
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220963160

Efficient	Error-Propagating	Block	Chaining.

Conference	Paper	·	December	1997

DOI:	10.1007/BFb0024478	·	Source:	DBLP

CITATIONS

4

READS

20

2	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Security	and	fast	mobility	in	Wi-Fi	networks	View	project

Intrusion	detection	with	application-specific	profiles	View	project

André	Zúquete

University	of	Aveiro

97	PUBLICATIONS			632	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	André	Zúquete	on	25	June	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220963160_Efficient_Error-Propagating_Block_Chaining?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220963160_Efficient_Error-Propagating_Block_Chaining?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Security-and-fast-mobility-in-Wi-Fi-networks?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intrusion-detection-with-application-specific-profiles?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Zuquete2?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Zuquete2?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Aveiro?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Zuquete2?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Zuquete2?enrichId=rgreq-efda2c32b2a3d0a30b5f697999f151fe-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2MzE2MDtBUzoxMTQ5OTA2NTY3OTA1MjlAMTQwNDQyNzMxODAzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Efficient Error-Propagating Block Chaining

André Zúquete and Paulo Guedes

IST / INESC
R. Alves Redol 9, 1000 Lisboa, PORTUGAL

(Andre.Zuquete, Paulo.Guedes)@inesc.pt

Abstract. This document presents EPBC, Efficient Error-Propagating
Block Chaining, a new and efficient block encryption mode using both
plaintext and ciphertext feedback. This encryption mode is similar to
another one, IOBC, and was likewise designed to propagate erroneous
decryptions of tampered blocks of ciphered data to all following blocks,
hence allowing to validate the integrity of that data using a predefined
trailing value. However, EPBC is more secure than IOBC, as it is not
vulnerable to any known-plaintext attacks, and is more efficient than
IOBC. Performance tests ran on a SPARCstation 10/40 show that EPBC
is in average 1.2 times faster than IOBC, and 6.3 to 10.9 times faster
than a common combination of an encryption mode and a one-way hash
function (CBC and MD5).

1 Introduction

The integrity control of encrypted data requires data to carry an extra integrity
control value. This integrity control value allows legitimate principals to detect,
after decryption, modifications on the original data contents. There are two basic
ways to handle integrity control values:

1. They are generated using a one-way hash function (e.g. MD5 [9] or SHA [11])
from all the bits of the original or recovered plaintext data independently of
the encryption/decryption algorithm [13, 3, 2, 1].

2. They are predefined values, which may be set up in many different ways:
agreed between interacting peers, derived from a secret value, like the en-
cryption key, or efficiently computed from some bits, but not necessarily
all, of the plaintext data. In this case the encryption/decryption algorithm
must guarantee that any modifications of the ciphertext will propagate erro-
neous decryptions until the end of the ciphertext, thus affecting the resulting
integrity control value [12, 14].

The second way to handle the integrity control of encrypted data is attractive
because one may save the time expended in the generation of data’s hash values
by slightly increasing the complexity of the encryption mode. However, most
commonly used block encryption modes, like Electronic Code Book (ECB) or
Cipher Block Chaining (CBC) [4], do not propagate erroneous decryptions of a
modified ciphertext block to all following blocks. There are several examples of

encryption modes providing error propagation, like the Kerberos’ Propagating
CBC [12]. Unfortunately, they have weaknesses, such as allowing the addition
of arbitrary values to ciphertext blocks, swapping of ciphertext blocks, or the
replacement of ciphertext blocks by new ones using known-plaintext attacks.

This document presents the Efficient Error-Propagating Block Chaining
(EPBC), a new encryption mode providing error propagation without suffer-
ing from the weaknesses of other encryption modes with a similar functionality.
In particular, it resists to all the attacks previously referred. Note that EPBC is
not intended to be used as a keyed hash function. This because it was designed
to propagate ciphertext modifications to a trailing, predefined integrity control
value, and not to produce good hash values from plaintext data.

EPBC conceals plaintext patterns by randomising the input of the block ci-
pher with previous outputs of it. Similarly, ciphertext blocks result from the
randomisation of the output of the block cipher with previous inputs of if. This
double randomisation prevents attackers from gathering pairs of input and out-
put blocks of the cipher in order to guess the cipher key. EPBC is similar to
another error-propagating cipher mode, IOBC [8], but uses a different function
in the plaintext feedback path. Such difference makes EPBC completely immune
against known-plaintext attacks, thus more secure than IOBC, and makes it also
faster than IOBC.

To assess the security qualities of EPBC, we show that EPBC guarantees
confidentiality and integrity control of encoded data. Concerning confidentiality,
we show that attackers cannot compute particular plaintext blocks even know-
ing all other plaintext and ciphertext blocks. Concerning integrity control, we
show that attackers are unable to derive the correct tampering of the ciphertext
produced by EPBC in order to perform a limited modification of the resulting
plaintext. As a consequence, attackers can only try to tamper ciphertext blocks
without any guaranties of success, and the probability of success is only given
by the number of bits of the trailing integrity values used with EPBC.

Performance tests run on a SPARCstation 10/40 showed that, without con-
sidering the time expended by the block cipher, EPBC is 1.2 times faster than
IOBC, in average, and 6.3 to 10.9 times faster than a combination of CBC and
MD5.

The rest of the paper is structured as follows. The next section presents
related work. Section 3 describes the algorithm of EPBC and how it guarantees
confidentiality and integrity control of encoded data. In section 4 we evaluate
the performance of EPBC. Finally, in section 5 we draw some conclusions.

2 Related Work

This section overviews some encryption modes providing error propagation and
their weaknesses. These algorithms are the Block Chaining (BC [10]), the Ci-
pher Block Chaining with Checksum (CBCC [7, 10]), the Propagating CBC
(PCBC [6]), the PES PCBC [14], and the Input and Output Block Chaining
(IOBC [8]).

Hereafter Ci and Pi represent genuine ciphertext and plaintext blocks on the
i-th iteration, ci represents a tampered ciphertext block, pi represents a plaintext
block resulting from the decryption of a block from a tampered ciphertext, and
EK() and DK() represent block encryption and decryption functions using key
K.

Block Chaining (BC): The BC encryption mode uses all previous ciphertext
blocks as feedback prior to encrypt a plaintext block [10].

Encryption: Ci = EK(Pi ⊕ Fi−1)
Decryption: Pi = DK(Ci)⊕ Fi−1

Encryption & Decryption: Fi =
i⊕

k=1

Ck

The initial value of Fi−1 is a secret initialisation vector. This encryption mode
is very weak in detecting ciphertext tampering: all ciphertext blocks before the
ones containing integrity control values can be shuffled, or pairs of ciphertext
blocks can be XORed with an arbitrary value, without propagating erroneous
decryptions to the remaining blocks.

Cipher Block Chaining with Checksum (CBCC): The CBCC encryption mode is
a variant of CBC that keeps a XOR of all plaintext blocks, and XOR that with
the last plaintext block before encryption; the last plaintext block is intended for
integrity control using a constant value [7, 10]. This encryption mode is stronger
than BC, but shuffling all ciphertext blocks, except the last one, does not affect
the plaintext containing the integrity control value. The following example shows
that we can recover the original value of the last plaintext block Pn by swapping
C1 with Cn−1:

{
c1 = Cn−1

cn−1 = C1
=⇒

p1 = Pn−1 ⊕ Cn−2 ⊕ IV
p2 = P2 ⊕ C1 ⊕ Cn−1

pn−1 = P1 ⊕ Cn−2 ⊕ IV
pn = Pn

Propagating CBC (PCBC): The PCBC encryption mode is similar to CBC and
was used in the Kerberos Version 4 in order to simultaneously provide encryp-
tion and integrity control of data exchanged between Kerberos’ principals and
services [6, 12]. PCBC uses both plaintext and ciphertext feedback in order to
propagate erroneous decryptions of a tampered encrypted message until the end
of the message, rendering the entire message useless.

Encryption: Ci = EK(Pi ⊕ Pi−1 ⊕ Ci−1)
Decryption: Pi = DK(Ci)⊕ Pi−1 ⊕ Ci−1

The initial value of Pi−1⊕Ci−1 is a secret initialisation vector. Like for CBCC, it
is possible to shuffle encrypted blocks without propagating the erroneous decryp-
tion of those blocks until the last encrypted block; it only affects the correspond-
ing plaintext blocks recovered after decryption and, possibly, the immediately
following blocks [5]: ci = Ci+1

ci+1 = Ci+2

ci+2 = Ci

=⇒

pi = Pi−1 ⊕ Pi ⊕ Pi+1 ⊕ Ci−1 ⊕ Ci

pi+1 = Pi−1 ⊕ Pi ⊕ Pi+2 ⊕ Ci−1 ⊕ Ci

pi+2 = Pi+2 ⊕ Ci ⊕ Ci+2

pi+3 = Pi+3

PES PCBC: The PES PCBC encryption mode was introduced in the Privacy
Enhanced Sockets (PES) subsystem to simultaneously provide encryption and
integrity control of data exchanged between client-server applications [14]. Like
PCBC, PES PCBC uses both plaintext and ciphertext feedback to achieve the
error propagation effect.

Encryption:

Ci = Fi ⊕Gi−1

Fi = EK(Gi)
Gi = Pi ⊕ Fi−1

Decryption:

Pi = Fi−1 ⊕Gi

Gi = DK(Fi)
Fi = Ci ⊕Gi−1

The initial values of Fi−1 and Gi−1 are distinct, secret initialisation vectors.
The PES PCBC encryption mode resists to attacks changing the order of

ciphertext blocks but is weak against known-plaintext attacks. It is possible to
compute tampered ciphertext blocks, resulting from the combination of plaintext
and genuine ciphertext blocks, that defeat the desired error propagation effect.
For example: ci = Pi−1

ci+1 = Pi ⊕ Ci−1 ⊕ Ci+1

ci+2 = Ci+2

=⇒

pi = Ci−1

pi+1 = Pi−1 ⊕ Pi+1 ⊕ Ci

pi+2 = Pi+2

Input and Output Block Chaining (IOBC): The IOBC encryption mode is similar
to PES PCBC but stronger concerning known-plaintext attacks [8]. Comparing
with PES PCBC, IOBC has an extra function in the plaintext feedback path
that rotates feedback values before using them.

Encryption:

Gi = Pi ⊕ Fi−1

Fi = EK(Gi)
Ci = Fi ⊕ f (Gi−1)

Decryption:

Fi = Ci ⊕ f (Gi−1)
Gi = DK(Fi)
Pi = Gi ⊕ Fi−1

The initial values of Fi−1 and Gi−1 are distinct, secret initialisation vectors.
The function f () makes two different rotations on the bits of G: one is applied
to the most significative b/2 − 1 bits, and the other one is applied to the less
significative b/2+1 bits; b is the number of bits of G and is assumed to be even.

The security of IOBC depends on the length of encrypted data; if it is longer
than a given threshold length then it is subject to known-plaintext attacks. How-
ever, these attacks are much difficult to achieve than with PES PCBC because

the attacker must know many plaintext blocks to perform it. For example, a
tampered ciphertext block to start a known-plaintext attack is computed as
follows:

n = m× (b
2 + 1)× (b

2 − 1) = m× (b2

4 − 1) ∀m ∈ N

ci = f (Pi−1)⊕
n−1⊕
k=1

fk (Ci−2k)⊕ fk+1 (Pi−2k−1) for i, n ∈ N , i ≥ 2n

For m = 1 and a typical value of b = 64, we get

n = 1023 ⇒ i ≥ 2046

which means that attackers need to know n = 1023 specific plaintext blocks in
order to start a known-plaintext attack. Therefore, for encrypted data shorter
than 2046 64-bit blocks (≈ 16 Kbytes) it is impossible to start such an attack. For
further details regarding the strength of IOBC against known-plaintext attacks
see [8].

3 Efficient Error-Propagating Block Chaining (EPBC)

EPBC is a new block encryption mode resulting from an improvement of IOBC:
it has a different function, g (), in the plaintext feedback path (see Figure 1).

Encryption:

Gi = Pi ⊕ Fi−1 (a)
Fi = EK(Gi)
Ci = Fi ⊕ g (Gi−1) (b)

(1)

Decryption:

Fi = Ci ⊕ g (Gi−1) (a)
Gi = DK(Fi)
Pi = Gi ⊕ Fi−1 (b)

(2)

The initial values of Fi−1 and Gi−1 are distinct, secret initialisation vectors.
Like PES PCBC and IOBC, EPBC conceals plaintext patterns by randomising
the input of the block cipher Gi with previous outputs of it (Fi−1). Similarly,
ciphertext blocks Ci result from the randomisation of the output of the block
cipher Fi with values derived from previous inputs of it (g (Gi−1)). This double

Fig. 1. Encryption/decryption of data blocks using the EPBC cipher mode and a block
cipher. Dashed arrows represent value transfers at the end of each iteration, while solid
arrows represent value transfers during each iteration.

randomisation prevents attackers from gathering (Gi, Fi) pairs in order to guess
the encryption key K.

The function g () operates as follows, assuming that G values have an even
number of bits, and that G ≡ 〈GH , GL〉, where GH and GL are the high and
low order halves of G, respectively:

g(G) = 〈GH + GL, GH ·GL〉 (3)

where the operators “+” and “·” represent the bitwise OR and AND operations,
respectively, and GL is the bitwise inverse of GL. It is easy to show that the
function g () is not injective, i.e. there are different arguments of g () that produce
the same outcome (see Appendix A). As we will see below, that is an advantage
because g () has no inverse.

Empirically, we found that for a domain with 2b elements, each with b bits,
the image of g () contains 3b/2 elements. For a typical value of b = 64, and a
domain with 264 elements, the image of g () includes 332 ≈ 251 values. The fact
that g () has a range smaller than its domain is not a security problem since
such range is large enough for providing a good randomisation of F values.

The function g () is more efficient than the function f () of IOBC (see sec-
tion 4), and has several properties that make it suitable for preventing known-
plaintext attacks on EPBC. These properties, which are fully demonstrated in
Appendix A, are the following:∀x ∈ Dg g (x) 6= x (a)

6 ∃x ∈ Dg,h () ∀y ∈ Dg g (x⊕ y) = h (x)⊕ y (b)
6 ∃h () ∀x, y ∈ Dg g (x⊕ y) = h (x)⊕ h (y) (c)

(4)

where Dg is the domain of g (). Expression (4a) is straightforward and needs
no further explanation. Expression (4b) says that there is no x value in Dg and
another function h () so that, for all y values in Dg, g (x⊕ y) is equal to h (x)⊕y.
In other words, it means that even knowing the value of x, one cannot expand
g (x⊕ y) in terms of another known value h (x) XORed with y. Expression (4c)
says that there is no function h () so that, for all values of x and y in Dg, g (x⊕ y)
is equal to h (x)⊕ h (y).

Other similar functions, with an equal number of elements in the image and
similar properties, could be used as g (). These functions are:

g’(G) = 〈GH + GL, GH ·GL〉
g’’(G) = 〈GH + GL, GH ·GL〉

3.1 Confidentiality

Concerning confidentiality, it is necessary to prove that EPBC does not enable
attackers to compute a specific plaintext block (Pi) even knowing all other plain-
text and ciphertext blocks. Resolving equation (2b) to compute Pi we obtain:

Pi = Gi ⊕ Fi−1 (5)
= Gi ⊕ Ci−1 ⊕ g (Gi−2) (6)
= Gi ⊕ Ci−1 ⊕ g (Pi−2 ⊕ Fi−3)
= Gi ⊕ Ci−1 ⊕ g (Pi−2 ⊕ Ci−3 ⊕ g (Gi−4)) (7)
= · · ·

As the function g () is not injective, it has no inverse and the term Gi of
equation (5) cannot be further expanded in terms of Ci+1 and Fi+1. Since at-
tackers ignore G values, and due to the characteristics of function g () given by
expressions (4), they cannot compute or simplify, in order to isolate G values,
expressions g (Gi−2) in equation (6), and g (Pi−2 ⊕ Ci−3 ⊕ g (Gi−4)) in equa-
tion (7). Consequently, they cannot remove G terms from equations (6) and (7)
and, thus, they cannot compute the value of the plaintext block Pi.

3.2 Integrity Control

Concerning integrity control, to tamper the ciphertext without affecting the
decryption of trailing integrity control values attackers must perform a controlled
modification of the ciphertext. This means that attackers must provide a correct
sequence of false ciphertext blocks (c values) in order to modify and latter recover
the correct internal state (G and F values) of the decryption engine before the
actual decryption of the integrity control values. This implies that all f values
resulting from c values during decryption must be correct F values. Otherwise,
f values would decrypt to something unpredictable, instead of correct G values,
and attackers would loose control of the tampering. Therefore, the possible values
of a ci block are:

ci = Fj ⊕ g (Gi−1) ∧ i 6= j

= Fj ⊕ g (Pi−1 ⊕ Fi−2) (8)
= Cj ⊕ g (Gj−1)⊕ g (Pi−1 ⊕ Fi−2)
= Cj ⊕ g (Pj−1 ⊕ Fj−2)⊕ g (Pi−1 ⊕ Fi−2) (9)
= · · ·

We could further expand equation (9) but it would not simplify the task
of attackers. Since attackers ignore F values, and due to the characteristics of
function g () given by expressions (4), they cannot compute or simplify, in order
to isolate F values, expressions g (Pi−1 ⊕ Fi−2) in equations (8) and (9), and
g (Pj−1 ⊕ Fj−2) in equation (9). Consequently, they cannot remove F terms
from equations (8) and (9) and, thus, they cannot compute a false ciphertext
block ci in order to start a controlled modification of the encrypted data.

In conclusion, the EPBC encryption mode does not suffer from the weak-
nesses of all other modes presented in section 2. Attackers are unable to take

control of the EPBC decryption engine by providing tampered ciphertext blocks.
Therefore, they can only try to tamper ciphertext blocks without any guaranties
of success, and the probability of success is only given by the number of bits of
the trailing integrity values used with EPBC.

4 Performance Evaluation

In this section we evaluate the performance of EPBC, and we compare it with
other techniques used to achieve confidentiality and integrity control: the IOBC
error-propagating encryption mode and a common combination of an encryption
mode (CBC) and a one-way hash function (MD5). The performance tests were
executed on a Sun SPARCstation 10/40.

In order to do a fair comparison between different encryption modes, we used
our own optimised implementations. Our implementations do not modify source
bytes, either plaintext or ciphertext, and were optimised in order to reduce the
number of function calls and maximise the use of CPU registers instead of mem-
ory accesses. Encryption/decryption cycles were unrolled 4 times. In Appendix B
we present our implementation of CBC, IOBC, and EPBC.

Table 1 presents the average elapsed time per block expended by CBC, IOBC
and EPBC when encoding and decoding arrays of 64-bit blocks with two different
lengths: 128 blocks and 1 M blocks. These two different lengths allow us to assess
the impact of the memory cache status, either warm or cold, in the performance
of the algorithms. The time measurements do not include the time expended
by the block cipher function and were obtained by dividing the total elapsed
time expended in encoding and decoding a total of 160 M blocks (1280 Mbytes).
These values show that, on average, the EPBC encryption mode is 1.2 times
faster than IOBC and 1.5 times slower than CBC.

Cache status Algorithm Encryption Decryption
(ns) (ns)

CBC 166 177
Warm IOBC 344 369

EPBC 268 294
CBC & MD5 2 910 2 918

CBC 334 337
Cold IOBC 519 529

EPBC 455 458
CBC & MD5 2 894 2 879

Table 1. Average user time per block expended on a Sun SPARCstation 10/40 by
three encryption modes (CBC, IOBC and EPBC) and a combination of an encryption
mode and a one-way hash function (CBC & MD5), when encoding and decoding arrays
of 64-bit blocks (not including the time expended by the block cipher function).

We did the same performance evaluations for a combination of the CBC
encryption mode and the MD5 one-way hash function, using our implementation
of CBC and the MD5 implementation presented in the document describing it [9].
As input for MD5 we used all the blocks of the arrays except the last two; these
were used to store the resulting hash value. The average user time expended in
processing each block with CBC and MD5 is also presented in Table 1.

The values in Table 1 show that the combination of CBC and MD5 is almost
insensible to the cache status. The small speedup that is observed in the mea-
surements obtained in the simulations with the cold cache is due to the fact that
we execute less function calls to encode/decode all the 160 M blocks. Comparing
with EPBC, we can see that this is 6.3 to 10.9 times faster than the combination
of CBC and MD5. If we had used SHA [11] instead of MD5, the performance
gain would probably be greater. According to a table presented by Schneier [10]
for a 486 SX processor, the SHA function is about two times slower than MD5.

5 Conclusions

In this document we presented a new encryption mode, Efficient Error-
Propagating Block Chaining, that propagates erroneous decryptions of tampered
ciphertext blocks to all following blocks. This encryption mode allows integrity
validation of the recovered plaintext by checking a predefined value at the end
of the plaintext. This value may be set up in many different ways: agreed be-
tween interacting peers, derived from a secret value, like the encryption key,
or efficiently computed from some bits, but not necessarily all, of the plaintext
data.

Unlike other encryption modes also providing error propagation, such as
BC, CBCC, PCBC, PES PCBC, or IOBC, the EPBC encryption mode is not
vulnerable to attacks changing the order of ciphertext blocks or known-plaintext
attacks. It also conceals plaintext patterns by randomising the input of the block
cipher with previous outputs of it, and prevents attackers from gathering pairs
of cipher input and output blocks in order to guess the encryption key.

Performance tests run on a SPARCstation 10/40 showed that, without con-
sidering the time expended by the block cipher, EPBC is in average 1.2 times
faster than IOBC, and 6.3 to 10.9 times faster than a combination of CBC and
MD5. The performance gain of EPBC when compared with the combination of
CBC and MD5 can be very important if we are concerned with providing to-
gether data confidentiality and integrity control. This is the case of most secure
communication protocols, such as SSL [3], PES [14], or SKIP [1], where interact-
ing applications or operating systems can use constant or easy-to-compute, secret
integrity control values for one or more secure communication channels. This way
they could save a significative amount of processing time when exchanging large
quantities of confidential information through secure communication channels.

References

1. Ashar Aziz, Tom Markson, and Hemma Prafullchandra. Simple Key-Management
For Internet Protocols (SKIP). Internet Draft, Sun Microsystems, Inc., December
1995.

2. D. Balenson. Privacy Enhancement for Internet Electronic Mail (Part III): Algo-
rithms, Modes, and Identifiers. RFC 1423, IAB IRTF PSRG, IETF PEM WG,
February 1993.

3. Alan O. Freier, Philip Karlton, and Paul C. Kocher. SSL Protocol Version 3.0.
Internet Draft, Netscape Communications Corp., March 1996.

4. Information Processing - Modes of Operation for an n-bit Block Cipher Algorithm.
ISO IEC/DIS 10116, 1989.

5. J. T. Kohl. The Use of Encryption in Kerberos for Network Authentication. In
Advances in Cryptology – CRYPTO ’89 Proceedings, pages 35–43. Springer-Verlag,
1990.

6. C. H. Meyer and S. M. Matyas. Cryptography: A New Dimension in Computer
Data Security. John Wiley & Sons, Inc., New York, 1982.

7. Xerox Network System (XNS) Authentication Protocol. XSIS 098404, Xerox Cor-
poration, April 1984.

8. Francisco Recacha. IOBC: Un nuevo modo de encadenamiento para cifrado en
bloque. In Proc. of the IV Reunion Espanyola sobre Criptologia, Valladolid,
September 1996.

9. R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, MIT Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

10. Bruce Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in
C. John Wiley & Sons, Inc., second edition, 1996.

11. Secure Hash Standard. NIST FIPS PUB 180, April 1993.

12. Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An Au-
thentication Service for Open Network Systems. In Proc. of the USENIX Winter
Conf., pages 191–202, Dallas, Texas, USA, February 1988.

13. Philip Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

14. André Zúquete and Paulo Guedes. Transparent Authentication and Confidentiality
for Stream Sockets. IEEE Micro, 16(3):34–41, June 1996.

A Demonstrations

In this Appendix we will demonstrate some of the properties of the function g ()
previously introduced in section 3. As a reminder, the function g () operates as
follows:

g(x) = 〈xH + xL, xH · xL〉 (10)

where x is a value with an even number of bits (b), and x ≡ 〈xH , xL〉, where xH

and xL are the high and low order halves of x, respectively. The operators “+”
and “·” represent the bitwise OR and AND operations, respectively, and xL is
the bitwise inverse of xL.

1st property: g () is not injective

Demonstration: The function g () is not injective if:

∃x, y ∈ Dg, x 6= y g (x) = g (y)

Expanding g (x) = g (y) using equation (10), we get:

g (x) = g (y) ⇐⇒
{

xH + xL = yH + yL

xH · xL = yH · yL

This two equations can be resolved in several ways. One solution, for example,
is yH = xL and yL = xH . Therefore, g () is not injective.

2nd property: ∀x ∈ Dg g (x) 6= x

Demonstration: If the opposite is true, then:

∃x ∈ Dg g (x) = x ⇐⇒
{

xH + xL = xH

xH · xL = xL

Expanding these two equations in terms of the individual bits of each of the
halves of x, we have:

∀i ∈ {1, 2, · · · , b/2}
{

xHi + xLi = xHi ⇔ xLi = 1 ∨ xHi = 1
xHi · xLi = xLi ⇔ xLi = 0 ∧ xHi = 0

As there are no suitable values for the pair of bits (xLi, xHi), the opposite is
false and, thus, the property holds.

3th property: 6 ∃x ∈ Dg,h () ∀y ∈ Dg g (x⊕ y) = h (x)⊕ y

Demonstration: If the opposite is true, then:

∃x ∈ Dg,h ()

g (x⊕ y) = h (x)⊕ y ⇐⇒
{

(xH ⊕ yH) + (xL ⊕ yL) = h (x)H ⊕ yH

(xH ⊕ yH) · (xL ⊕ yL) = h (x)L ⊕ yL

As the first equation depends on yL and the second equation depends on yH ,
that implies that h (x) depends on y, which cannot not happen. Therefore, the
property holds.

4th property: 6 ∃h () ∀x, y ∈ Dg g (x⊕ y) = h (x)⊕ h (y)

Demonstration: If we have x = y, then:{
g (x⊕ y) = g (0) 6= 0
h (x)⊕ h (y) = 0 =⇒

=⇒ ∀x, y ∈ Dg, x = y ∀h () g (x⊕ y) 6= h (x)⊕ h (y)

Consequently, the property holds.

B Source Code of CBC, IOBC and EPBC

/* Global macros */
#define w32 unsigned int /* 32 bit word */
#define CIPHER(to,from) /* nothing */
#define DECIPHER(to,from) /* nothing */
#define DO_4_TIMES(op) {op op op op}

#define CBC_ENC_BLOCK \
I[0] = *P++ ^ c0; I[1] = *P++ ^ c1; \
CIPHER(C,I); \
c0 = *C++; c1 = *C++;

cbcEnc (int n, w32 *C, w32 *P, w32 *C_1)
{

register w32 c0 = C_1[0], c1 = C_1[1];
w32 I[2];

for (; n >= 4; n -= 4)
DO_4_TIMES(CBC_ENC_BLOCK)

while (n--) { CBC_ENC_BLOCK }
}

#define CBC_DEC_BLOCK \
DECIPHER(P,C); \
*P++ ^= c0; *P++ ^= c1; \
c0 = *C++; c1 = *C++;

cbcDec (int n, w32 *C, w32 *P, w32 *C_1)
{

register w32 c0 = C_1[0], c1 = C_1[1];

for (; n >= 4; n -= 4)
DO_4_TIMES(CBC_DEC_BLOCK)

while (n--) { CBC_DEC_BLOCK }
}

#define ROT_L(h,l) (((l & 0xFFFFFFFC) >> 1) | ((l & 2) << 30) | (h & 1))
#define ROT_H(h,l) ((h >> 1) | (l << 31))

#define IOBC_ENC_BLOCK \
c0 = ROT_L(g1,g0); c1 = ROT_H(g1,g0); \
G[0] = g0 = *P++ ^ f0; \
G[1] = g1 = *P++ ^ f1; \
CIPHER(F,G); \
f0 = F[0]; f1 = F[1]; \
*C++ = c0 ^ f0; *C++ = c1 ^ f1;

iobcEnc (int n, w32 *C, w32 *P,
w32 *F, w32 *G)

{
register w32 f0 = F[0], f1 = F[1];
register w32 g0 = G[0], g1 = G[1];
register w32 c0, c1;

for (; n >= 4; n -= 4)
DO_4_TIMES(IOBC_ENC_BLOCK)

while (n--) { IOBC_ENC_BLOCK }
}

#define IOBC_DEC_BLOCK \
p0 = f0; p1 = f1; \
F[0] = f0 = *C++ ^ ROT_L(g1,g0); \
F[1] = f1 = *C++ ^ ROT_H(g1,g0); \
DECIPHER(G,F); \
g0 = G[0]; g1 = G[1]; \
*P++ = p0 ^ g0; *P++ = p1 ^ g1;

iobcDec (int n, w32 *C, w32 *P,
w32 *F, w32 *G)

{
register w32 f0 = F[0], f1 = F[1];
register w32 g0 = G[0], g1 = G[1];
register w32 p0, p1;

for (; n >= 4; n -= 4)
DO_4_TIMES(IOBC_DEC_BLOCK)

while (n--) { IOBC_DEC_BLOCK }
}

#define EPBC_ENC_BLOCK \
c0 = ~g0 & g1; c1 = ~g0 | g1; \
G[0] = g0 = *P++ ^ f0; \
G[1] = g1 = *P++ ^ f1; \
CIPHER(F,G); \
f0 = F[0]; f1 = F[1]; \
*C++ = c0 ^ f0; *C++ = c1 ^ f1;

epbcEnc (int n, w32 *C, w32 *P,
w32 *F, w32 *G)

{
register w32 f0 = F[0], f1 = F[1];
register w32 g0 = G[0], g1 = G[1];
register w32 c0, c1;

for (; n >= 4; n -= 4)
DO_4_TIMES(EPBC_ENC_BLOCK)

while (n--) { EPBC_ENC_BLOCK }
}

#define EPBC_DEC_BLOCK \
p0 = f0; p1 = f1; \
F[0] = f0 = *C++ ^ (~g0 & g1); \
F[1] = f1 = *C++ ^ (~g0 | g1); \
DECIPHER(G,F); \
g0 = G[0]; g1 = G[1]; \
*P++ = p0 ^ g0; *P++ = p1 ^ g1;

epbcDec (int n, w32 *C, w32 *P,
w32 *F, w32 *G)

{
register w32 f0 = F[0], f1 = F[1];
register w32 g0 = G[0], g1 = G[1];
register w32 p0, p1;

for (; n >= 4; n -= 4)
DO_4_TIMES(EPBC_DEC_BLOCK)

while (n--) { EPBC_DEC_BLOCK }
}

View publication statsView publication stats

https://www.researchgate.net/publication/220963160

