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Abstract

A Distributed Key Generation (DKG) protocol is an essential component of any
threshold cryptosystem. It is used to initialize the cryptosystem and generate its private
and public keys, and it is used as a subprotocol, for example to generate a one-time
key pair which is a part of any threshold El-Gamal-like signature scheme. Gennaro et
al. showed [GJKR99] that a widely-known non-interactive DKG protocol suggested by
Pedersen does not guarantee a uniformly random distribution of generated secret keys
even in the static adversary model. Furthermore, Gennaro et al. proposed to replace
this protocol with one that guarantees a uniform distribution of the generated key but
requires an extra round of (broadcast) communication.

We investigate the question whether some discrete-log based threshold cryptosys-
tems remain secure when implemented using the more efficient DKG protocol of Ped-
ersen, in spite of the fact that the adversary can skew the distribution of the secret
key generated by this protocol. We answer this question in the positive. We show
that threshold versions of some schemes whose security reduces to the hardness of the
discrete logarithm problem, remain secure when implemented with Pedersen DKG. We
exemplify this claim with a threshold Schnorr signature scheme.

However, the resulting scheme has less efficient security reduction (in the random
oracle model) to the hardness of the discrete logarithm problem than the same scheme
implemented with the computationally more expensive DKG protocol of Gennaro et
al. Thus our results imply a trade-off in the design of threshold versions of certain
discrete-log based schemes between the round complexity of a protocol and the size of
the modulus.

Keywords: Threshold Cryptography. Distributed Key Generation. Discrete Loga-
rithm. Exact Security. Random Oracle Model.

1 Introduction

Distributed Key Generation in Threshold Cryptosystems. Distributed key gen-
eration is a main component of threshold cryptosystems ([Des87, DF89]). It allows a set of
n servers, a.k.a. “players”, to jointly generate a pair of public and private keys in a such
a way that the public key is output in the clear while the private key is shared by the n
servers via a threshold secret-sharing scheme [Sha79]. Unless an adversary compromises
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more than a specified threshold, e.g., t < n/2, out of the n servers, the generated pri-
vate key remains secret and its secret-sharing can be subsequently used by these servers to
jointly compute signatures or decryptions, or perform any other functionality required of
the secret key in a cryptosystem. For discrete–log based threshold schemes, distributed key
generation amounts to a distributed generation (i.e. without a trusted dealer) of a Shamir
secret sharing [Sha79] of a random value x, and making public the value y = gx. Following
[GJKR99], we refer to such a protocol as DKG.

Torben Pedersen in [Ped91b] proposed a simple DKG protocol. Pedersen’s protocol was
then used in many discrete-log based threshold cryptosystems, e.g., [CMI93, Har94, LHL94,
GJKR96, HJJ+97, PK96, CGS97, SG98, CG99]. It is important to point out that the DKG
protocol in some of these threshold cryptosystems is used as a subprotocol every time a
signature or decryption needs to be computed. For example, in all threshold implementa-
tions of ElGamal-like signatures schemes (e.g., [CMI93, Har94, LHL94, GJKR96, HJJ+97,
PK96]), the servers need to generate a secret-sharing of a temporary secret k and a public
value r = gk every time they generate a signature. They accomplish this with an instance
of the Pedersen’s DKG protocol.

Requirement of Uniform Distribution of the Private Key. All the above threshold
cryptosystems implicitly assume that the DKG protocol generates the private and public
keys with uniform distribution over their prescribed domain. In a centralized , i.e. standard,
version of any discrete–log based scheme the secret key x is generated uniformly at random
in a group Zq for prime q. Similarly, the proposed threshold versions of these schemes
assume that the distributed key generation protocol they employ generates the private key
uniformly in Zq. (Alternatively, the key in both cases is chosen uniformly in a group Zp−1

for prime p.)
Indeed, it seems necessary that the distribution of the secret key must be the same in

the threshold and the centralized case if one attempts to argue the security of the threshold
cryptosystem by reducing it to the security of the underlying centralized cryptosystem. For
example, to argue that a threshold DSS scheme is as secure as the centralized (standard)
DSS scheme, one needs to show that a forgery of a signature under the public key generated
by the threshold DSS scheme implies the ability to forge signatures in an attack on a
standard DSS scheme, i.e., to forge a signature under the public key generated uniformly at
random. It is not clear how to argue this if the public keys generated by the threshold DSS
scheme and the standard DSS scheme are chosen from different probability distributions.

However, Gennaro et al. in [GJKR99] showed that Pedersen’s DKG protocol fails to
generate the secret key (and the public key) with uniform distribution. They showed that
an adversary who compromises even two out of n servers can skew the distribution of the
generated secret key. While it is not clear if the adversary can control the distribution of the
private key in a way that helps him break the cryptosystem that uses this key, the adver-
sary’s ability to skew this distribution from uniform means that the above security reduction
argument does not hold. Since such reduction was the proof technique employed (most often
implicitly) to argue security of existing discrete-log based threshold cryptosystems, Gennaro
et al. proposed a new DKG protocol which fixes this problem by generating the private key
with a uniform distribution.1 When the DKG protocol of Gennaro et al. is substituted for

1Another DKG protocol which also fixes the problem of Pedersen’s protocol, and which moreover can be
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Pedersen’s DKG in a threshold cryptosystem whose security proof assumes uniform distri-
bution of the generated secret – which is the case of all the discrete-log based cryptosystems
mentioned above – this substitution renders the threshold cryptosystem provably secure.

Problem: Cost of the DKG Protocol. Unfortunately, the DKG protocol of Gennaro
et al. is twice more expensive than the original DKG protocol by Pedersen. While Pedersen’s
protocol is non-interactive in the absence of faults, the protocol of Gennaro et al. requires
two rounds of communication. Moreover, each communication round involves a reliable
broadcast, which is a costly operation in a realistic setting like the internet (see e.g. [CP02]).
The new DKG protocol also requires about twice more computation from each server.

The computation and communication cost of the DKG protocol is important because for
threshold cryptosystems which have the most efficient threshold versions, for example for
threshold version of Schnorr’s signature scheme, the cost of the DKG protocol is a primary
factor in the cost of the scheme. If a threshold scheme is designed to handle on-line requests,
and/or the number of requests is large, an increase in the communication and computation
costs of the scheme by a factor of two implies a considerable expense. Reducing the cost of
this scheme is furthermore worthwhile because with off-line preprocessing it is more efficient
than a threshold RSA scheme (see e.g. [Sho00] and the efficiency discussions therein).

Our Contribution: Dealing with Non-Uniform Distribution on Keys. We show
that a certain type of discrete-log based threshold schemes can remain secure even if it
uses Pedersen’s DKG protocol as a subprotocol, notwithstanding the fact that this protocol
indeed does not generate secrets with uniform distribution. Namely, we show how to prove
secure a threshold version of Schnorr’s signature scheme [Sch89] instantiated with Pedersen’s
DKG protocol.

We show that this threshold scheme is secure by exhibiting a direct reduction of its
security to the hardness of the underlying computational problem. In other words, rather
than reducing the security of a threshold signature scheme to the security of the centralized
version of this signature scheme, we prove its security “from scratch”. Our proofs work
because, as it turns out, even though the adversary has some control over the generated
public key, we can still embed an instance of the underlying hard computational problem
into the part of the public key which is contributed by the uncorrupted players in the
Pedersen’s DKG protocol. We then show how to translate a successful forgery under the
resulting public key into solving the embedded instance of a hard problem.

In this way we avoid the limitations of the existing proof techniques which argue security
of threshold signature schemes by exhibiting a reduction to the centralized version of the
same signature scheme, which, as we argued above, seems hard to do for threshold schemes
which use Pedersen’s DKG protocol. Indeed, for this reason our methodology does not
apply to threshold version of schemes for which no known reduction to some underlying
hard problem exists. Thus for example it will be difficult to use our techniques to imply
security of threshold DSS or ElGamal signatures implemented with Pedersen’s DKG.

However, it is very likely that our methodology can be applied to showing security of
other threshold discrete-log based cryptosystems using the less expensive Pedersen’s DKG

used to construct in a generic fashion secure threshold versions of discrete-log based schemes, was proposed
by Frankel et al. in [FMY99]. The DKG protocols proposed by Gennaro et al. and Frankel et al. are similar
in spirit but the proposal of Gennaro et al. is more efficient.
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protocol, if the security of the original centralized versions of these schemes can be reduced
to the discrete logarithm assumption, the computational Diffie-Hellman, or some other
hardness assumption.

Implications of our Result: Cost vs. Exact Security The security proof we exhibit
for the threshold Schnorr signature scheme implemented with Pedersen’s DKG has one
important drawback: the security reduction to the underlying hard problem is less efficient
than the security reduction that exist for the centralized version of this scheme. If qH

is the number of hash function queries made by the adversary who breaks the threshold
implementation of this signature scheme with probability ǫ, then the discrete logarithm
problem can be solved in comparable time with probability only ǫ2/(qH)2. This is a factor
of qH degradation of security compared to the centralized version of this scheme, for which
a successful forgery with probability ǫ implies computation of the discrete log in comparable
time with probability ǫ2/qH (by the result of [PS96]). In comparison, the same threshold
scheme implemented with the DKG protocol of Gennaro et al. has the same exact security
as the centralized scheme.

Since the difficulty of computing discrete logarithms in a q-order subgroup of field Fp

grows as exp(|q|/2) and exp(|p|1/3), the qH degradation in the security reduction implies
twice longer q and 23 = 8 times longer p, while q2

H degradation implies three times longer
q and 33 = 27 times longer p.2 Because the cost of exponentiation grows at least as
O(|q| · |p|1.6), the proportion between the computational cost of a threshold Schnorr scheme
implemented with Pedersen DKG and the computational cost of a threshold Schnorr scheme
implemented with the [GJKR99] DKG is 31+3∗1.6/21+3∗1.6 ≈ 10, if the two schemes are to
achieve the same security guarantee based on the discrete logarithm assumption. Moreover,
the computational cost of either scheme is comparable to the communication delay incurred
by one broadcast round which, in the recent implementation of [CP02], takes 100ms in the
LAN setting and about 1s in the internet setting, for a group of 5-7 players. Comparing
the two costs (see Section 5 for the detailed comparison), we conclude that even though it
requires one more round of reliable broadcast, the threshold Schnorr protocol implemented
with DKG of [GJKR99] is still more efficient than the same protocol implemented with
Pedersen DKG, if the two schemes are to achieve provably same guarantee of security based
on the discrete-log assumption.

We point out, however, that the mere existence of a polynomial reduction from some
scheme to a discrete logarithm problem can be a heuristic argument suggesting that the
security of the two problems is similar. If one believes in this heuristics, then both Schnorr’s
signatures, and the threshold Schnorr signatures built using [GJKR99] DKG, and the thresh-
old Schnorr signatures built using Pedersen DKG, can be implemented using the same field
in which the discrete logarithm problem is believed to be hard for modern computers, e.g.
has the 280 security bound. In that case, the threshold signature scheme using Pedersen
DKG will be twice more efficient because the cost of broadcast will dominate the delay
incurred by running the threshold scheme.

Organization: In Section 2 we summarize the communication and adversarial models and
the definition of security for the threshold cryptosystems we consider. In Section 3 we recall

2See a more detailed explanation in Section 5.
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Pedersen’s DKG protocol and we give some intuition for why this protocol is good enough
for proving security of certain threshold schemes. In Section 4 we recall a simple threshold
version of Schnorr’s signature scheme using Pedersen’s DKG protocol, and we prove its
security. In Section 6 we conclude with the discussion of costs vs. security tradeoffs, other
potential applications of the method presented here, and some open problems.

2 Preliminaries

2.1 Computation, Communication, and Adversarial Model

We work in the standard model for threshold signature schemes. For a comprehensive
overview of the models for threshold cryptography we refer the reader to [Jar01].

The computation proceeds among a set of n players P1, . . . , Pn modelled by probabilistic
polynomial-time Turing machines, and an adversary A, also modelled as a PPT TM, who
submits the messages of his choice to be signed. We assume that the players are connected by
a complete network of private (i.e. untappable) and authenticated point-to-point channels
because link encryption and authentication can be achieved in this model by standard
cryptographic techniques. In addition, the players have access to a dedicated broadcast
channel, which can be implemented for example by [CP02].

We assume for simplicity that the initial input of all players is a specification of a
discrete-log scheme chosen by a trusted third party, i.e. a triple (p, q, g) where p and q are
primes and g is a generator of subgroup Gq of order q in Z∗

p . Such triple can be publicly
chosen without a trusted party via Bach’s algorithm [Bac85].

We consider threshold signature schemes secure in adaptive chosen-message attack
[GMR88]. The computation proceeds by the n players first executing a DKG protocol
to compute a secret-sharing of some private key x ∈ Zq and a corresponding public key
y = gx mod p. Then every time the adversary requests a signature on some message of his
choice, the players perform the threshold signature protocol on that message.

In addition to requesting signatures on adaptively chosen messages, the adversary can
corrupt up to t of the n players in the network, for any value of t < n/2, which is the best
achievable threshold. The adversary can cause the corrupted players to arbitrarily divert
from the specified protocol. We assume that the adversary is static, i.e. that he chooses the
corrupted players at the beginning of the protocol.

We assume a realistic partially synchronous communication model, i.e. that computa-
tion proceeds in synchronized rounds and that the messages are received by their recipients
within some specified time bound. To guarantee this round synchronization, and for sim-
plicity of discussion, we assume that the players are equipped with synchronized clocks.
Notice that this model messages sent from the uncorrupted players to the corrupted ones
can still be delivered relatively fast, in which case, in every round of communication, the
adversary can wait for the messages of the uncorrupted players to arrive, then decide on his
computation and communication for that round, and still get his messages delivered to the
honest parties on time. Therefore we should always assume the worst case that the adver-
sary speaks last in every communication round. In the cryptographic protocols literature
this is also known as a rushing adversary.
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2.2 Notation, Assumptions, Security Definitions, Proof Methodology

Negligible Probability. We call function f negligible if for every polynomial P (·), f(k) ≤
(1/P (k)) for all sufficiently large k. We say that some event occurs with a negligible proba-
bility if the probability of this event is a negligible function of the security parameter k.

Assumption 1 (Discrete Log Assumption) Let PRIMES(k) be the set of poly(k)-bit
primes p such that there exists a k-bit prime q dividing p − 1. For every probabilistic
polynomial time algorithm I, for every p in PRIMES(k), probability Pr[g ← Gq; x ←
Zq; I(p, q, g, gx) = x] is negligible, where Gq is the subgroup of Z∗

p of order q.

Notion of Security for a Threshold Signature Scheme We call a threshold signature
scheme secure with adversarial threshold t, if it is both robust and unforgeable. A threshold
scheme is robust if in the presence of a threshold adversary, the threshold signature pro-
tocol produces a valid signature on the requested message, except for at most negligible
probability. A scheme is unforgeable if, after an execution of the distributed key generation
protocol which produces some public key, and after participating as a threshold adversary
in an execution of a polynomial number of runs of the threshold signature protocol on the
messages of adversary’s choice, the adversary’s probability of forgery, i.e. of producing a
valid signature under the generated public key on some new message, is negligible.

Simulation Proof Technique. We will argue unforgeability of a threshold signature
scheme using the standard technique of simulation of adversary’s view in the distributed
computation. Namely, to prove that the scheme is unforgeable based on some cryptographic
assumption, say the above discrete log assumption, we will exhibit an efficient algorithm
called a simulator, which on the input of a random instance of the hard problem, say an
instance of the discrete logarithm problem, can simulate to the adversary his view of an
execution of the threshold protocol in such a way that (1) this view is indistinguishable from
a view of an actual random execution of the threshold protocol; and (2) if the adversary
succeeds in forging a signature under the generated public key then the simulator can
translate this forgery into solving the input instance of the hard problem. An existence of
such a simulator algorithm concludes the proof because if the adversary has a non negligible
probability of forgery against the threshold scheme then, by the simulation property (1),
he will produce such a forgery during the simulation. But then, by the simulation property
(2), the simulator will be able to solve the input instance of the supposedly hard problem.

Random Oracle Model. Our proofs of security are in so-called Random Oracle Model
[BR93], i.e. we model a hash function like MD5 or SHA1 as ideal random oracles in the
sense that if an adversary who makes some number of queries to the fixed hash function has
some (non negligible) probability of success in, for example, computing a forgery against a
threshold signature scheme, the same adversary should have the same probability of success
if instead of a fixed hash function like MD5 or SHA1, he accesses a truly random function.

Notation. All arithmetic operations in this paper are performed in some finite group or
field, in fact all operations are modulo some prime, either q or p. We will often omit writing
modp or modq to simplify the notation, but the proper modulus should always be clear
from the context: operations on secret values chosen in Zq, like x and k, are modulo q,
while all modular exponentiation operations and operations on public values like y or r are
computed modulo p.
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3 Pedersen’s Distributed Key Generation Protocol

In Pedersen’s DKG protocol [Ped91b], each player shares a randomly chosen secret xi using
Feldman’s verifiable secret sharing (VSS) protocol [Fel87]. The secret value x is the sum
of the properly shared xi’s. Since Feldman’s VSS has the additional property of revealing
yi = gxi , the public value y = gx is the product of the yi’s that correspond to those properly
shared xi’s. We present this protocol, denoted Ped-DKG, in Figure 1. For completeness
we recall Feldman’s VSS protocol and discuss its security properties in Appendix A.

We will require that the reconstruction of the secret x shared in a Ped-DKG protocol,
proceeds via n parallel reconstructions of the Fel-VSS protocol for all shared secrets xi, and
then x is computed as x1 + . . . xn mod q. Note that the secret can also be reconstructed
by every player Pi submitting his polynomial share of x, xi =

∑
j xji. This is indeed a

standard reconstruction procedure in threshold protocols. However, our proof of security
requires the “additive” rather than “polynomial” secret reconstruction. Note that the two
reconstruction procedures have similar cost both in the absence of faults and with faults.

Distributed Key Generation Protocol Ped-DKG

1. Each player Pi chooses a random polynomial fi(z) over Zq of degree t:

fi(z) = ai0 + ai1z + . . . + aitz
t

Pi broadcasts Xik = gaik mod p for k = 0, . . . , t. Denote ai0 by xi and Xi0 by
yi. Each Pi computes the shares xij = fi(j) mod q for j = 1, . . . , n and sends xij

secretly to player Pj .

2. Each Pj verifies the shares he received from the other players by checking for
i = 1, . . . , n:

gxij =

t∏

k=0

(Xik)jk

mod p (1)

If the check fails for an index i, Pj broadcasts a complaint against Pi.

3. If more than t players complain against a player Pi, then that player is clearly
faulty and he is disqualified. Otherwise Pi reveals the share xij matching Eq. 1 for
each complaining player Pj . If any of the revealed shares fails this equation, Pi is
disqualified. By convention, the secret shared by a disqualified player Pi is always
set to xi = 0 and yi = 1.

4. The public value y is computed as y =
∏

yi mod p. The secret shared value x itself
is not computed by any party, but it is equal to x =

∑
xi mod q. Each player Pi

keeps all the values it received during these n parallel Fel-VSS runs for the purpose
of verification in subsequent secret reconstruction.

Figure 1: Pedersen’s Distributed Key Generation protocol

The robustness property of the Ped-DKG protocol follows from robustness of Fel-VSS.
The secret x is uniquely defined at the end of the protocol and no malicious behavior of up
to t < n/2 servers can prevent its reconstruction.
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Secrecy Property of Ped-DKG. The secrecy property of the Ped-DKG protocol is some-
what murky. Namely, it is not clear if the adversary learns anything more in some useful
sense about the shared value x than is revealed by its public counterpart y = gx. As Gen-
naro et al. [GJKR99] point out, a standard formalization of a secrecy property fails, because
the adversary controls to some extent the distribution of public keys y output by this pro-
tocol, and hence it is impossible to simulate this protocol on input y chosen uniformly at
random in Gq.

As Gennaro et al. observe, the adversary can, for example, cause this protocol to output
only even y’s as follows. Assume wlog that the adversary corrupts players P1, . . . , Pt. Call
those “bad” players and call the remaining players “good”. Let xG = xt+1 + . . . + xn be
the contribution of the good players to secret x, and let xB be the summary contribution
of the bad players to x, i.e. xB =

∑
Pi∈{1,...,t} xi. Then secret x shared in the DKG protocol

is x = xG + xB. Because the adversary can always speak last (see section 2), he can choose
his contribution xB after seeing yG =

∏
Pi∈{t+1,...,n} yi = gxG in step 1 of the DKG protocol.

Consequently, he is free to choose xB so that the resulting value y = yG ∗ yB = yG ∗ gxB ,
has some property that he wants to achieve. For example, we can see that by trying out at
random potential values for xB, a polynomial-time adversary can fully control O(ln k) bits
of y, where k is the security parameter.

However, even though the adversary has some control over the resulting y, and hence
the secrecy of the Ped-DKG protocol is unclear, it turns out that for the purpose of proving
security of threshold cryptosystems which use the Ped-DKG protocol, the following “secrecy-
like” property of this protocol is good enough: The public key y it produces is a product
of yG chosen with uniform distribution by the good players, and of value yB = gxB , where
xB is the contribution of the bad players into the computation. Because this contribution
xB can be reconstructed by the good players via interpolation, we can show that under
the discrete log assumption, for any polynomial-sized set of values Y ⊂ Gq, the adversary
cannot choose his contribution xB in such a way that the resulting y = yGgxB belongs
to set Y . If he did, then let ymax ∈ Y be the value that he is most likely to hit. On
input a random yT in Gq, a simulator playing on behalf of the good players chooses their
contribution as yG = ymax/yT . Since yT is random in Gq, so is yG. Moreover, by the same
argument that one uses to argue secrecy of Feldman’s VSS protocol (see Appendix A), the
simulator can perfectly simulate the adversary’s view of the contribution of the good players
to any value yG which is uniformly distributed in Gq. Then, if the adversary creates xB s.t.
y = yGgxB = ymax then xB = dlogg(yT ), and hence the simulator would solve the discrete
log problem on a random instance yT .

In other words, even though the simulator cannot control the chosen value y, the ad-
versary cannot control it too much either. In particular, he has only negligible chance of
making y fall in any polynomially-sized set. In the next section we will see how this property
enables simulation of certain threshold signature schemes that use the Ped-DKG protocol to
create the commitment in the three-round zero-knowledge identification scheme.
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4 Threshold Schnorr Signature Scheme using Ped-DKG

4.1 Schnorr’s signature scheme

We first recall Schnorr’s signature scheme [Sch89]. As before, let p, q be primes and let g be
a generator of subgroup Gq of order q in Z∗

p . Let H be a hash function, H : {0, 1}∗ → Zq,
which we will model as an ideal random function. The private key is x, chosen at random
in Zq. The public key is y = gx mod p. A signature on message m is computed as follows.
The signer picks a one-time secret k at random in Zq, and computes the signature on m as
a pair (c, s) where s = k + cx mod q, c = H(m, r), and r = gk mod p. Signature (c, s) can
be publicly verified by computing r = gsy−c mod p and then checking if c = H(m, r).

This signature scheme follows a methodology introduced by Fiat and Shamir [FS86],
which converts any three-round commit-challenge-response zero-knowledge identification
scheme where the challenge is a public coin into a signature scheme. This is done by re-
placing the random challenge chosen by the verifier with an output of a random function
H computed on the message and the prover’s commitment. In this case the prover’s com-
mitment is r = gk, the challenge is c = H(m, r), and the prover’s response is s = k + cx. In
the random oracle model, the unforgeability of this scheme under a chosen-message attack
[GMR88] reduces to the discrete log assumption, as proven by [PS96].

We recall this proof here because it helps in understanding of the proof of security of the
threshold Schnorr signature scheme below. The simulator, on input y, can produce Schnorr’s
signatures on any m by picking s and c at random in Zq, computing r = gsy−c and setting
H(m, r) = c. This simulator can also translate the adversary’s forgery into computing
dloggy as follows. It runs the adversary until the adversary outputs a forgery (c, s) on some
message m. Note that because H is a random function, except for negligible probability,
the adversary must ask to H a query (m, r) where r = gsy−c, because otherwise it could
not have guessed the value of c = H(m, r). The simulator then rewinds the adversary, runs
it again by giving the same answers to queries to H until the query (m, r), which it now
answers with new randomness c′. If the adversary forges a signature on m in this run, then,
except for negligible probability, it produces s′ s.t. r = gs′y−c′ , and hence the simulator can
now compute dloggy = (s − s′)/(c′ − c). One can show that if the adversary’s probability
of forgery is ǫ, this simulation succeeds with probability ǫ2/4qH : O(ǫ) probability that the
adversary forges in the first run times the O(ǫ/qH) probability that it will forge on the
second run and that it will choose to forge on the same (m, r) query out of its qH queries
to H. We refer to [PS96] for the full proof.

4.2 Threshold version of Schnorr’s scheme using Pedersen’s DKG

The threshold version of Schnorr’s scheme using Pedersen’s DKG protocol Ped-DKG is a
very simple protocol. It works in the straightforward way as all standard threshold dlog-
based protocols, e.g. [GJKR96], except that secret reconstruction is done on additive rather
than polynomial shares.3

To initialize the threshold signature scheme, first the Ped-DKG protocol is executed for
distributed key generation, i.e. it outputs secret-sharing of a private key x and a public

3Replacing computation on polynomial shares with computation on additive shares often seems necessary
for the proof of security of a threshold protocol to go through. This technique was used before to handle an
adaptive adversary in [FMY99, CGJ+99] or to handle the no-erasure and concurrent adversary in [JL00].
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Threshold Signature Protocol TSch

Inputs: Message m to be signed, plus the secret-sharing of x generated by the initial
Ped-DKG protocol. In particular, each player Pi holds an additive share xi of x while
values y = gx and yi = gxi for every Pi are public.
Outputs: Schnorr’s signature (c, s) on m.

1. Players perform an instance of the Ped-DKG protocol (Figure 1). Denote the
outputs of this run of Ped-DKG as follows. Each player Pi holds an additive share
ki of the secret-shared secret k. Each of these additive shares is itself secret-shared
with Fel-VSS. We denote the generated public values r = gk and ri = gki for each
Pi.

2. Each player locally computes the challenge c = H(m, r).

3. Players perform the reconstruction phase of Feldman’s secret-sharing of value s =
k + cx as follows. Each player Pi broadcasts its additive share si = ki + cxi. Each
share is verified by checking if gsi = riy

c
i . Otherwise xi and ki are reconstructed

and si is computed publicly. The protocol outputs signature (c, s) where s =
s1 + . . . + sn.

Figure 2: Threshold Signature Protocol for Schnorr’s Signature Scheme

value, the public key y = gx. Then the threshold Schnorr signature protocol TSch proceeds
as follows on input a message m (see Figure 2). First the players run an instance of the
Ped-DKG protocol to generate a secret-sharing of the one time secret k and the public value
r = gk. Then each player locally computes the challenge c = H(m, r), and each player Pi

broadcasts its additive share si = ki + cxi, where ki, xi are Pi’s additive shares of k and x
respectively. Notice that these shares can be publicly verified by checking if gsi = Ki0(Xi0)c,
where Xi0 = yi = gxi and Ki0 = ri = gki are verification values broadcasted by player
Pi, during the initial key-generation Ped-DKG protocol, and the Ped-DKG protocol that
generates r and the sharing of k, respectively. If verification fails for some Pi, the players
reconstruct the Feldman secret-sharing of both xi and ki and compute si publicly. Finally,
s is computed as s = s1 + . . . + sn. Therefore secret s can be efficiently reconstructed as in
the Fel-VSS protocol.

Efficiency Considerations. Note that without faults, the above protocol requires only
one round of broadcast during the Ped-DKG protocol of Step (1). Recall that broadcast
is the most important factor in the delay incurred by threshold protocols in the internet
setting. This is true if the verifier requesting the signature communicates directly with
every player Pi. When Pi receives and validates a message m to be signed, it triggers the
Ped-DKG protocol of Step 1 and broadcasts along it the message m. This allows the players
to detect if the verifier submitted inconsistent requests to them. If no faults occur, there
is only one more round of broadcast, in Step 3 of TSch, but this can be avoided if every
player Pi sends to the verifier the value c and its share si. The verifier can check if signature
(c, s) = (c, s1+. . .+sn) is valid, and the protocol falls back to the robust reconstruction only
if the signature does not verify. The same protocol implemented with the DKG protocol
of Gennaro et al. has two rounds of broadcast without faults. Note also that Step (1) of
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the protocol can be performed off-line, and thus with preprocessing the threshold Schnorr
signature is non-interactive (without faults).

Security of Threshold Signature Scheme (Ped-DKG,TSch). The robustness of the
(Ped-DKG,TSch) threshold signature scheme follows straightforwardly from the robustness
of the Ped-DKG protocol. The interesting part is the proof of unforgeability.

Theorem 1 Under the discrete log assumption, the threshold signature scheme (Ped-DKG,
TSch) is unforgeable in the static adversarial model with adversarial threshold t < n/2, in
the random oracle model.

Proof: Assume that there exists an adversary which breaks the unforgeability property of
this signature scheme. We’ll construct a simulator SIM which, using this adversary, will
compute a discrete logarithm on input a random challenge value yT in Gq. In the course of
this simulation, SIM answers adversary’s queries to oracle H at random, except in a crucial
case specified below. Let B be the set of corrupted (i.e. “bad”) players and G be the set of
good players. Assume wlog that Pn ∈ G. Let qH , qS be the upper bound on the number of
H queries and the number of the signature queries, respectively, that the adversary makes.

To compute discrete logarithm of a target value yT , the simulator SIM embeds it in
the value yn contributed by player Pn to the public key generated in the initial Ped-DKG

protocol. In other words, the simulator follows the Ped-DKG protocol on behalf of players
Pi ∈ G \ {n} as prescribed, but for player Pn the simulator simulates the adversarial view
of the Fel-VSS protocol performed as a part of Ped-DKG by player Pn so that public value
yn broadcasted by Pn is equal to the target value yT . (In Appendix A we recall how such
simulation of Fel-VSS should be done.)

After simulating the initial key generation protocol in this way, SIM, for every message m
submitted by the adversary for a signature, simulates an execution of TSch on this message
as follows. SIM chooses at random in Zq values c and sn, computes rn = gsny−c

n , and in
Step (1) of TSch it follows the protocol on behalf of players Pi ∈ G \ {n} as prescribed, but
for Pn it again simulates the Fel-VSS protocol in this step so that the value rn broadcasted
by that player is what the simulator wants, i.e. rn = gsny−c

n .
The simulator’s goal is to make sure that whatever value r is computed in this step,

the output of the H oracle on input (m, r) can be set to c. In that case the simulator can
simulate the rest of the TSch protocol. The value H(m, r) will be computed as c in Step (2),
and in Step (3) the simulator can follow the protocol on behalf of players Pi ∈ G \ {n} as
prescribed, while for Pn it can publish the previously chosen value sn, and since gsn = rnyc

n,

this value passes. Moreover, this is a valid signature because gs = g
∑

si =
∏

(gsi) =∏
(riy

c
i ) = (

∏
ri)(

∏
yi)

c = ryc, and c = H(m, r).
To extract with non-negligible probability the value c as the output of H on (m, r)

where r is computed in Step (1) of TSch, the simulator SIM, after computing values ri ∈ G
in the simulation of Step (1) as described above, but before sending any messages in this
simulation to the adversary, flips a coin b. If b = 0, then during the simulation of Step
(1) SIM answers all the (new) queries the adversary makes to H at random. If the value
r computed in Step (1) is such that H was already asked on (m, r), the simulator fails.
Otherwise, SIM sets H(m, r) as c and succeeds. If b = 1, then the simulator chooses at
random an index i ∈ {1, . . . , qH} and if the adversary makes any (m, r(j)) queries to H after
the simulator publishes all values yi ∈ G but before the adversary shares his values xi ∈ B
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(these are sub-steps of the simulation of Step (1)), the simulator answers i-th such query
with c. If value r output in this Step (1) is equal to r(i), this is simulator’s success because
H(m, r) = c. Otherwise the simulator fails.

We try to upper-bound the simulator’s probability of success. We use the intuition
outlined earlier in the discussion of security of the Ped-DKG protocol in Section 3. If
the adversary chooses his contribution rB =

∏
i∈B ri to r so that H was not asked on r,

the simulator succeeds with probability 1/2. Let ǫhit be the probability which with the
adversary, after seeing rG =

∏
i ∈ Gri, chooses his contribution rB so that it “hits” some

value r = rGrB on which oracle H has been queried before the simulation of Step (1) starts.
Therefore, if b = 1 and the output r of Step (1) is such that H has been queried (m, r) either
before the simulation of this step or during this simulation, the probability that r = r(i)

chosen by the simulator is upper bounded by 1/qH − ǫhit, the probability that SIM guesses
the right index i minus the probability that the adversary hits some value r on which the
oracle H was queried before the simulation. Assuming that ǫhit is small, the probability
that the simulator successfully passes the simulation of this run of the TSch protocol can
be upper-bounded as ǫss = 1/(2qH) − ǫhit. Therefore, if SIM repeats this simulation c/ǫss

times, the probability that it fails is at most e−c. In this way, with probability (1− 1/ec)qS ,
the simulator successfully goes through the simulation of each of the qS instances of the
TSch protocol. Setting c = ln 2qS , this probability is more than a half.

Since the adversary’s view in this simulation is the same as in the protocol execution,
then assuming that the adversary forges with not negligible probability ǫ, the simulator
will get some forged signature (c, s) on some message m with probability ǫ/2. By applying
the same “forking lemma” argument as [PS96] used to prove the security of the standard
Schnorr signature (see the beginning of this section), we can argue the following. SIM, with
probability at least ǫ/4 gets one forgery and if he re-winds this adversary to the point when
the adversary asks query H(m, r) where r = gsy−c, and then continues to simulate from
that point on with fresh randomness (in particular answering this query to H with fresh
randomness c′), then SIM has about (ǫ/4)/qH chance of getting a second forgery on the
same message m but relative to a different random function H. In this case SIM gets two
pairs (c, s) and (c′, s′) s.t. r = gsy−c = gs′y−c′ and thus can compute dloggy and hence also
dloggyn = dloggyT because SIM knows all xi = dloggyi for Pi 6= Pn.

Therefore, if the assumed threshold signature forger runs in time T and succeeds in
forgery with probability ǫ, then if probability p is small, SIM computes the discrete logarithm
in time 2c/ǫss ∗ T = 2 ln(2qS)/ǫss ∗ T with probability at least about ǫ2/(16qH). If T is
big enough so that ǫ ≈ 1 then the simulator’s computation is longer than the adversary’s
computation by the factor α = 16qH ∗ 2 ln 2qS/ǫss. If ǫhit < 1/(4qH), then ǫss = 1/(2qH)−
ǫhit > 1/(4qH), and hence α < 27q2

H ln(2qS). Taking qS < 230, we get α < 29q2
H factor of

security degradation.
Now, if ǫhit is not small enough then we can solve discrete logarithm otherwise, following

the argument in Section 3. Recall that ǫhit is the probability which with the adversary, after
seeing rG =

∏
i ∈ Gri, chooses his contribution rB so that it “hits” some value r = rGrB on

which oracle H has been queried before the simulation of Step (1) starts. Note that there
are at most qH of such values. Let rmax be the value that the adversary is most likely to hit.
On input a random y in Gq, the simulator chooses the contribution of the good players as
rG = rmax/y. Since y is random in Gq, so is rG. The simulator can simulate an execution
of Ped-DKG so that the good players’ contribution is rG by the secrecy property of Fel-VSS.
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Then, if the adversary does hit the value rmax, which happens with probability ǫhit/qH , and
supplies kB s.t. r = rGrB = rGgkB = rmax then kB = dlogg(y), and hence the simulator
solves the discrete log problem on a random instance y with probability ǫhit/qH . Hence if
ǫhit > 1/(4qH), we can reduce this adversary to an attack on the discrete logarithm scheme
with similar factor 4q2

H of security degradation. qed.

5 Security vs. Efficiency Implications

We showed that even though Pedersen’s DKG protocol Ped-DKG does not generate secret
keys with uniform distribution, it generates them randomly enough for us to show security
for a threshold Schnorr signature protocol TSch implemented with Ped-DKG. This is an im-
provement because with previously known proof methods, discrete-log based schemes had
to use the DKG protocol of Gennaro et al which requires two rounds of broadcast instead
of one round incurred by Pedersen’s DKG. This is especially important for a scheme like
Schnorr’s, whose main cost lies in the DKG subprotocol that it uses, and which is also the
most efficient discrete-log based threshold signature scheme, so reducing its commmunica-
tion cost by half is worthwhile.4

However, the security reduction we are able to show for the TSch threshold Schnorr
signature scheme has a q2

H factor of security degradation compared to the security of the
discrete log problem [DLP]. This is a factor of qH degradation over provable security of
the security of the centralized version of Schnorr signatures. Recall that Pointcheval-Stern
[PS96] show a reduction from Schnorr signatures to the DLP which has a qH factor of
security degradation. Because the security reduction from the threshold Schnorr scheme
that uses the DKG protocol of Gennaro et al (let’s denote this threshold Schnorr scheme
gjkr-TSch) to the centralized Schnorr signatures is tight, it follows that there is also a qH

factor in the degradation of (provable) security between the TSch scheme and the gjkr-TSch

scheme.
The degradation in the provable security can be interpreted in two ways. One can

ignore it and take the mere existence of a polynomial reduction from some scheme to the
DLP as a good coin, and claim that since the two problems are shown to be polynomially
related, one can securely implement the scheme in question over a field in which DLP is
believed to be hard. This is, however, only a heuristic argument. Formally, existence of
a security reduction from some scheme to DLP with a degradation factor f implies that
if one takes b as a target security bound – i.e. if one wants to claim that the constructed
scheme is secure against an adversary performing about b operations – then one needs to
use a group in which DLP is believed to be hard against an adversary performing about
b · f operations. Therefore, the less efficient reduction for the TSch scheme means that the
TSch scheme should be implemented over a larger field to guarantee the same b security
bound. In fact, the increase of the computation time resulting from the fact that the TSch

scheme needs to work over a larger field to guarantee the same security as the gjkr-TSch

scheme outweighs the benefits resulting from the fact that the TSch scheme requires only
one round of broadcast while gjkr-TSch needs two.

4In fact, the on-line part of the computation in threshold Schnorr signature is more efficient than in
threshold RSA. On the other hand, threshold RSA can be fully non-interactive, so its overall cost, as
opposed to on-line cost, is smaller.
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More specifically, if we take b = 280 as the target security bound, and assume that
qH ≈ 280 as well, then the [PS96] results imply that Schnorr’s signatures can be securely
run in a group with at least 280 · 280 = 2160 DLP security. Because the security reduction
from the gjkr-TSch scheme to the Schnorr signatures is tight, this implies that the gjkr-TSch

scheme is secure in the same 2160-DLP group. On the other hand, the security reduction
of Theorem 1 implies that the TSch scheme is secure in a group with 280 · 2160 = 2240

security of the DLP. In other words, threshold Schnorr with [GJKR99] DKG implies factor
α = 160/80 = 2 growth in the DLP security parameter, while threshold Schnorr using
Pedersen DKG implies factor α = 240/80 = 3 growth in the DLP security parameter.

Recall that the cost of exponentiation modulo p with an |q|-bit exponent grows at best
like O(|q| · |p|1.6). If we consider the DLP security in the classic number field setting, the
factor α growth in the security parameter implies factor α3 growth in the size of modulus p
and factor α growth in the size of the modulus q. Therefore the overall cost of exponentiation
grows like α · (α3)1.6 = α5.8. For elliptic curves, the sizes of both p and q grow by factor α,
and hence the overall cost of exponentiation grows only by factor α2.6.

As a reference points we take the performance table of [Wei00], where on a Celeron
850 MHz an exponentiation in a number field with |p| = 1024 and |q| = 160 takes 2 ms
and an exponentiation over a 168-bit elliptic curve takes 5 ms. We assume (after Lenstra
and Verhaul [LV01]) that in both settings DLP has security parameter 80. If n is the
number of players and t ≈ .5 · n, then in the TSch threshold Schnorr protocol, each player
makes 1.5 · n long exponentiations, while in the threshold Schnorr implemented with the
[GJKR99] DKG protocol (let’s denote this protocol as gjkr-TSch) each player performs 2.5·n
long exponentiations.

Taking it all together, for a threshold system with n = 7 players, in the standard number
field setting, each player’s computation in the TSch protocol with 280 security guarantees
would take about 11 · 35.8 · 2ms = 12.8s, while in gjkr-TSch each player’s computation takes
only about 18 · 25.8 · 2ms = 2s. In this setting, the gjkr-TSch scheme is a winner, because.
taking the SINTRA implementation of broadcast [CP02] as a reference point, a round of
reliable broadcast between about 7 players would take about 1s on the internet and only
about 100ms on LAN, and therefore the computation cost incurred by TSch outweighs the
communication delay caused by an extra round of broadcast incurred by gjkr-TSch.

The TSch scheme schemes maybe slightly faster than gjkr-TSch in the elliptic curve
setting with players distributed over the internet. There the player’s computation is 18 ·
22.6 · 5ms = .5s for gjkr-TSch, and 11 · 32.6 · 5ms = .95s, and so the .45s difference in
computation is outweighed by the approximately 1s difference in delay caused by the extra
broadcast round. On the other hand, the gjkr-TSch scheme still wins with TSch if the n
players are connected via a LAN, where the extra round of broadcast costs only about .1s.

On the other hand, if one takes our reduction as a heuristic argument that the TSch

threshold Schnorr signature scheme with security parameter 80 can be achieved in fields
where DLP also has security parameter 80, then the TSch scheme would win with gjkr-TSch:
The computation time per player in TSch would be only about 11 · 5ms = 55ms compared
with 18 · 5ms = 90ms for gjkr-TSch. Moreover the TSch scheme, having only one round of
broadcast would incur a communication delay of about 100ms in the LAN setting or 1s in
the internet setting, while the gjkr-TSch scheme would take, respectively, 200ms and 2s.
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6 Open Problems

We point out that it is very likely that our methodology can be applied to showing security
of other threshold discrete-log based cryptosystems implemented with the less expensive
Pedersen’s DKG protocol, if there is a security reduction to the original centralized versions
of these schemes from the discrete logarithm assumption, or from some other computational
assumption in the discrete-log setting, e.g. the computational Diffie-Hellman assumption.
It is clear, for example, that our methodology applies to a threshold version of Chaum-
Pedersen undeniable signature protocol [CP92], which is secure under the Diffie-Hellman
assumption. Other candidates for this methodology include, but are not limited to, the
threshold version of Cramer-Shoup encryption scheme given in [CG99] or the “Modified
ElGamal” signature scheme of [PS96].
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A Feldman’s Verifiable Secret Sharing (VSS) Protocol

For completeness, we recall the Fel-VSS verifiable secret-sharing protocol of Feldman [Fel87]
and we describe its security properties.5 To share secret x in Zq, the dealer generates a
random t-degree polynomial f(z) over Zq, s.t. f(0) = x, transmits to each player Pi his
polynomial share xi = f(i) of secret x, and broadcasts values Xk = gak mod p for k =
0, . . . , t, where f(z) =

∑
k akz

k mod q. We call the set of broadcasted values {X0, . . . , Xt}
Feldman verification values. Each player Pi uses them to verify its share by checking that

gxi =
t∏

k=0

(Xk)ik mod p (2)

If a player Pi holds a share that does not satisfy Eq. (2) then he broadcasts a complaint
against the dealer. If more than t players complain then the dealer is clearly faulty and is
disqualified. Otherwise, the dealer reveals the share xi matching Eq. (2) for each complain-
ing player Pi. By convention, if the dealer is disqualified then x = 0.

We call a resulting distributed data structure, a set of polynomial shares xi held by each
player Pi and the public set of Feldman verification values {X0, . . . , Xt} a Feldman secret
sharing of value x.

5The original protocol of [Fel87] is preceded by a stage in which the dealer permutes the indices of the
players at random, which makes the protocol adaptively secure. Furthermore, the original presentation
works for any homomorphic commitment function. Here we use a particular instantiation of Fel-VSS using
exponentiation in a prime field as the commitment function.
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Reconstruction of a secret x from this secret sharing can proceed as follows: The dealer
can publish x and if gx = y then x is accepted as the reconstructed secret. Otherwise,
the other players have to reconstruct x by having each player Pi broadcast its share xi

of x. Everyone can verify each broadcasted share via equation 2 and the resulting secret
is computed by polynomial interpolation in Zq of the shares that pass this verification (see
e.g. [Sha79, Fel87]). This protocol is unconditionally robust if the adversarial threshold is
t < n/2. Namely, after an execution of the Fel-VSS sharing protocol, there always exist a
unique secret x in Zq that will be output in the reconstruction protocol even if t out of n
players behave in an arbitrarily malicious way [Fel87].

Simulation of Feldman’s VSS. Moreover, the Fel-VSS protocol has the following secrecy
property: It hides all information about the shared secret x except for what is revealed
by the public value X0 = gx mod p. This property is exhibited by a following simulation
argument that shows that all other values seen by the adversary can be efficiently computed
from X0, and hence the protocol does not leak any more information on x than X0. (We
will refer to this simulation procedure in the security proofs of threshold schemes which use
Fel-VSS as a subprotocol.) Assume wlog that the adversary corrupts players P1, . . . , Pt and
that the dealer is some player Pi, t < i ≤ n. The simulator, on input a random X0 ∈ Gq,
computes the rest of the adversary’s view of Fel-VSS protocol by choosing random values xi,
i = 1, . . . , t, in Zq, and computing the verification values X1, . . . , Xt by “interpolation in the

exponent” as follows. For each i = 1, . . . , t, Xi = Xλi0
0

∏t
j=1(gλijxj ) where λi0, . . . , λit are

constants s.t. coefficient ai =
∑t

j=0 λijf(j). The produced view has the same probability
distribution as an adversarial view of a run of Fel-VSS in which the dealer shares value
x = dloggX0.
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