone& tz = Local) const; /** Returns the year in the given timezone (local one by default). */ int GetYear(const TimeZone& tz = Local) const; /** Returns @true if the given date is later than the date of adoption of the Gregorian calendar in the given country (and hence the Gregorian calendar calculations make sense for it). */ bool IsGregorianDate(GregorianAdoption country = Gr_Standard) const; /** Returns @true if the object represents a valid time moment. */ bool IsValid() const; /** Returns @true is this day is not a holiday in the given country. */ bool IsWorkDay(Country country = Country_Default) const; //@} /** @name Date Comparison There are several functions to allow date comparison. To supplement them, a few global operators, etc taking wxDateTime are defined. */ //@{ /** Returns @true if this date precedes the given one. */ bool IsEarlierThan(const wxDateTime& datetime) const; /** Returns @true if the two dates are strictly identical. */ bool IsEqualTo(const wxDateTime& datetime) const; /** Returns @true if the date is equal to another one up to the given time interval, i.e. if the absolute difference between the two dates is less than this interval. */ bool IsEqualUpTo(const wxDateTime& dt, const wxTimeSpan& ts) const; /** Returns @true if this date is later than the given one. */ bool IsLaterThan(const wxDateTime& datetime) const; /** Returns @true if the date is the same without comparing the time parts. */ bool IsSameDate(const wxDateTime& dt) const; /** Returns @true if the time is the same (although dates may differ). */ bool IsSameTime(const wxDateTime& dt) const; /** Returns @true if this date lies strictly between the two given dates. @see IsBetween() */ bool IsStrictlyBetween(const wxDateTime& t1, const wxDateTime& t2) const; /** Returns @true if IsStrictlyBetween() is @true or if the date is equal to one of the limit values. @see IsStrictlyBetween() */ bool IsBetween(const wxDateTime& t1, const wxDateTime& t2) const; //@} /** @name Date Arithmetics These functions carry out @ref overview_datetime_arithmetics "arithmetics" on the wxDateTime objects. As explained in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime, hence all functions are overloaded to accept both arguments. Also, both Add() and Subtract() have both const and non-const version. The first one returns a new object which represents the sum/difference of the original one with the argument while the second form modifies the object to which it is applied. The operators "-=" and "+=" are defined to be equivalent to the second forms of these functions. */ //@{ /** Adds the given date span to this object. */ wxDateTime Add(const wxDateSpan& diff) const; /** Adds the given date span to this object. */ wxDateTime Add(const wxDateSpan& diff); /** Adds the given time span to this object. */ wxDateTime Add(const wxTimeSpan& diff) const; /** Adds the given time span to this object. */ wxDateTime& Add(const wxTimeSpan& diff); /** Subtracts the given time span from this object. */ wxDateTime Subtract(const wxTimeSpan& diff) const; /** Subtracts the given time span from this object. */ wxDateTime& Subtract(const wxTimeSpan& diff); /** Subtracts the given date span from this object. */ wxDateTime Subtract(const wxDateSpan& diff) const; /** Subtracts the given date span from this object. */ wxDateTime& Subtract(const wxDateSpan& diff); /** Subtracts another date from this one and returns the difference between them as a wxTimeSpan. */ wxTimeSpan Subtract(const wxDateTime& dt) const; /** Adds the given date span to this object. */ wxDateTime& operator+=(const wxDateSpan& diff); /** Subtracts the given date span from this object. */ wxDateTime& operator-=(const wxDateSpan& diff); /** Adds the given time span to this object. */ wxDateTime& operator+=(const wxTimeSpan& diff); /** Subtracts the given time span from this object. */ wxDateTime& operator-=(const wxTimeSpan& diff); //@} /** @name Date Formatting and Parsing See @ref datetime_formatting */ //@{ /** This function does the same as the standard ANSI C @c strftime(3) function (http://www.cplusplus.com/reference/clibrary/ctime/strftime.html). Please see its description for the meaning of @a format parameter. It also accepts a few wxWidgets-specific extensions: you can optionally specify the width of the field to follow using @c printf(3)-like syntax and the format specification @c "%l" can be used to get the number of milliseconds. @see ParseFormat() */ wxString Format(const wxString& format = wxDefaultDateTimeFormat, const TimeZone& tz = Local) const; /** Identical to calling Format() with @c "%x" argument (which means "preferred date representation for the current locale"). */ wxString FormatDate() const; /** Returns the combined date-time representation in the ISO 8601 format @c "YYYY-MM-DDTHH:MM:SS". The @a sep parameter default value produces the result exactly corresponding to the ISO standard, but it can also be useful to use a space as separator if a more human-readable combined date-time representation is needed. @see FormatISODate(), FormatISOTime(), ParseISOCombined() */ wxString FormatISOCombined(char sep = 'T') const; /** This function returns the date representation in the ISO 8601 format @c "YYYY-MM-DD". */ wxString FormatISODate() const; /** This function returns the time representation in the ISO 8601 format @c "HH:MM:SS". */ wxString FormatISOTime() const; /** Identical to calling Format() with @c "%X" argument (which means "preferred time representation for the current locale"). */ wxString FormatTime() const; /** This function is like ParseDateTime(), but it only allows the date to be specified. It is thus less flexible then ParseDateTime(), but also has less chances to misinterpret the user input. See ParseFormat() for the description of function parameters and return value. @see Format() */ bool ParseDate(const wxString& date, wxString::const_iterator *end); /** Parses the string @a datetime containing the date and time in free format. This function tries as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date(), it will accept anything that may be accepted and will only reject strings which cannot be parsed in any way at all. Notice that the function will fail if either date or time part is present but not both, use ParseDate() or ParseTime() to parse strings containing just the date or time component. See ParseFormat() for the description of function parameters and return value. */ bool ParseDateTime(const wxString& datetime, wxString::const_iterator *end); /** This function parses the string @a date according to the given @e format. The system @c strptime(3) function is used whenever available, but even if it is not, this function is still implemented, although support for locale-dependent format specifiers such as @c "%c", @c "%x" or @c "%X" may not be perfect and GNU extensions such as @c "%z" and @c "%Z" are not implemented. This function does handle the month and weekday names in the current locale on all platforms, however. Please see the description of the ANSI C function @c strftime(3) for the syntax of the format string. The @a dateDef parameter is used to fill in the fields which could not be determined from the format string. For example, if the format is @c "%d" (the day of the month), the month and the year are taken from @a dateDef. If it is not specified, Today() is used as the default date. Example of using this function: @code wxDateTime dt; wxString str = "..."; wxString::const_iterator end; if ( !dt.ParseFormat(str, "%Y-%m-%d", &end) ) ... parsing failed ... else if ( end == str.end() ) ... entire string parsed ... else ... wxString(end, str.end()) left over ... @endcode @param date The string to be parsed. @param format strptime()-like format string. @param dateDef Used to fill in the date components not specified in the @a date string. @param end Will be filled with the iterator pointing to the location where the parsing stopped if the function returns @true. If the entire string was consumed, it is set to @c date.end(). Notice that this argument must be non-@NULL. @return @true if at least part of the string was parsed successfully, @false otherwise. @see Format() */ bool ParseFormat(const wxString& date, const wxString& format, const wxDateTime& dateDef, wxString::const_iterator *end); /** @overload */ bool ParseFormat(const wxString& date, const wxString& format, wxString::const_iterator *end); /** @overload */ bool ParseFormat(const wxString& date, wxString::const_iterator *end); /** This function parses the string containing the date and time in ISO 8601 combined format @c "YYYY-MM-DDTHH:MM:SS". The separator between the date and time parts must be equal to @a sep for the function to succeed. @return @true if the entire string was parsed successfully, @false otherwise. */ bool ParseISOCombined(const wxString& date, char sep = 'T'); /** This function parses the date in ISO 8601 format @c "YYYY-MM-DD". @return @true if the entire string was parsed successfully, @false otherwise. */ bool ParseISODate(const wxString& date); /** This function parses the time in ISO 8601 format @c "HH:MM:SS". @return @true if the entire string was parsed successfully, @false otherwise. */ bool ParseISOTime(const wxString& date); /** Parses the string @a date looking for a date formatted according to the RFC 822 in it. The exact description of this format may, of course, be found in the RFC (section 5), but, briefly, this is the format used in the headers of Internet email messages and one of the most common strings expressing date in this format may be something like @c "Sat, 18 Dec 1999 00:48:30 +0100". Returns @NULL if the conversion failed, otherwise return the pointer to the character immediately following the part of the string which could be parsed. If the entire string contains only the date in RFC 822 format, the returned pointer will be pointing to a @c NUL character. This function is intentionally strict, it will return an error for any string which is not RFC 822 compliant. If you need to parse date formatted in more free ways, you should use ParseDateTime() or ParseDate() instead. See ParseFormat() for the description of function parameters and return value. */ bool ParseRfc822Date(const wxString& date, wxString::const_iterator *end); /** This functions is like ParseDateTime(), but only allows the time to be specified in the input string. See ParseFormat() for the description of function parameters and return value. */ bool ParseTime(const wxString& time, wxString::const_iterator *end); //@} /** @name Calendar Calculations The functions in this section perform the basic calendar calculations, mostly related to the week days. They allow to find the given week day in the week with given number (either in the month or in the year) and so on. None of the functions in this section modify the time part of the wxDateTime, they only work with the date part of it. */ //@{ /** Returns the copy of this object to which SetToLastMonthDay() was applied. */ wxDateTime GetLastMonthDay(Month month = Inv_Month, int year = Inv_Year) const; /** Returns the copy of this object to which SetToLastWeekDay() was applied. */ wxDateTime GetLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year = Inv_Year); /** Returns the copy of this object to which SetToNextWeekDay() was applied. */ wxDateTime GetNextWeekDay(WeekDay weekday) const; /** Returns the copy of this object to which SetToPrevWeekDay() was applied. */ wxDateTime GetPrevWeekDay(WeekDay weekday) const; /** Returns the copy of this object to which SetToWeekDay() was applied. */ wxDateTime GetWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int year = Inv_Year) const; /** Returns the copy of this object to which SetToWeekDayInSameWeek() was applied. */ wxDateTime GetWeekDayInSameWeek(WeekDay weekday, WeekFlags flags = Monday_First) const; /** Returns the copy of this object to which SetToYearDay() was applied. */ wxDateTime GetYearDay(wxDateTime_t yday) const; /** Sets the date to the last day in the specified month (the current one by default). @return The reference to the modified object itself. */ wxDateTime& SetToLastMonthDay(Month month = Inv_Month, int year = Inv_Year); /** The effect of calling this function is the same as of calling @c SetToWeekDay(-1, weekday, month, year). The date will be set to the last @a weekday in the given month and year (the current ones by default). Always returns @true. */ bool SetToLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year = Inv_Year); /** Sets the date so that it will be the first @a weekday following the current date. @return The reference to the modified object itself. */ wxDateTime& SetToNextWeekDay(WeekDay weekday); /** Sets the date so that it will be the last @a weekday before the current date. @return The reference to the modified object itself. */ wxDateTime& SetToPrevWeekDay(WeekDay weekday); /** Sets the date to the @e n-th @a weekday in the given month of the given year (the current month and year are used by default). The parameter @a n may be either positive (counting from the beginning of the month) or negative (counting from the end of it). For example, SetToWeekDay(2, wxDateTime::Wed) will set the date to the second Wednesday in the current month and SetToWeekDay(-1, wxDateTime::Sun) will set the date to the last Sunday in the current month. @return @true if the date was modified successfully, @false otherwise meaning that the specified date doesn't exist. */ bool SetToWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int year = Inv_Year); /** Adjusts the date so that it will still lie in the same week as before, but its week day will be the given one. @return The reference to the modified object itself. */ wxDateTime& SetToWeekDayInSameWeek(WeekDay weekday, WeekFlags flags = Monday_First); /** Sets the date to the day number @a yday in the same year (i.e., unlike the other functions, this one does not use the current year). The day number should be in the range 1-366 for the leap years and 1-365 for the other ones. @return The reference to the modified object itself. */ wxDateTime& SetToYearDay(wxDateTime_t yday); //@} /** @name Astronomical/Historical Functions Some degree of support for the date units used in astronomy and/or history is provided. You can construct a wxDateTime object from a JDN and you may also get its JDN, MJD or Rata Die number from it. Related functions in other groups: wxDateTime(double), Set(double) */ //@{ /** Synonym for GetJulianDayNumber(). */ double GetJDN() const; /** Returns the JDN corresponding to this date. Beware of rounding errors! @see GetModifiedJulianDayNumber() */ double GetJulianDayNumber() const; /** Synonym for GetModifiedJulianDayNumber(). */ double GetMJD() const; /** Returns the @e "Modified Julian Day Number" (MJD) which is, by definition, is equal to JDN - 2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to midnights of the dates in the Gregorian calendar and not the noons like JDN. The MJD 0 represents Nov 17, 1858. */ double GetModifiedJulianDayNumber() const; /** Return the @e Rata Die number of this date. By definition, the Rata Die number is a date specified as the number of days relative to a base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1. */ double GetRataDie() const; //@} /** @name Time Zone and DST Support Please see the @ref overview_datetime_timezones "time zone overview" for more information about time zones. Normally, these functions should be rarely used. Related functions in other groups: GetBeginDST(), GetEndDST() */ //@{ /** Transform the date from the given time zone to the local one. If @a noDST is @true, no DST adjustments will be made. @return The date in the local time zone. */ wxDateTime FromTimezone(const TimeZone& tz, bool noDST = false) const; /** Returns @true if the DST is applied for this date in the given country. @see GetBeginDST(), GetEndDST() */ int IsDST(Country country = Country_Default) const; /** Same as FromTimezone() but modifies the object in place. */ wxDateTime& MakeFromTimezone(const TimeZone& tz, bool noDST = false); /** Modifies the object in place to represent the date in another time zone. If @a noDST is @true, no DST adjustments will be made. */ wxDateTime& MakeTimezone(const TimeZone& tz, bool noDST = false); /** This is the same as calling MakeTimezone() with the argument @c GMT0. */ wxDateTime& MakeUTC(bool noDST = false); /** Transform the date to the given time zone. If @a noDST is @true, no DST adjustments will be made. @return The date in the new time zone. */ wxDateTime ToTimezone(const TimeZone& tz, bool noDST = false) const; /** This is the same as calling ToTimezone() with the argument @c GMT0. */ wxDateTime ToUTC(bool noDST = false) const; //@} /** Converts the year in absolute notation (i.e. a number which can be negative, positive or zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year 0 is year 1 BC and so for other years there is a difference of 1. This function should be used like this: @code wxDateTime dt(...); int y = dt.GetYear(); printf("The year is %d%s", wxDateTime::ConvertYearToBC(y), y > 0 ? "AD" : "BC"); @endcode */ static int ConvertYearToBC(int year); /** Returns the translations of the strings @c AM and @c PM used for time formatting for the current locale. Either of the pointers may be @NULL if the corresponding value is not needed. */ static void GetAmPmStrings(wxString* am, wxString* pm); /** Get the beginning of DST for the given country in the given year (current one by default). This function suffers from limitations described in the @ref overview_datetime_dst "DST overview". @see GetEndDST() */ static wxDateTime GetBeginDST(int year = Inv_Year, Country country = Country_Default); /** Returns the end of DST for the given country in the given year (current one by default). @see GetBeginDST() */ static wxDateTime GetEndDST(int year = Inv_Year, Country country = Country_Default); /** Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian is currently supported). */ static int GetCentury(int year); /** Returns the current default country. The default country is used for DST calculations, for example. @see SetCountry() */ static Country GetCountry(); /** Get the current month in given calendar (only Gregorian is currently supported). */ static Month GetCurrentMonth(Calendar cal = Gregorian); /** Get the current year in given calendar (only Gregorian is currently supported). */ static int GetCurrentYear(Calendar cal = Gregorian); /** Return the standard English name of the given month. This function always returns "January" or "Jan" for January, use GetMonthName() to retrieve the name of the month in the users current locale. @param month One of wxDateTime::Jan, ..., wxDateTime::Dec values. @param flags Either Name_Full (default) or Name_Abbr. @see GetEnglishWeekDayName() @since 2.9.0 */ static wxString GetEnglishMonthName(Month month, NameFlags flags = Name_Full); /** Return the standard English name of the given week day. This function always returns "Monday" or "Mon" for Monday, use GetWeekDayName() to retrieve the name of the month in the users current locale. @param weekday One of wxDateTime::Sun, ..., wxDateTime::Sat values. @param flags Either Name_Full (default) or Name_Abbr. @see GetEnglishMonthName() @since 2.9.0 */ static wxString GetEnglishWeekDayName(WeekDay weekday, NameFlags flags = Name_Full); /** Gets the full (default) or abbreviated name of the given month. This function returns the name in the current locale, use GetEnglishMonthName() to get the untranslated name if necessary. @param month One of wxDateTime::Jan, ..., wxDateTime::Dec values. @param flags Either Name_Full (default) or Name_Abbr. @see GetWeekDayName() */ static wxString GetMonthName(Month month, NameFlags flags = Name_Full); /** Returns the number of days in the given year. The only supported value for @a cal currently is @c Gregorian. */ static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian); /** Returns the number of days in the given month of the given year. The only supported value for @a cal currently is @c Gregorian. */ static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar cal = Gregorian); /** Returns the current time. */ static time_t GetTimeNow(); /** Returns the current time broken down using the buffer whose address is passed to the function with @a tm to store the result. */ static tm* GetTmNow(struct tm *tm); /** Returns the current time broken down. Note that this function returns a pointer to a static buffer that's reused by calls to this function and certain C library functions (e.g. localtime). If there is any chance your code might be used in a multi-threaded application, you really should use GetTmNow(struct tm *) instead. */ static tm* GetTmNow(); /** Gets the full (default) or abbreviated name of the given week day. This function returns the name in the current locale, use GetEnglishWeekDayName() to get the untranslated name if necessary. @param weekday One of wxDateTime::Sun, ..., wxDateTime::Sat values. @param flags Either Name_Full (default) or Name_Abbr. @see GetMonthName() */ static wxString GetWeekDayName(WeekDay weekday, NameFlags flags = Name_Full); /** Returns @true if DST was used in the given year (the current one by default) in the given country. */ static bool IsDSTApplicable(int year = Inv_Year, Country country = Country_Default); /** Returns @true if the @a year is a leap one in the specified calendar. This functions supports Gregorian and Julian calendars. */ static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian); /** This function returns @true if the specified (or default) country is one of Western European ones. It is used internally by wxDateTime to determine the DST convention and date and time formatting rules. */ static bool IsWestEuropeanCountry(Country country = Country_Default); /** Returns the object corresponding to the current time. Example: @code wxDateTime now = wxDateTime::Now(); printf("Current time in Paris:\t%s\n", now.Format("%c", wxDateTime::CET).c_str()); @endcode @note This function is accurate up to seconds. UNow() can be used if better precision is required. @see Today() */ static wxDateTime Now(); /** Sets the country to use by default. This setting influences the DST calculations, date formatting and other things. @see GetCountry() */ static void SetCountry(Country country); /** Set the date to the given @a weekday in the week number @a numWeek of the given @a year . The number should be in range 1-53. Note that the returned date may be in a different year than the one passed to this function because both the week 1 and week 52 or 53 (for leap years) contain days from different years. See GetWeekOfYear() for the explanation of how the year weeks are counted. */ static wxDateTime SetToWeekOfYear(int year, wxDateTime_t numWeek, WeekDay weekday = Mon); /** Returns the object corresponding to the midnight of the current day (i.e. the same as Now(), but the time part is set to 0). @see Now() */ static wxDateTime Today(); /** Returns the object corresponding to the current UTC time including the milliseconds. Notice that unlike Now(), this method creates a wxDateTime object corresponding to UTC, not local, time. @see Now(), wxGetUTCTimeMillis() */ static wxDateTime UNow(); }; /** Global instance of an empty wxDateTime object. @todo Would it be better to rename this wxNullDateTime so it's consistent with the rest of the "empty/invalid/null" global objects? */ const wxDateTime wxDefaultDateTime; /* wxInvalidDateTime is an alias for wxDefaultDateTime. */ #define wxInvalidDateTime wxDefaultDateTime /** @class wxDateTimeWorkDays @todo Write wxDateTimeWorkDays documentation. @library{wxbase} @category{data} */ class wxDateTimeWorkDays { public: }; /** @class wxDateSpan This class is a "logical time span" and is useful for implementing program logic for such things as "add one month to the date" which, in general, doesn't mean to add 60*60*24*31 seconds to it, but to take the same date the next month (to understand that this is indeed different consider adding one month to Feb, 15 -- we want to get Mar, 15, of course). When adding a month to the date, all lesser components (days, hours, ...) won't be changed unless the resulting date would be invalid: for example, Jan 31 + 1 month will be Feb 28, not (non-existing) Feb 31. Because of this feature, adding and subtracting back again the same wxDateSpan will @b not, in general, give back the original date: Feb 28 - 1 month will be Jan 28, not Jan 31! wxDateSpan objects can be either positive or negative. They may be multiplied by scalars which multiply all deltas by the scalar: i.e. 2*(1 month and 1 day) is 2 months and 2 days. They can be added together with wxDateTime or wxTimeSpan, but the type of result is different for each case. @warning If you specify both weeks and days, the total number of days added will be 7*weeks + days! See also GetTotalDays(). Equality operators are defined for wxDateSpans. Two wxDateSpans are equal if and only if they both give the same target date when added to @b every source date. Thus wxDateSpan::Months(1) is not equal to wxDateSpan::Days(30), because they don't give the same date when added to Feb 1st. But wxDateSpan::Days(14) is equal to wxDateSpan::Weeks(2). Finally, notice that for adding hours, minutes and so on you don't need this class at all: wxTimeSpan will do the job because there are no subtleties associated with those (we don't support leap seconds). @library{wxbase} @category{data} @see @ref overview_datetime, wxDateTime */ class wxDateSpan { public: /** Constructs the date span object for the given number of years, months, weeks and days. Note that the weeks and days add together if both are given. */ wxDateSpan(int years = 0, int months = 0, int weeks = 0, int days = 0); /** Returns the sum of two date spans. @return A new wxDateSpan object with the result. */ wxDateSpan Add(const wxDateSpan& other) const; /** Adds the given wxDateSpan to this wxDateSpan and returns a reference to itself. */ wxDateSpan& Add(const wxDateSpan& other); /** Returns a date span object corresponding to one day. @see Days() */ static wxDateSpan Day(); /** Returns a date span object corresponding to the given number of days. @see Day() */ static wxDateSpan Days(int days); /** Returns the number of days (not counting the weeks component) in this date span. @see GetTotalDays() */ int GetDays() const; /** Returns the number of the months (not counting the years) in this date span. */ int GetMonths() const; /** Returns the combined number of days in this date span, counting both weeks and days. This doesn't take months or years into account. @see GetWeeks(), GetDays() */ int GetTotalDays() const; /** Returns the number of weeks in this date span. @see GetTotalDays() */ int GetWeeks() const; /** Returns the number of years in this date span. */ int GetYears() const; /** Returns a date span object corresponding to one month. @see Months() */ static wxDateSpan Month(); /** Returns a date span object corresponding to the given number of months. @see Month() */ static wxDateSpan Months(int mon); /** Returns the product of the date span by the specified @a factor. The product is computed by multiplying each of the components by the @a factor. @return A new wxDateSpan object with the result. */ wxDateSpan Multiply(int factor) const; /** Multiplies this date span by the specified @a factor. The product is computed by multiplying each of the components by the @a factor. @return A reference to this wxDateSpan object modified in place. */ wxDateSpan& Multiply(int factor); /** Changes the sign of this date span. @see Negate() */ wxDateSpan& Neg(); /** Returns a date span with the opposite sign. @see Neg() */ wxDateSpan Negate() const; /** Sets the number of days (without modifying any other components) in this date span. */ wxDateSpan& SetDays(int n); /** Sets the number of months (without modifying any other components) in this date span. */ wxDateSpan& SetMonths(int n); /** Sets the number of weeks (without modifying any other components) in this date span. */ wxDateSpan& SetWeeks(int n); /** Sets the number of years (without modifying any other components) in this date span. */ wxDateSpan& SetYears(int n); /** Returns the difference of two date spans. @return A new wxDateSpan object with the result. */ wxDateSpan Subtract(const wxDateSpan& other) const; /** Subtracts the given wxDateSpan to this wxDateSpan and returns a reference to itself. */ wxDateSpan& Subtract(const wxDateSpan& other); /** Returns a date span object corresponding to one week. @see Weeks() */ static wxDateSpan Week(); /** Returns a date span object corresponding to the given number of weeks. @see Week() */ static wxDateSpan Weeks(int weeks); /** Returns a date span object corresponding to one year. @see Years() */ static wxDateSpan Year(); /** Returns a date span object corresponding to the given number of years. @see Year() */ static wxDateSpan Years(int years); /** Adds the given wxDateSpan to this wxDateSpan and returns the result. */ wxDateSpan& operator+=(const wxDateSpan& other); /** Subtracts the given wxDateSpan to this wxDateSpan and returns the result. */ wxDateSpan& operator-=(const wxDateSpan& other); /** Changes the sign of this date span. @see Negate() */ wxDateSpan& operator-(); /** Multiplies this date span by the specified @a factor. The product is computed by multiplying each of the components by the @a factor. @return A reference to this wxDateSpan object modified in place. */ wxDateSpan& operator*=(int factor); /** Returns @true if this date span is different from the other one. */ bool operator!=(const wxDateSpan& other) const; /** Returns @true if this date span is equal to the other one. Two date spans are considered equal if and only if they have the same number of years and months and the same total number of days (counting both days and weeks). */ bool operator==(const wxDateSpan& other) const; }; /** @class wxTimeSpan wxTimeSpan class represents a time interval. @library{wxbase} @category{data} @see @ref overview_datetime, wxDateTime */ class wxTimeSpan { public: /** Default constructor, constructs a zero timespan. */ wxTimeSpan(); /** Constructs timespan from separate values for each component, with the date set to 0. Hours are not restricted to 0-24 range, neither are minutes, seconds or milliseconds. */ wxTimeSpan(long hours, long min = 0, wxLongLong sec = 0, wxLongLong msec = 0); /** Returns the absolute value of the timespan: does not modify the object. */ wxTimeSpan Abs() const; /** Returns the sum of two time spans. @return A new wxDateSpan object with the result. */ wxTimeSpan Add(const wxTimeSpan& diff) const; /** Adds the given wxTimeSpan to this wxTimeSpan and returns a reference to itself. */ wxTimeSpan& Add(const wxTimeSpan& diff); /** Returns the timespan for one day. */ static wxTimeSpan Day(); /** Returns the timespan for the given number of days. */ static wxTimeSpan Days(long days); /** Returns the string containing the formatted representation of the time span. The following format specifiers are allowed after %: - @c H - Number of Hours - @c M - Number of Minutes - @c S - Number of Seconds - @c l - Number of Milliseconds - @c D - Number of Days - @c E - Number of Weeks - @c % - The percent character Note that, for example, the number of hours in the description above is not well defined: it can be either the total number of hours (for example, for a time span of 50 hours this would be 50) or just the hour part of the time span, which would be 2 in this case as 50 hours is equal to 2 days and 2 hours. wxTimeSpan resolves this ambiguity in the following way: if there had been, indeed, the @c %D format specified preceding the @c %H, then it is interpreted as 2. Otherwise, it is 50. The same applies to all other format specifiers: if they follow a specifier of larger unit, only the rest part is taken, otherwise the full value is used. */ wxString Format(const wxString& format = wxDefaultTimeSpanFormat) const; /** Returns the difference in number of days. */ int GetDays() const; /** Returns the difference in number of hours. */ int GetHours() const; /** Returns the difference in number of milliseconds. */ wxLongLong GetMilliseconds() const; /** Returns the difference in number of minutes. */ int GetMinutes() const; /** Returns the difference in number of seconds. */ wxLongLong GetSeconds() const; /** Returns the internal representation of timespan. */ wxLongLong GetValue() const; /** Returns the difference in number of weeks. */ int GetWeeks() const; /** Returns the timespan for one hour. */ static wxTimeSpan Hour(); /** Returns the timespan for the given number of hours. */ static wxTimeSpan Hours(long hours); /** Returns @true if two timespans are equal. */ bool IsEqualTo(const wxTimeSpan& ts) const; /** Compares two timespans: works with the absolute values, i.e. -2 hours is longer than 1 hour. Also, it will return @false if the timespans are equal in absolute value. */ bool IsLongerThan(const wxTimeSpan& ts) const; /** Returns @true if the timespan is negative. */ bool IsNegative() const; /** Returns @true if the timespan is empty. */ bool IsNull() const; /** Returns @true if the timespan is positive. */ bool IsPositive() const; /** Compares two timespans: works with the absolute values, i.e. 1 hour is shorter than -2 hours. Also, it will return @false if the timespans are equal in absolute value. */ bool IsShorterThan(const wxTimeSpan& ts) const; /** Returns the timespan for one millisecond. */ static wxTimeSpan Millisecond(); /** Returns the timespan for the given number of milliseconds. */ static wxTimeSpan Milliseconds(wxLongLong ms); /** Returns the timespan for one minute. */ static wxTimeSpan Minute(); /** Returns the timespan for the given number of minutes. */ static wxTimeSpan Minutes(long min); /** Returns the product of this time span by @a n. @return A new wxTimeSpan object with the result. */ wxTimeSpan Multiply(int n) const; /** Multiplies this time span by @a n. @return A reference to this wxTimeSpan object modified in place. */ wxTimeSpan& Multiply(int n); /** Negate the value of the timespan. @see Negate() */ wxTimeSpan& Neg(); /** Returns timespan with inverted sign. @see Neg() */ wxTimeSpan Negate() const; /** Returns the timespan for one second. */ static wxTimeSpan Second(); /** Returns the timespan for the given number of seconds. */ static wxTimeSpan Seconds(wxLongLong sec); /** Returns the difference of two time spans. @return A new wxDateSpan object with the result. */ wxTimeSpan Subtract(const wxTimeSpan& diff) const; /** Subtracts the given wxTimeSpan to this wxTimeSpan and returns a reference to itself. */ wxTimeSpan& Subtract(const wxTimeSpan& diff); /** Returns the timespan for one week. */ static wxTimeSpan Week(); /** Returns the timespan for the given number of weeks. */ static wxTimeSpan Weeks(long weeks); /** Adds the given wxTimeSpan to this wxTimeSpan and returns the result. */ wxTimeSpan& operator+=(const wxTimeSpan& diff); /** Multiplies this time span by @a n. @return A reference to this wxTimeSpan object modified in place. */ wxTimeSpan& operator*=(int n); /** Negate the value of the timespan. @see Negate() */ wxTimeSpan& operator-(); /** Subtracts the given wxTimeSpan to this wxTimeSpan and returns the result. */ wxTimeSpan& operator-=(const wxTimeSpan& diff); }; /** @class wxDateTimeHolidayAuthority @todo Write wxDateTimeHolidayAuthority documentation. @library{wxbase} @category{data} */ class wxDateTimeHolidayAuthority { public: };