using scan-line polygon conversion for constructing wxregion
git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@74049 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
parent
3fc2ee048d
commit
7a36d9c7c1
@ -24,6 +24,8 @@
|
||||
IMPLEMENT_DYNAMIC_CLASS(wxRegion, wxGDIObject)
|
||||
IMPLEMENT_DYNAMIC_CLASS(wxRegionIterator, wxObject)
|
||||
|
||||
#define OSX_USE_SCANLINES 1
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// wxRegionRefData implementation
|
||||
//-----------------------------------------------------------------------------
|
||||
@ -91,13 +93,868 @@ wxRegion::wxRegion(const wxRect& rect)
|
||||
m_refData = new wxRegionRefData(rect.x , rect.y , rect.width , rect.height);
|
||||
}
|
||||
|
||||
#if OSX_USE_SCANLINES
|
||||
|
||||
/*
|
||||
|
||||
Copyright 1987, 1998 The Open Group
|
||||
|
||||
Permission to use, copy, modify, distribute, and sell this software and its
|
||||
documentation for any purpose is hereby granted without fee, provided that
|
||||
the above copyright notice appear in all copies and that both that
|
||||
copyright notice and this permission notice appear in supporting
|
||||
documentation.
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
Except as contained in this notice, the name of The Open Group shall
|
||||
not be used in advertising or otherwise to promote the sale, use or
|
||||
other dealings in this Software without prior written authorization
|
||||
from The Open Group.
|
||||
|
||||
*/
|
||||
|
||||
/* miscanfill.h */
|
||||
|
||||
/*
|
||||
* scanfill.h
|
||||
*
|
||||
* Written by Brian Kelleher; Jan 1985
|
||||
*
|
||||
* This file contains a few macros to help track
|
||||
* the edge of a filled object. The object is assumed
|
||||
* to be filled in scanline order, and thus the
|
||||
* algorithm used is an extension of Bresenham's line
|
||||
* drawing algorithm which assumes that y is always the
|
||||
* major axis.
|
||||
* Since these pieces of code are the same for any filled shape,
|
||||
* it is more convenient to gather the library in one
|
||||
* place, but since these pieces of code are also in
|
||||
* the inner loops of output primitives, procedure call
|
||||
* overhead is out of the question.
|
||||
* See the author for a derivation if needed.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* In scan converting polygons, we want to choose those pixels
|
||||
* which are inside the polygon. Thus, we add .5 to the starting
|
||||
* x coordinate for both left and right edges. Now we choose the
|
||||
* first pixel which is inside the pgon for the left edge and the
|
||||
* first pixel which is outside the pgon for the right edge.
|
||||
* Draw the left pixel, but not the right.
|
||||
*
|
||||
* How to add .5 to the starting x coordinate:
|
||||
* If the edge is moving to the right, then subtract dy from the
|
||||
* error term from the general form of the algorithm.
|
||||
* If the edge is moving to the left, then add dy to the error term.
|
||||
*
|
||||
* The reason for the difference between edges moving to the left
|
||||
* and edges moving to the right is simple: If an edge is moving
|
||||
* to the right, then we want the algorithm to flip immediately.
|
||||
* If it is moving to the left, then we don't want it to flip until
|
||||
* we traverse an entire pixel.
|
||||
*/
|
||||
#define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
|
||||
int dx; /* local storage */ \
|
||||
\
|
||||
/* \
|
||||
* if the edge is horizontal, then it is ignored \
|
||||
* and assumed not to be processed. Otherwise, do this stuff. \
|
||||
*/ \
|
||||
if ((dy) != 0) { \
|
||||
xStart = (x1); \
|
||||
dx = (x2) - xStart; \
|
||||
if (dx < 0) { \
|
||||
m = dx / (dy); \
|
||||
m1 = m - 1; \
|
||||
incr1 = -2 * dx + 2 * (dy) * m1; \
|
||||
incr2 = -2 * dx + 2 * (dy) * m; \
|
||||
d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
|
||||
} else { \
|
||||
m = dx / (dy); \
|
||||
m1 = m + 1; \
|
||||
incr1 = 2 * dx - 2 * (dy) * m1; \
|
||||
incr2 = 2 * dx - 2 * (dy) * m; \
|
||||
d = -2 * m * (dy) + 2 * dx; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
|
||||
if (m1 > 0) { \
|
||||
if (d > 0) { \
|
||||
minval += m1; \
|
||||
d += incr1; \
|
||||
} \
|
||||
else { \
|
||||
minval += m; \
|
||||
d += incr2; \
|
||||
} \
|
||||
} else {\
|
||||
if (d >= 0) { \
|
||||
minval += m1; \
|
||||
d += incr1; \
|
||||
} \
|
||||
else { \
|
||||
minval += m; \
|
||||
d += incr2; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This structure contains all of the information needed
|
||||
* to run the bresenham algorithm.
|
||||
* The variables may be hardcoded into the declarations
|
||||
* instead of using this structure to make use of
|
||||
* register declarations.
|
||||
*/
|
||||
typedef struct {
|
||||
int minor; /* minor axis */
|
||||
int d; /* decision variable */
|
||||
int m, m1; /* slope and slope+1 */
|
||||
int incr1, incr2; /* error increments */
|
||||
} BRESINFO;
|
||||
|
||||
|
||||
#define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
|
||||
BRESINITPGON(dmaj, min1, min2, bres.minor, bres.d, \
|
||||
bres.m, bres.m1, bres.incr1, bres.incr2)
|
||||
|
||||
#define BRESINCRPGONSTRUCT(bres) \
|
||||
BRESINCRPGON(bres.d, bres.minor, bres.m, bres.m1, bres.incr1, bres.incr2)
|
||||
|
||||
|
||||
/* mipoly.h */
|
||||
|
||||
/*
|
||||
* fill.h
|
||||
*
|
||||
* Created by Brian Kelleher; Oct 1985
|
||||
*
|
||||
* Include file for filled polygon routines.
|
||||
*
|
||||
* These are the data structures needed to scan
|
||||
* convert regions. Two different scan conversion
|
||||
* methods are available -- the even-odd method, and
|
||||
* the winding number method.
|
||||
* The even-odd rule states that a point is inside
|
||||
* the polygon if a ray drawn from that point in any
|
||||
* direction will pass through an odd number of
|
||||
* path segments.
|
||||
* By the winding number rule, a point is decided
|
||||
* to be inside the polygon if a ray drawn from that
|
||||
* point in any direction passes through a different
|
||||
* number of clockwise and counter-clockwise path
|
||||
* segments.
|
||||
*
|
||||
* These data structures are adapted somewhat from
|
||||
* the algorithm in (Foley/Van Dam) for scan converting
|
||||
* polygons.
|
||||
* The basic algorithm is to start at the top (smallest y)
|
||||
* of the polygon, stepping down to the bottom of
|
||||
* the polygon by incrementing the y coordinate. We
|
||||
* keep a list of edges which the current scanline crosses,
|
||||
* sorted by x. This list is called the Active Edge Table (AET)
|
||||
* As we change the y-coordinate, we update each entry in
|
||||
* in the active edge table to reflect the edges new xcoord.
|
||||
* This list must be sorted at each scanline in case
|
||||
* two edges intersect.
|
||||
* We also keep a data structure known as the Edge Table (ET),
|
||||
* which keeps track of all the edges which the current
|
||||
* scanline has not yet reached. The ET is basically a
|
||||
* list of ScanLineList structures containing a list of
|
||||
* edges which are entered at a given scanline. There is one
|
||||
* ScanLineList per scanline at which an edge is entered.
|
||||
* When we enter a new edge, we move it from the ET to the AET.
|
||||
*
|
||||
* From the AET, we can implement the even-odd rule as in
|
||||
* (Foley/Van Dam).
|
||||
* The winding number rule is a little trickier. We also
|
||||
* keep the EdgeTableEntries in the AET linked by the
|
||||
* nextWETE (winding EdgeTableEntry) link. This allows
|
||||
* the edges to be linked just as before for updating
|
||||
* purposes, but only uses the edges linked by the nextWETE
|
||||
* link as edges representing spans of the polygon to
|
||||
* drawn (as with the even-odd rule).
|
||||
*/
|
||||
|
||||
/*
|
||||
* for the winding number rule
|
||||
*/
|
||||
#define CLOCKWISE 1
|
||||
#define COUNTERCLOCKWISE -1
|
||||
|
||||
typedef struct _EdgeTableEntry {
|
||||
int ymax; /* ycoord at which we exit this edge. */
|
||||
BRESINFO bres; /* Bresenham info to run the edge */
|
||||
struct _EdgeTableEntry *next; /* next in the list */
|
||||
struct _EdgeTableEntry *back; /* for insertion sort */
|
||||
struct _EdgeTableEntry *nextWETE; /* for winding num rule */
|
||||
int ClockWise; /* flag for winding number rule */
|
||||
} EdgeTableEntry;
|
||||
|
||||
|
||||
typedef struct _ScanLineList{
|
||||
int scanline; /* the scanline represented */
|
||||
EdgeTableEntry *edgelist; /* header node */
|
||||
struct _ScanLineList *next; /* next in the list */
|
||||
} ScanLineList;
|
||||
|
||||
|
||||
typedef struct {
|
||||
int ymax; /* ymax for the polygon */
|
||||
int ymin; /* ymin for the polygon */
|
||||
ScanLineList scanlines; /* header node */
|
||||
} EdgeTable;
|
||||
|
||||
|
||||
/*
|
||||
* Here is a struct to help with storage allocation
|
||||
* so we can allocate a big chunk at a time, and then take
|
||||
* pieces from this heap when we need to.
|
||||
*/
|
||||
#define SLLSPERBLOCK 25
|
||||
|
||||
typedef struct _ScanLineListBlock {
|
||||
ScanLineList SLLs[SLLSPERBLOCK];
|
||||
struct _ScanLineListBlock *next;
|
||||
} ScanLineListBlock;
|
||||
|
||||
/*
|
||||
* number of points to buffer before sending them off
|
||||
* to scanlines() : Must be an even number
|
||||
*/
|
||||
#define NUMPTSTOBUFFER 200
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* a few macros for the inner loops of the fill code where
|
||||
* performance considerations don't allow a procedure call.
|
||||
*
|
||||
* Evaluate the given edge at the given scanline.
|
||||
* If the edge has expired, then we leave it and fix up
|
||||
* the active edge table; otherwise, we increment the
|
||||
* x value to be ready for the next scanline.
|
||||
* The winding number rule is in effect, so we must notify
|
||||
* the caller when the edge has been removed so he
|
||||
* can reorder the Winding Active Edge Table.
|
||||
*/
|
||||
#define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
|
||||
if (pAET->ymax == y) { /* leaving this edge */ \
|
||||
pPrevAET->next = pAET->next; \
|
||||
pAET = pPrevAET->next; \
|
||||
fixWAET = 1; \
|
||||
if (pAET) \
|
||||
pAET->back = pPrevAET; \
|
||||
} \
|
||||
else { \
|
||||
BRESINCRPGONSTRUCT(pAET->bres); \
|
||||
pPrevAET = pAET; \
|
||||
pAET = pAET->next; \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Evaluate the given edge at the given scanline.
|
||||
* If the edge has expired, then we leave it and fix up
|
||||
* the active edge table; otherwise, we increment the
|
||||
* x value to be ready for the next scanline.
|
||||
* The even-odd rule is in effect.
|
||||
*/
|
||||
#define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
|
||||
if (pAET->ymax == y) { /* leaving this edge */ \
|
||||
pPrevAET->next = pAET->next; \
|
||||
pAET = pPrevAET->next; \
|
||||
if (pAET) \
|
||||
pAET->back = pPrevAET; \
|
||||
} \
|
||||
else { \
|
||||
BRESINCRPGONSTRUCT(pAET->bres); \
|
||||
pPrevAET = pAET; \
|
||||
pAET = pAET->next; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* mipolyutil.c */
|
||||
|
||||
static bool miCreateETandAET(
|
||||
int /*count*/,
|
||||
const wxPoint * /*pts*/,
|
||||
EdgeTable * /*ET*/,
|
||||
EdgeTableEntry * /*AET*/,
|
||||
EdgeTableEntry * /*pETEs*/,
|
||||
ScanLineListBlock * /*pSLLBlock*/
|
||||
);
|
||||
|
||||
static void miloadAET(
|
||||
EdgeTableEntry * /*AET*/,
|
||||
EdgeTableEntry * /*ETEs*/
|
||||
);
|
||||
|
||||
static void micomputeWAET(
|
||||
EdgeTableEntry * /*AET*/
|
||||
);
|
||||
|
||||
static int miInsertionSort(
|
||||
EdgeTableEntry * /*AET*/
|
||||
);
|
||||
|
||||
static void miFreeStorage(
|
||||
ScanLineListBlock * /*pSLLBlock*/
|
||||
);
|
||||
|
||||
/*
|
||||
* fillUtils.c
|
||||
*
|
||||
* Written by Brian Kelleher; Oct. 1985
|
||||
*
|
||||
* This module contains all of the utility functions
|
||||
* needed to scan convert a polygon.
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* InsertEdgeInET
|
||||
*
|
||||
* Insert the given edge into the edge table.
|
||||
* First we must find the correct bucket in the
|
||||
* Edge table, then find the right slot in the
|
||||
* bucket. Finally, we can insert it.
|
||||
*
|
||||
*/
|
||||
static bool
|
||||
miInsertEdgeInET(EdgeTable *ET, EdgeTableEntry *ETE, int scanline,
|
||||
ScanLineListBlock **SLLBlock, int *iSLLBlock)
|
||||
{
|
||||
EdgeTableEntry *start, *prev;
|
||||
ScanLineList *pSLL, *pPrevSLL;
|
||||
ScanLineListBlock *tmpSLLBlock;
|
||||
|
||||
/*
|
||||
* find the right bucket to put the edge into
|
||||
*/
|
||||
pPrevSLL = &ET->scanlines;
|
||||
pSLL = pPrevSLL->next;
|
||||
while (pSLL && (pSLL->scanline < scanline))
|
||||
{
|
||||
pPrevSLL = pSLL;
|
||||
pSLL = pSLL->next;
|
||||
}
|
||||
|
||||
/*
|
||||
* reassign pSLL (pointer to ScanLineList) if necessary
|
||||
*/
|
||||
if ((!pSLL) || (pSLL->scanline > scanline))
|
||||
{
|
||||
if (*iSLLBlock > SLLSPERBLOCK-1)
|
||||
{
|
||||
tmpSLLBlock =
|
||||
(ScanLineListBlock *)malloc(sizeof(ScanLineListBlock));
|
||||
if (!tmpSLLBlock)
|
||||
return FALSE;
|
||||
(*SLLBlock)->next = tmpSLLBlock;
|
||||
tmpSLLBlock->next = (ScanLineListBlock *)NULL;
|
||||
*SLLBlock = tmpSLLBlock;
|
||||
*iSLLBlock = 0;
|
||||
}
|
||||
pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
|
||||
|
||||
pSLL->next = pPrevSLL->next;
|
||||
pSLL->edgelist = (EdgeTableEntry *)NULL;
|
||||
pPrevSLL->next = pSLL;
|
||||
}
|
||||
pSLL->scanline = scanline;
|
||||
|
||||
/*
|
||||
* now insert the edge in the right bucket
|
||||
*/
|
||||
prev = (EdgeTableEntry *)NULL;
|
||||
start = pSLL->edgelist;
|
||||
while (start && (start->bres.minor < ETE->bres.minor))
|
||||
{
|
||||
prev = start;
|
||||
start = start->next;
|
||||
}
|
||||
ETE->next = start;
|
||||
|
||||
if (prev)
|
||||
prev->next = ETE;
|
||||
else
|
||||
pSLL->edgelist = ETE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* CreateEdgeTable
|
||||
*
|
||||
* This routine creates the edge table for
|
||||
* scan converting polygons.
|
||||
* The Edge Table (ET) looks like:
|
||||
*
|
||||
* EdgeTable
|
||||
* --------
|
||||
* | ymax | ScanLineLists
|
||||
* |scanline|-->------------>-------------->...
|
||||
* -------- |scanline| |scanline|
|
||||
* |edgelist| |edgelist|
|
||||
* --------- ---------
|
||||
* | |
|
||||
* | |
|
||||
* V V
|
||||
* list of ETEs list of ETEs
|
||||
*
|
||||
* where ETE is an EdgeTableEntry data structure,
|
||||
* and there is one ScanLineList per scanline at
|
||||
* which an edge is initially entered.
|
||||
*
|
||||
*/
|
||||
|
||||
static bool
|
||||
miCreateETandAET(int count, const wxPoint * pts, EdgeTable *ET, EdgeTableEntry *AET,
|
||||
EdgeTableEntry *pETEs, ScanLineListBlock *pSLLBlock)
|
||||
{
|
||||
const wxPoint* top, *bottom;
|
||||
const wxPoint* PrevPt, *CurrPt;
|
||||
int iSLLBlock = 0;
|
||||
|
||||
int dy;
|
||||
|
||||
if (count < 2) return TRUE;
|
||||
|
||||
/*
|
||||
* initialize the Active Edge Table
|
||||
*/
|
||||
AET->next = (EdgeTableEntry *)NULL;
|
||||
AET->back = (EdgeTableEntry *)NULL;
|
||||
AET->nextWETE = (EdgeTableEntry *)NULL;
|
||||
AET->bres.minor = INT_MIN;
|
||||
|
||||
/*
|
||||
* initialize the Edge Table.
|
||||
*/
|
||||
ET->scanlines.next = (ScanLineList *)NULL;
|
||||
ET->ymax = INT_MIN;
|
||||
ET->ymin = INT_MAX;
|
||||
pSLLBlock->next = (ScanLineListBlock *)NULL;
|
||||
|
||||
PrevPt = &pts[count-1];
|
||||
|
||||
/*
|
||||
* for each vertex in the array of points.
|
||||
* In this loop we are dealing with two vertices at
|
||||
* a time -- these make up one edge of the polygon.
|
||||
*/
|
||||
while (count--)
|
||||
{
|
||||
CurrPt = pts++;
|
||||
|
||||
/*
|
||||
* find out which point is above and which is below.
|
||||
*/
|
||||
if (PrevPt->y > CurrPt->y)
|
||||
{
|
||||
bottom = PrevPt, top = CurrPt;
|
||||
pETEs->ClockWise = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
bottom = CurrPt, top = PrevPt;
|
||||
pETEs->ClockWise = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* don't add horizontal edges to the Edge table.
|
||||
*/
|
||||
if (bottom->y != top->y)
|
||||
{
|
||||
pETEs->ymax = bottom->y-1; /* -1 so we don't get last scanline */
|
||||
|
||||
/*
|
||||
* initialize integer edge algorithm
|
||||
*/
|
||||
dy = bottom->y - top->y;
|
||||
BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);
|
||||
|
||||
if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock))
|
||||
{
|
||||
miFreeStorage(pSLLBlock->next);
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
ET->ymax = wxMax(ET->ymax, PrevPt->y);
|
||||
ET->ymin = wxMin(ET->ymin, PrevPt->y);
|
||||
pETEs++;
|
||||
}
|
||||
|
||||
PrevPt = CurrPt;
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* loadAET
|
||||
*
|
||||
* This routine moves EdgeTableEntries from the
|
||||
* EdgeTable into the Active Edge Table,
|
||||
* leaving them sorted by smaller x coordinate.
|
||||
*
|
||||
*/
|
||||
|
||||
static void
|
||||
miloadAET(EdgeTableEntry *AET, EdgeTableEntry *ETEs)
|
||||
{
|
||||
EdgeTableEntry *pPrevAET;
|
||||
EdgeTableEntry *tmp;
|
||||
|
||||
pPrevAET = AET;
|
||||
AET = AET->next;
|
||||
while (ETEs)
|
||||
{
|
||||
while (AET && (AET->bres.minor < ETEs->bres.minor))
|
||||
{
|
||||
pPrevAET = AET;
|
||||
AET = AET->next;
|
||||
}
|
||||
tmp = ETEs->next;
|
||||
ETEs->next = AET;
|
||||
if (AET)
|
||||
AET->back = ETEs;
|
||||
ETEs->back = pPrevAET;
|
||||
pPrevAET->next = ETEs;
|
||||
pPrevAET = ETEs;
|
||||
|
||||
ETEs = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* computeWAET
|
||||
*
|
||||
* This routine links the AET by the
|
||||
* nextWETE (winding EdgeTableEntry) link for
|
||||
* use by the winding number rule. The final
|
||||
* Active Edge Table (AET) might look something
|
||||
* like:
|
||||
*
|
||||
* AET
|
||||
* ---------- --------- ---------
|
||||
* |ymax | |ymax | |ymax |
|
||||
* | ... | |... | |... |
|
||||
* |next |->|next |->|next |->...
|
||||
* |nextWETE| |nextWETE| |nextWETE|
|
||||
* --------- --------- ^--------
|
||||
* | | |
|
||||
* V-------------------> V---> ...
|
||||
*
|
||||
*/
|
||||
static void
|
||||
micomputeWAET(EdgeTableEntry *AET)
|
||||
{
|
||||
EdgeTableEntry *pWETE;
|
||||
int inside = 1;
|
||||
int isInside = 0;
|
||||
|
||||
AET->nextWETE = (EdgeTableEntry *)NULL;
|
||||
pWETE = AET;
|
||||
AET = AET->next;
|
||||
while (AET)
|
||||
{
|
||||
if (AET->ClockWise)
|
||||
isInside++;
|
||||
else
|
||||
isInside--;
|
||||
|
||||
if ((!inside && !isInside) ||
|
||||
( inside && isInside))
|
||||
{
|
||||
pWETE->nextWETE = AET;
|
||||
pWETE = AET;
|
||||
inside = !inside;
|
||||
}
|
||||
AET = AET->next;
|
||||
}
|
||||
pWETE->nextWETE = (EdgeTableEntry *)NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* InsertionSort
|
||||
*
|
||||
* Just a simple insertion sort using
|
||||
* pointers and back pointers to sort the Active
|
||||
* Edge Table.
|
||||
*
|
||||
*/
|
||||
|
||||
static int
|
||||
miInsertionSort(EdgeTableEntry *AET)
|
||||
{
|
||||
EdgeTableEntry *pETEchase;
|
||||
EdgeTableEntry *pETEinsert;
|
||||
EdgeTableEntry *pETEchaseBackTMP;
|
||||
int changed = 0;
|
||||
|
||||
AET = AET->next;
|
||||
while (AET)
|
||||
{
|
||||
pETEinsert = AET;
|
||||
pETEchase = AET;
|
||||
while (pETEchase->back->bres.minor > AET->bres.minor)
|
||||
pETEchase = pETEchase->back;
|
||||
|
||||
AET = AET->next;
|
||||
if (pETEchase != pETEinsert)
|
||||
{
|
||||
pETEchaseBackTMP = pETEchase->back;
|
||||
pETEinsert->back->next = AET;
|
||||
if (AET)
|
||||
AET->back = pETEinsert->back;
|
||||
pETEinsert->next = pETEchase;
|
||||
pETEchase->back->next = pETEinsert;
|
||||
pETEchase->back = pETEinsert;
|
||||
pETEinsert->back = pETEchaseBackTMP;
|
||||
changed = 1;
|
||||
}
|
||||
}
|
||||
return(changed);
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up our act.
|
||||
*/
|
||||
static void
|
||||
miFreeStorage(ScanLineListBlock *pSLLBlock)
|
||||
{
|
||||
ScanLineListBlock *tmpSLLBlock;
|
||||
|
||||
while (pSLLBlock)
|
||||
{
|
||||
tmpSLLBlock = pSLLBlock->next;
|
||||
free(pSLLBlock);
|
||||
pSLLBlock = tmpSLLBlock;
|
||||
}
|
||||
}
|
||||
|
||||
/* mipolygen.c */
|
||||
|
||||
static bool
|
||||
scanFillGeneralPoly( wxRegion* rgn,
|
||||
int count, /* number of points */
|
||||
const wxPoint *ptsIn, /* the points */
|
||||
wxPolygonFillMode fillStyle
|
||||
)
|
||||
{
|
||||
EdgeTableEntry *pAET; /* the Active Edge Table */
|
||||
int y; /* the current scanline */
|
||||
int nPts = 0; /* number of pts in buffer */
|
||||
EdgeTableEntry *pWETE; /* Winding Edge Table */
|
||||
ScanLineList *pSLL; /* Current ScanLineList */
|
||||
wxPoint * ptsOut; /* ptr to output buffers */
|
||||
int *width;
|
||||
wxPoint FirstPoint[NUMPTSTOBUFFER]; /* the output buffers */
|
||||
int FirstWidth[NUMPTSTOBUFFER];
|
||||
EdgeTableEntry *pPrevAET; /* previous AET entry */
|
||||
EdgeTable ET; /* Edge Table header node */
|
||||
EdgeTableEntry AET; /* Active ET header node */
|
||||
EdgeTableEntry *pETEs; /* Edge Table Entries buff */
|
||||
ScanLineListBlock SLLBlock; /* header for ScanLineList */
|
||||
int fixWAET = 0;
|
||||
|
||||
if (count < 3)
|
||||
return(TRUE);
|
||||
|
||||
if(!(pETEs = (EdgeTableEntry *)
|
||||
malloc(sizeof(EdgeTableEntry) * count)))
|
||||
return(FALSE);
|
||||
ptsOut = FirstPoint;
|
||||
width = FirstWidth;
|
||||
if (!miCreateETandAET(count, ptsIn, &ET, &AET, pETEs, &SLLBlock))
|
||||
{
|
||||
free(pETEs);
|
||||
return(FALSE);
|
||||
}
|
||||
pSLL = ET.scanlines.next;
|
||||
|
||||
if (fillStyle == wxODDEVEN_RULE)
|
||||
{
|
||||
/*
|
||||
* for each scanline
|
||||
*/
|
||||
for (y = ET.ymin; y < ET.ymax; y++)
|
||||
{
|
||||
/*
|
||||
* Add a new edge to the active edge table when we
|
||||
* get to the next edge.
|
||||
*/
|
||||
if (pSLL && y == pSLL->scanline)
|
||||
{
|
||||
miloadAET(&AET, pSLL->edgelist);
|
||||
pSLL = pSLL->next;
|
||||
}
|
||||
pPrevAET = &AET;
|
||||
pAET = AET.next;
|
||||
|
||||
/*
|
||||
* for each active edge
|
||||
*/
|
||||
while (pAET)
|
||||
{
|
||||
ptsOut->x = pAET->bres.minor;
|
||||
ptsOut++->y = y;
|
||||
*width++ = pAET->next->bres.minor - pAET->bres.minor;
|
||||
nPts++;
|
||||
|
||||
/*
|
||||
* send out the buffer when its full
|
||||
*/
|
||||
if (nPts == NUMPTSTOBUFFER)
|
||||
{
|
||||
// (*pgc->ops->FillSpans)(dst, pgc,
|
||||
// nPts, FirstPoint, FirstWidth,1);
|
||||
|
||||
for ( int i = 0 ; i < nPts; ++i)
|
||||
{
|
||||
wxRect rect;
|
||||
rect.y = FirstPoint[i].y;
|
||||
rect.x = FirstPoint[i].x;
|
||||
rect.height = 1;
|
||||
rect.width = FirstWidth[i];
|
||||
rgn->Union(rect);
|
||||
}
|
||||
ptsOut = FirstPoint;
|
||||
width = FirstWidth;
|
||||
nPts = 0;
|
||||
}
|
||||
EVALUATEEDGEEVENODD(pAET, pPrevAET, y)
|
||||
EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
|
||||
}
|
||||
miInsertionSort(&AET);
|
||||
}
|
||||
}
|
||||
else /* default to WindingNumber */
|
||||
{
|
||||
/*
|
||||
* for each scanline
|
||||
*/
|
||||
for (y = ET.ymin; y < ET.ymax; y++)
|
||||
{
|
||||
/*
|
||||
* Add a new edge to the active edge table when we
|
||||
* get to the next edge.
|
||||
*/
|
||||
if (pSLL && y == pSLL->scanline)
|
||||
{
|
||||
miloadAET(&AET, pSLL->edgelist);
|
||||
micomputeWAET(&AET);
|
||||
pSLL = pSLL->next;
|
||||
}
|
||||
pPrevAET = &AET;
|
||||
pAET = AET.next;
|
||||
pWETE = pAET;
|
||||
|
||||
/*
|
||||
* for each active edge
|
||||
*/
|
||||
while (pAET)
|
||||
{
|
||||
/*
|
||||
* if the next edge in the active edge table is
|
||||
* also the next edge in the winding active edge
|
||||
* table.
|
||||
*/
|
||||
if (pWETE == pAET)
|
||||
{
|
||||
ptsOut->x = pAET->bres.minor;
|
||||
ptsOut++->y = y;
|
||||
*width++ = pAET->nextWETE->bres.minor - pAET->bres.minor;
|
||||
nPts++;
|
||||
|
||||
/*
|
||||
* send out the buffer
|
||||
*/
|
||||
if (nPts == NUMPTSTOBUFFER)
|
||||
{
|
||||
// (*pgc->ops->FillSpans)(dst, pgc,
|
||||
// nPts, FirstPoint, FirstWidth,1);
|
||||
for ( int i = 0 ; i < nPts ; ++i)
|
||||
{
|
||||
wxRect rect;
|
||||
rect.y = FirstPoint[i].y;
|
||||
rect.x = FirstPoint[i].x;
|
||||
rect.height = 1;
|
||||
rect.width = FirstWidth[i];
|
||||
rgn->Union(rect);
|
||||
}
|
||||
ptsOut = FirstPoint;
|
||||
width = FirstWidth;
|
||||
nPts = 0;
|
||||
}
|
||||
|
||||
pWETE = pWETE->nextWETE;
|
||||
while (pWETE != pAET)
|
||||
EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
|
||||
pWETE = pWETE->nextWETE;
|
||||
}
|
||||
EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
|
||||
}
|
||||
|
||||
/*
|
||||
* reevaluate the Winding active edge table if we
|
||||
* just had to resort it or if we just exited an edge.
|
||||
*/
|
||||
if (miInsertionSort(&AET) || fixWAET)
|
||||
{
|
||||
micomputeWAET(&AET);
|
||||
fixWAET = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Get any spans that we missed by buffering
|
||||
*/
|
||||
// (*pgc->ops->FillSpans)(dst, pgc,
|
||||
// nPts, FirstPoint, FirstWidth,1);
|
||||
for ( int i = 0 ; i < nPts; ++i)
|
||||
{
|
||||
wxRect rect;
|
||||
rect.y = FirstPoint[i].y;
|
||||
rect.x = FirstPoint[i].x;
|
||||
rect.height = 1;
|
||||
rect.width = FirstWidth[i];
|
||||
rgn->Union(rect);
|
||||
}
|
||||
|
||||
free(pETEs);
|
||||
miFreeStorage(SLLBlock.next);
|
||||
return(TRUE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
wxRegion::wxRegion(size_t n, const wxPoint *points, wxPolygonFillMode fillStyle)
|
||||
{
|
||||
// Set the region to a polygon shape generically using a bitmap with the
|
||||
// polygon drawn on it.
|
||||
|
||||
m_refData = new wxRegionRefData();
|
||||
|
||||
|
||||
#if OSX_USE_SCANLINES
|
||||
scanFillGeneralPoly(this,n,points,fillStyle);
|
||||
#else
|
||||
wxCoord mx = 0;
|
||||
wxCoord my = 0;
|
||||
wxPoint p;
|
||||
@ -125,7 +982,8 @@ wxRegion::wxRegion(size_t n, const wxPoint *points, wxPolygonFillMode fillStyle)
|
||||
bmp.SetMask(new wxMask(bmp, *wxBLACK));
|
||||
|
||||
// Use it to set this region
|
||||
Union(bmp);
|
||||
Union(bmp);
|
||||
#endif
|
||||
}
|
||||
|
||||
wxRegion::~wxRegion()
|
||||
|
Loading…
Reference in New Issue
Block a user