2372 lines
69 KiB
C
2372 lines
69 KiB
C
/* An implementation in GMP of Scho"nhage's fast multiplication algorithm
|
|
modulo 2^N+1, by Paul Zimmermann, INRIA Lorraine, February 1998.
|
|
|
|
Revised July 2002 and January 2003, Paul Zimmermann.
|
|
Further revised by Pierrick Gaudry, Paul Zimmermann, and Torbjorn Granlund,
|
|
March/April and November/December 2006, and also by Alexander Kruppa in
|
|
December 2006.
|
|
|
|
THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND THE FUNCTIONS HAVE
|
|
MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED
|
|
INTERFACES. IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN
|
|
A FUTURE GNU MP RELEASE.
|
|
|
|
Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
|
|
Foundation, Inc.
|
|
|
|
Copyright 2009 William Hart
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
/* References:
|
|
|
|
For the recent ideas used in the FFT, see:
|
|
|
|
@InProceedings{GaKrZi07,
|
|
author = {Pierrick Gaudry and Alexander Kruppa and Paul Zimmermann},
|
|
title = {A {GMP}-based implementation of {S}ch\"onhage-{S}trassen's
|
|
large integer multiplication algorithm},
|
|
booktitle = {Proceedings of the 2007 International Symposium on
|
|
Symbolic and Algebraic Computation, {ISSAC'2007}},
|
|
year = 2007,
|
|
address = {Waterloo, Ontario, Canada},
|
|
pages = "167--174",
|
|
editor = "C. W. Brown",
|
|
annote = {\url{http://hal.inria.fr/inria-00126462}}
|
|
}
|
|
|
|
Schnelle Multiplikation grosser Zahlen, by Arnold Scho"nhage and Volker
|
|
Strassen, Computing 7, p. 281-292, 1971.
|
|
|
|
Asymptotically fast algorithms for the numerical multiplication
|
|
and division of polynomials with complex coefficients, by Arnold Scho"nhage,
|
|
Computer Algebra, EUROCAM'82, LNCS 144, p. 3-15, 1982.
|
|
|
|
Tapes versus Pointers, a study in implementing fast algorithms,
|
|
by Arnold Scho"nhage, Bulletin of the EATCS, 30, p. 23-32, 1986.
|
|
|
|
See also http://www.loria.fr/~zimmerma/bignum
|
|
|
|
|
|
Future:
|
|
|
|
It might be possible to avoid a small number of MPN_COPYs by using a
|
|
rotating temporary or two.
|
|
|
|
Multiplications of unequal sized operands can be done with this code, but
|
|
it needs a tighter test for identifying squaring (same sizes as well as
|
|
same pointers). */
|
|
|
|
/* Throughout this file, Mp is chosen so that
|
|
ord_{2^Nprime + 1}(sqrt(2)^Mp) == 2^k */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h> /* for abort() */
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h" /* for count_trailing_zeros */
|
|
|
|
#define FFT_FIRST_K 4
|
|
|
|
/* Uncomment this define to disable to use of sqrt(2) as a root of unity for
|
|
the transform/weight signal. The function mpn_fft_mul_sqrt2exp_modF()
|
|
will still get called, but parameters for the transform will be chosen
|
|
so that it will always be called with an even exponent, thus the
|
|
multiplication will be by a power of 2. */
|
|
/* #define NO_SQRT_2 */
|
|
|
|
/* Change this to "#define TRACE(x) x" for some traces. */
|
|
#define TRACE(x)
|
|
|
|
/* #define COUNT_ZEROCOPY */
|
|
|
|
/* This define enables interleaved decomposition/forward transform in
|
|
Bailey's algorithm for better data locality */
|
|
#define MERGED_BAILEY_DECOMPOSE
|
|
|
|
#if defined( _MSC_VER ) && defined( _M_X64 )
|
|
#include <intrin.h>
|
|
#pragma intrinsic(__stosq)
|
|
#define MPN_FFT_ZERO(d, l) __stosq(d, 0, l)
|
|
#else
|
|
#define MPN_FFT_ZERO(dst, n) MPN_ZERO(dst,n)
|
|
#endif
|
|
|
|
#if defined( _MSC_VER ) && defined( _M_X64 )
|
|
#include <intrin.h>
|
|
#pragma intrinsic(__stosq)
|
|
#define MPN_FFT_STORE(d, l, v) __stosq(d, v, l)
|
|
#else
|
|
#define MPN_FFT_STORE(dst, n,d) mpn_store(dst,n,d)
|
|
#endif
|
|
|
|
#if defined( _MSC_VER ) && defined( _M_X64 )
|
|
#include <intrin.h>
|
|
#pragma intrinsic(__movsq)
|
|
#define MPN_FFT_COPY(d, s, l) __movsq(d, s, l)
|
|
#else
|
|
#define MPN_FFT_COPY(dst, src, n) MPN_COPY(dst,src,n)
|
|
#endif
|
|
|
|
|
|
/* If LOG2_GMP_NUMB_BITS is defined, GMP_NUMB_BITS=2^LOG2_GMP_NUMB_BITS;
|
|
this enables to speed up multiplication or division by GMP_NUMB_BITS. */
|
|
#if (GMP_NUMB_BITS == 32)
|
|
#define LOG2_GMP_NUMB_BITS 5
|
|
#elif (GMP_NUMB_BITS == 64)
|
|
#define LOG2_GMP_NUMB_BITS 6
|
|
#endif
|
|
|
|
static inline mp_size_t mpn_mul_fft_lcm (mp_size_t, mp_size_t);
|
|
|
|
/* quotient, remainder, product by GMP_NUMB_BITS */
|
|
#ifdef LOG2_GMP_NUMB_BITS
|
|
#define MOD_GMP_NUMB_BITS(x) ((x) & ((1 << LOG2_GMP_NUMB_BITS) - 1))
|
|
#define DIV_GMP_NUMB_BITS(x) ((x) >> LOG2_GMP_NUMB_BITS)
|
|
/* x <- y / (2 * GMP_NUMB_BITS), y <- y % (2 * GMP_NUMB_BITS) */
|
|
#define DIVMOD_2GMP_NUMB_BITS(x,y) \
|
|
x = (y) >> (LOG2_GMP_NUMB_BITS + 1); \
|
|
y = (y) & ((1 << (LOG2_GMP_NUMB_BITS + 1)) - 1)
|
|
#define MUL_GMP_NUMB_BITS(x) ((x) << LOG2_GMP_NUMB_BITS)
|
|
#define MUL_2GMP_NUMB_BITS(x) ((x) << (LOG2_GMP_NUMB_BITS + 1))
|
|
#define MUL_4GMP_NUMB_BITS(x) ((x) << (LOG2_GMP_NUMB_BITS + 2))
|
|
#define LCM_GMP_NUMB_BITS(x) (((x) > LOG2_GMP_NUMB_BITS) ? (1<<(x)) : GMP_NUMB_BITS)
|
|
#else
|
|
#define MOD_GMP_NUMB_BITS(x) ((x) % GMP_NUMB_BITS)
|
|
#define DIV_GMP_NUMB_BITS(x) ((x) / GMP_NUMB_BITS)
|
|
#define DIVMOD_2GMP_NUMB_BITS(x,y) \
|
|
x = (y) / (2 * GMP_NUMB_BITS); \
|
|
y = (y) - (x) * (2 * GMP_NUMB_BITS)
|
|
#define MUL_GMP_NUMB_BITS(x) ((x) * GMP_NUMB_BITS)
|
|
#define MUL_2GMP_NUMB_BITS(x) ((x) * (2 * GMP_NUMB_BITS))
|
|
#define MUL_4GMP_NUMB_BITS(x) ((x) * (4 * GMP_NUMB_BITS))
|
|
/* lcm(GMP_NUMB_BITS, 2^x) */
|
|
#define LCM_GMP_NUMB_BITS(x) mpn_mul_fft_lcm (GMP_NUMB_BITS, x)
|
|
#endif
|
|
|
|
#define ONE CNST_LIMB(1)
|
|
|
|
FFT_TABLE_ATTRS mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE] =
|
|
{
|
|
MUL_FFT_TABLE,
|
|
SQR_FFT_TABLE
|
|
};
|
|
|
|
static int mpn_mul_fft_internal
|
|
_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_size_t,
|
|
mp_ptr *, mp_ptr *, mp_ptr, mp_ptr, mp_size_t, mp_size_t,
|
|
mp_size_t **, mp_ptr, mp_size_t, int));
|
|
|
|
int
|
|
mpn_mul_fft_aux (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
mp_size_t k, int b);
|
|
|
|
|
|
/* Find the best k to use for a mod 2^(m*GMP_NUMB_BITS)+1 FFT for m >= n.
|
|
sqr==0 if for a multiply, sqr==1 for a square.
|
|
Don't declare it static since it is needed by tuneup.
|
|
*/
|
|
#ifdef MUL_FFT_TABLE2
|
|
#define MPN_FFT_TABLE2_SIZE 256
|
|
|
|
struct nk {
|
|
mp_size_t n;
|
|
unsigned char k;
|
|
};
|
|
|
|
static struct nk mpn_fft_table2[4][MPN_FFT_TABLE2_SIZE] =
|
|
{
|
|
MUL_FFT_TABLE2,
|
|
SQR_FFT_TABLE2,
|
|
MUL_FFTM_TABLE2,
|
|
SQR_FFTM_TABLE2
|
|
};
|
|
|
|
/*
|
|
sqr_b = 0: plain multiplication mod 2^N+1
|
|
sqr_b = 1: square mod 2^N+1
|
|
sqr_b = 2: plain multiplication mod 2^N-1
|
|
sqr_b = 3: square mod 2^N-1
|
|
*/
|
|
int
|
|
mpn_fft_best_k (mp_size_t n, int sqr_b)
|
|
{
|
|
struct nk *tab;
|
|
int last_k;
|
|
|
|
last_k = 4;
|
|
for (tab = mpn_fft_table2[sqr_b] + 1; ; tab++)
|
|
{
|
|
if (n < tab->n)
|
|
break;
|
|
last_k = tab->k;
|
|
}
|
|
return last_k;
|
|
}
|
|
#else
|
|
int
|
|
mpn_fft_best_k (mp_size_t n, int sqr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; mpn_fft_table[sqr&1][i] != 0; i++)
|
|
if (n < mpn_fft_table[sqr&1][i])
|
|
return i + FFT_FIRST_K;
|
|
/* treat 4*last as one further entry */
|
|
if (i == 0 || n < 4 * mpn_fft_table[sqr&1][i - 1])
|
|
return i + FFT_FIRST_K;
|
|
else
|
|
return i + FFT_FIRST_K + 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MUL_FFT_FULL_TABLE2
|
|
#define MPN_FFT_FULL_TABLE2_SIZE 256
|
|
|
|
#ifndef SQR_FFT_FULL_TABLE2
|
|
#define SQR_FFT_FULL_TABLE2 MUL_FFT_FULL_TABLE2
|
|
#endif
|
|
|
|
static struct nk mpn_fft_full_table2[4][MPN_FFT_FULL_TABLE2_SIZE] =
|
|
{
|
|
MUL_FFT_FULL_TABLE2,
|
|
SQR_FFT_FULL_TABLE2
|
|
};
|
|
|
|
int
|
|
mpn_fft_best_a (mp_size_t pl, int sqr)
|
|
{
|
|
struct nk *tab;
|
|
int last_a;
|
|
|
|
last_a = 1;
|
|
for (tab = mpn_fft_full_table2[sqr] + 1; ; tab++)
|
|
{
|
|
if (pl < tab->n)
|
|
break;
|
|
last_a = tab->k;
|
|
}
|
|
return last_a;
|
|
}
|
|
#endif /* MUL_FFT_FULL_TABLE2 */
|
|
|
|
/* Returns smallest possible number of limbs >= pl for a fft of size 2^k,
|
|
i.e. smallest multiple of 2^k >= pl.
|
|
|
|
Don't declare static: needed by tuneup.
|
|
*/
|
|
|
|
mp_size_t
|
|
mpn_fft_next_size (mp_size_t pl, int k)
|
|
{
|
|
pl = 1 + ((pl - 1) >> k); /* ceil (pl/2^k) */
|
|
return pl << k;
|
|
}
|
|
|
|
/* Initialize l[i][j] with bitrev(j) */
|
|
|
|
static void
|
|
mpn_fft_initl (mp_size_t **l, mp_size_t k)
|
|
{
|
|
mp_size_t i, j, K;
|
|
mp_size_t *li;
|
|
|
|
l[0][0] = 0;
|
|
for (i = 1, K = 1; i <= k; i++, K *= 2)
|
|
{
|
|
li = l[i];
|
|
for (j = 0; j < K; j++)
|
|
{
|
|
li[j] = 2 * l[i - 1][j];
|
|
li[K + j] = 1 + li[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef HAVE_NATIVE_mpn_lshiftc
|
|
/* Shift {up, n} cnt bits to the left, store the complemented result
|
|
in {rp, n}, and output the shifted bits (not complemented).
|
|
Same as:
|
|
cc = mpn_lshift (rp, up, n, cnt);
|
|
mpn_com_n (rp, rp, n);
|
|
return cc;
|
|
|
|
Assumes n >= 1 and 1 <= cnt < GMP_NUMB_BITS.
|
|
{rp, n} and {up, n} may overlap, provided rp >= up (like mpn_lshift).
|
|
*/
|
|
static mp_limb_t
|
|
mpn_lshiftc (mp_ptr rp, mp_srcptr up, mp_size_t n, unsigned int cnt)
|
|
{
|
|
mp_limb_t high_limb, low_limb;
|
|
unsigned int tnc;
|
|
mp_size_t i;
|
|
mp_limb_t retval;
|
|
|
|
ASSERT(n >= 1);
|
|
ASSERT(1 <= cnt && cnt < GMP_NUMB_BITS);
|
|
|
|
up += n;
|
|
rp += n;
|
|
|
|
tnc = GMP_NUMB_BITS - cnt;
|
|
low_limb = *--up;
|
|
retval = low_limb >> tnc;
|
|
high_limb = (low_limb << cnt);
|
|
|
|
for (i = n - 1; i != 0; i--)
|
|
{
|
|
low_limb = *--up;
|
|
*--rp = (~(high_limb | (low_limb >> tnc))) & GMP_NUMB_MASK;
|
|
high_limb = low_limb << cnt;
|
|
}
|
|
*--rp = (~high_limb) & GMP_NUMB_MASK;
|
|
|
|
return retval;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Given ap[0..n] with ap[n]<=1, reduce it modulo 2^(n*GMP_NUMB_BITS)+1,
|
|
by subtracting that modulus if necessary.
|
|
|
|
If ap[0..n] is exactly 2^(n*GMP_NUMB_BITS) then mpn_sub_1 produces a
|
|
borrow and the limbs must be zeroed out again. This will occur very
|
|
infrequently. */
|
|
|
|
static inline void
|
|
mpn_fft_normalize (mp_ptr ap, mp_size_t n)
|
|
{
|
|
if (ap[n] != 0)
|
|
{
|
|
MPN_DECR_U (ap, n + 1, ONE);
|
|
if (ap[n] == 0)
|
|
{
|
|
/* This happens with very low probability; we have yet to trigger it,
|
|
and thereby make sure this code is correct. */
|
|
MPN_FFT_ZERO (ap, n);
|
|
ap[n] = 1;
|
|
}
|
|
else
|
|
ap[n] = 0;
|
|
}
|
|
}
|
|
|
|
/* r <- a*2^d mod 2^(n*GMP_NUMB_BITS)+1 with a = {a, n+1}
|
|
Assumes a is semi-normalized, i.e. a[n] <= 1.
|
|
r and a must have n+1 limbs, and not overlap.
|
|
*/
|
|
static void
|
|
mpn_fft_mul_2exp_modF (mp_ptr r, mp_srcptr a, mp_size_t d, mp_size_t n)
|
|
{
|
|
int sh, negate;
|
|
mp_limb_t cc, rd;
|
|
|
|
ASSERT(d < 2 * n * GMP_NUMB_BITS);
|
|
|
|
sh = MOD_GMP_NUMB_BITS(d);
|
|
d = DIV_GMP_NUMB_BITS(d);
|
|
negate = d >= n;
|
|
|
|
if (negate)
|
|
{
|
|
d -= n;
|
|
/* r[0..d-1] <-- lshift(a[n-d]..a[n-1], sh)
|
|
r[d..n-1] <-- -lshift(a[0]..a[n-d-1], sh) */
|
|
if (sh != 0)
|
|
{
|
|
/* no out shift below since a[n] <= 1 */
|
|
mpn_lshift (r, a + n - d, d + 1, sh);
|
|
rd = r[d];
|
|
cc = mpn_lshiftc (r + d, a, n - d, sh);
|
|
}
|
|
else
|
|
{
|
|
#ifdef COUNT_ZEROCOPY
|
|
printf ("mpn_fft_mul_2exp_modF: MPN_FFT_COPY 1 with %d limbs\n", d);
|
|
#endif
|
|
/* Executed 256 times for 1000000 limb mpn_mul_n, each
|
|
d in [0, 255] appears exactly once */
|
|
MPN_COPY (r, a + n - d, d);
|
|
rd = a[n];
|
|
mpn_com_n (r + d, a, n - d);
|
|
cc = 0;
|
|
}
|
|
|
|
/* add cc to r[0], and add rd to r[d] */
|
|
|
|
/* now add 1 in r[d], subtract 1 in r[n], i.e. add 1 in r[0] */
|
|
|
|
r[n] = 0;
|
|
/* cc < 2^sh <= 2^(GMP_NUMB_BITS-1) thus no overflow here */
|
|
mpn_incr_u (r, cc + 1);
|
|
|
|
rd ++;
|
|
/* rd might overflow when sh=GMP_NUMB_BITS-1 */
|
|
cc = (rd == 0) ? ONE : rd;
|
|
r = r + d + (rd == 0);
|
|
mpn_incr_u (r, cc);
|
|
|
|
return;
|
|
}
|
|
|
|
/* if negate=0,
|
|
r[0..d-1] <-- -lshift(a[n-d]..a[n-1], sh)
|
|
r[d..n-1] <-- lshift(a[0]..a[n-d-1], sh)
|
|
*/
|
|
if (sh != 0)
|
|
{
|
|
/* no out bits below since a[n] <= 1 */
|
|
mpn_lshiftc (r, a + n - d, d + 1, sh);
|
|
rd = ~r[d];
|
|
/* {r, d+1} = {a+n-d, d+1} << sh */
|
|
cc = mpn_lshift (r + d, a, n - d, sh); /* {r+d, n-d} = {a, n-d}<<sh */
|
|
}
|
|
else
|
|
{
|
|
/* r[d] is not used below, but we save a test for d=0 */
|
|
mpn_com_n (r, a + n - d, d + 1);
|
|
rd = a[n];
|
|
#ifdef COUNT_ZEROCOPY
|
|
printf ("mpn_fft_mul_2exp_modF: MPN_FFT_COPY 2 with %d limbs\n", n-d);
|
|
#endif
|
|
/* Executed 888 times for 1000000 limb mpn_mul_n,
|
|
each n-d in [4, 255] appears 20 times, except
|
|
n-d == 32 which appears 3860 times */
|
|
|
|
MPN_COPY (r + d, a, n - d);
|
|
cc = 0;
|
|
}
|
|
|
|
/* now complement {r, d}, subtract cc from r[0], subtract rd from r[d] */
|
|
|
|
/* if d=0 we just have r[0]=a[n] << sh */
|
|
if (d != 0)
|
|
{
|
|
/* now add 1 in r[0], subtract 1 in r[d] */
|
|
if (cc-- == 0) /* then add 1 to r[0] */
|
|
cc = mpn_add_1 (r, r, n, ONE);
|
|
cc = mpn_sub_1 (r, r, d, cc) + ONE;
|
|
/* add 1 to cc instead of rd since rd might overflow */
|
|
}
|
|
|
|
/* now subtract cc and rd from r[d..n] */
|
|
|
|
r[n] = (mp_limb_t) (-(mp_limb_signed_t) mpn_sub_1 (r + d, r + d, n - d, cc));
|
|
r[n] -= mpn_sub_1 (r + d, r + d, n - d, rd);
|
|
if (r[n] & GMP_LIMB_HIGHBIT)
|
|
r[n] = mpn_add_1 (r, r, n, ONE);
|
|
}
|
|
|
|
/* r <- a*2^d mod 2^(n*GMP_NUMB_BITS)+1 with a = {a, n+1}, r = {r, n+1}.
|
|
Assumes a is semi-normalized, i.e. a[n] <= 1.
|
|
Assumes 0 < d < GMP_NUMB_BITS.
|
|
Returns r semi-normalized.
|
|
r and a must have n+1 limbs, and may overlap (if so, r=a). */
|
|
static void
|
|
mpn_fft_mul_2exp_modFa (mp_ptr r, mp_srcptr a, mp_size_t d, mp_size_t n)
|
|
{
|
|
mp_limb_t c;
|
|
|
|
ASSERT (0 < d && d < GMP_NUMB_BITS);
|
|
c = (a[n] << d) | mpn_lshift (r, a, n, d);
|
|
/* now subtract c from r[0] */
|
|
r[n] = r[0] < c;
|
|
MPN_DECR_U (r, n + 1, c - r[n]);
|
|
}
|
|
|
|
/* r <- a+b mod 2^(n*GMP_NUMB_BITS)+1.
|
|
Assumes a and b are semi-normalized, and so is the result r.
|
|
*/
|
|
static inline void
|
|
mpn_fft_add_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
|
|
{
|
|
mp_limb_t c;
|
|
|
|
c = a[n] + b[n] + mpn_add_n (r, a, b, n); /* 0 <= c <= 3 */
|
|
r[n] = r[0] < c;
|
|
MPN_DECR_U (r, n + 1, c - r[n]);
|
|
}
|
|
|
|
/* r <- a-b mod 2^(n*GMP_NUMB_BITS)+1.
|
|
Assumes a and b are semi-normalized.
|
|
*/
|
|
static inline void
|
|
mpn_fft_sub_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
|
|
{
|
|
mp_limb_t c;
|
|
|
|
c = a[n] - b[n] - mpn_sub_n (r, a, b, n); /* -2 <= c <= 1 */
|
|
r[n] = c == 1;
|
|
MPN_INCR_U (r, n + 1, r[n] - c);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", off )
|
|
#endif
|
|
/* r <- (a-b)*B^d mod B^n+1, where B=2^GMP_NUMB_BITS.
|
|
Assumes a and b are semi-normalized.
|
|
It is equivalent to:
|
|
mpn_fft_sub_modF (tmp, a, b, n);
|
|
mpn_fft_mul_2exp_modF (r, tmp, d * GMP_NUMB_BITS, n);
|
|
*/
|
|
static inline void
|
|
mpn_fft_lshsub_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t d,
|
|
mp_size_t n)
|
|
{
|
|
ASSERT (0 <= d && d < 2 * n);
|
|
|
|
if (d >= n) /* (a-b)*B^d = (b-a)*B^(d-n) */
|
|
{
|
|
mp_srcptr t;
|
|
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
d -= n;
|
|
}
|
|
|
|
if (d == 0)
|
|
mpn_fft_sub_modF (r, a, b, n);
|
|
else
|
|
{
|
|
mp_limb_t cc;
|
|
|
|
/* let a = ah * B^(n-d) + al
|
|
and b = bh * B^(n-d) + bl,
|
|
where ah, bh have d limbs + 1 bit, and al, bl have n-d limbs.
|
|
Then (a-b)*B^d = (al-bl) * B^d + (bh-ah). */
|
|
|
|
ASSERT (0 < d && d < n);
|
|
cc = mpn_sub_n (r, b + n - d, a + n - d, d); /* bh-ah */
|
|
#ifdef HAVE_NATIVE_mpn_sub_nc
|
|
cc = mpn_sub_nc (r + d, a, b, n - d, cc); /* al-bl */
|
|
#else
|
|
cc = mpn_sub_n (r + d, a, b, n - d)
|
|
+ mpn_sub_1 (r + d, r + d, n - d, cc);
|
|
#endif
|
|
/* 0 <= cc <= 1 */
|
|
if (a[n] > b[n])
|
|
cc += mpn_sub_1 (r + d, r + d, n - d, a[n] - b[n]); /* 0 <= cc <= 2 */
|
|
else
|
|
cc -= mpn_add_1 (r + d, r + d, n - d, b[n] - a[n]); /* -1 <= cc <= 1 */
|
|
/* -1 <= cc <= 2 */
|
|
/* cc is the borrow at r[n], which must be added at r[0] */
|
|
r[n] = cc >> (GMP_NUMB_BITS - 1);
|
|
MPN_INCR_U (r, n + 1, cc + r[n]);
|
|
}
|
|
}
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", on )
|
|
#endif
|
|
|
|
/* r <- a*sqrt(2)^d mod 2^(n*GMP_NUMB_BITS)+1 with a = {a, n+1}
|
|
Assumes a is semi-normalized, i.e. a[n] <= 1.
|
|
Assumes 0 < d < 4*n*GMP_NUMB_BITS.
|
|
r and a must have n+1 limbs, and not overlap.
|
|
Calls mpn_fft_mul_2exp_modF() and mpn_fft_sub_modF().
|
|
*/
|
|
static void
|
|
mpn_fft_mul_sqrt2exp_modF (mp_ptr r, mp_srcptr a, mp_size_t d, mp_size_t n)
|
|
{
|
|
mp_size_t e = d >> 1;
|
|
mp_size_t N = MUL_GMP_NUMB_BITS(n); /* n * GMP_NUMB_BITS */
|
|
mp_ptr tmp;
|
|
mp_srcptr b;
|
|
mp_limb_t ca, cc;
|
|
mp_size_t l;
|
|
TMP_DECL;
|
|
|
|
ASSERT(0 < d && d < 4 * N);
|
|
ASSERT(a != r);
|
|
|
|
#ifdef NO_SQRT_2
|
|
ASSERT_ALWAYS(d % 2 == 0);
|
|
#endif
|
|
|
|
/* If d is even, we have a regular multiplication by a power of 2 */
|
|
if ((d & 1) == 0)
|
|
{ /* since d cannot be zero, e cannot be zero too */
|
|
if (e < GMP_NUMB_BITS)
|
|
mpn_fft_mul_2exp_modFa (r, a, e, n);
|
|
else
|
|
mpn_fft_mul_2exp_modF (r, a, e, n);
|
|
return;
|
|
}
|
|
|
|
ASSERT(N % 4 == 0);
|
|
/* Multiply by sqrt(2) * 2^e = (2^(3N/4) - 2^(N/4)) * 2^e =
|
|
2^(3N/4 + e) - 2^(N/4 + e) */
|
|
e += 3 * (N >> 2); /* 3N/4 <= e < 11N/4 */
|
|
if (e >= 2 * N)
|
|
e -= 2 * N; /* 0 <= e < 2N */
|
|
TMP_MARK;
|
|
tmp = TMP_ALLOC_LIMBS(n + 1);
|
|
/* the following variant avoids the -H-L computation, which
|
|
requires a call to mpn_com_n(). */
|
|
if (e != 0)
|
|
{
|
|
mpn_fft_mul_2exp_modF (r, a, e, n); /* a*2^(e+N/2) */
|
|
b = r;
|
|
}
|
|
else
|
|
b = a;
|
|
l = n >> 1;
|
|
if ((n & 1) != 0)
|
|
{
|
|
mpn_lshift (tmp, b, n + 1, GMP_NUMB_BITS >> 1);
|
|
#ifdef HAVE_NATIVE_mpn_sumdiff_n /* avoid the copy with mpn_addsub_n */
|
|
ca = b[n] + mpn_add_n (r + l, b + l, (n & 1) ? tmp : b, n - l);
|
|
cc = tmp[n] + mpn_sub_n (r, b, tmp + n - l, l);
|
|
}
|
|
else
|
|
{
|
|
/* rh <- bl + bh, rl <- bl - bh */
|
|
ca = mpn_sumdiff_n (r + l, r, b, b + l, l);
|
|
cc = b[n] + (ca & 1);
|
|
ca = b[n] + (ca >> 1);
|
|
}
|
|
#else /* native mpn_sumdiff_n not available */
|
|
}
|
|
else
|
|
MPN_COPY (tmp + n - l, b + n - l, l + 1);
|
|
/* we still have to shift {tmp, n+1} by l limbs to the left:
|
|
let tl = {tmp, n-l} and th = {tmp+n-l,l+1} */
|
|
/* rh <- bh + tl, rl <- bl - th */
|
|
ca = b[n] + mpn_add_n (r + l, b + l, (n & 1) ? tmp : b, n - l);
|
|
cc = tmp[n] + mpn_sub_n (r, b, tmp + n - l, l);
|
|
#endif /* HAVE_NATIVE_mpn_sumdiff_n */
|
|
cc = mpn_sub_1 (r + l, r + l, n - l, cc);
|
|
/* We must subtract 0 <= ca <= 2 and add 0 <= cc <= 1 at r[0].
|
|
If cc >= ca: r[n]=0 and add cc - ca.
|
|
If cc < ca: r[n]=1 and subtract ca-cc-1. */
|
|
r[n] = cc < ca;
|
|
if (cc >= ca)
|
|
MPN_INCR_U (r, n + 1, cc - ca);
|
|
else /* cc < ca */
|
|
MPN_DECR_U (r, n + 1, ca - ONE - cc);
|
|
TMP_FREE;
|
|
}
|
|
|
|
/* normalize {n, nl} mod 2^(Kl*GMP_NUMB_BITS)+b and store in tmp.
|
|
tmp must have space for Kl + 1 limbs */
|
|
static void
|
|
mpn_mul_fft_reduce (mp_ptr tmp, mp_srcptr n, mp_size_t nl, mp_size_t Kl, int b)
|
|
{
|
|
mp_size_t dif = nl - Kl;
|
|
mp_limb_signed_t cy;
|
|
|
|
if (dif > Kl)
|
|
{
|
|
int subp = 0;
|
|
|
|
cy = ((b == 1) ? mpn_sub_n : mpn_add_n) (tmp, n, n + Kl, Kl);
|
|
n += 2 * Kl;
|
|
dif -= Kl;
|
|
|
|
/* now dif > 0 */
|
|
while (dif > Kl)
|
|
{
|
|
if (b == -1)
|
|
cy += mpn_add_n (tmp, tmp, n, Kl);
|
|
else if (subp)
|
|
cy += mpn_sub_n (tmp, tmp, n, Kl);
|
|
else
|
|
cy -= mpn_add_n (tmp, tmp, n, Kl);
|
|
subp ^= 1;
|
|
n += Kl;
|
|
dif -= Kl;
|
|
}
|
|
/* now dif <= Kl */
|
|
if (b == -1)
|
|
cy += mpn_add (tmp, tmp, Kl, n, dif);
|
|
else if (subp)
|
|
cy += mpn_sub (tmp, tmp, Kl, n, dif);
|
|
else
|
|
cy -= mpn_add (tmp, tmp, Kl, n, dif);
|
|
if (cy >= 0)
|
|
cy = mpn_add_1 (tmp, tmp, Kl, cy);
|
|
else
|
|
cy = mpn_sub_1 (tmp, tmp, Kl, -cy);
|
|
}
|
|
else /* dif <= Kl, i.e. nl <= 2 * Kl */
|
|
{
|
|
cy = ((b == 1) ? mpn_sub : mpn_add) (tmp, n, Kl, n + Kl, dif);
|
|
cy = mpn_add_1 (tmp, tmp, Kl, cy);
|
|
}
|
|
tmp[Kl] = cy;
|
|
}
|
|
|
|
|
|
/* Store in {A+(nprime + 1) * offset, nprime+1} the first l limbs
|
|
(with zero padding) from {n + l*offset, ...},
|
|
and in {A + (nprime+1)*(offset + 1<<stride), nprime+1} the first l
|
|
limbs from {n + l*(offset+1<<stride), ...}, and generally
|
|
in {A + (nprime+1)*(offset + i<<stride), nprime+1} the first l
|
|
limbs from {n + l*(offset + i<<stride), ...}, for
|
|
offset + i<<stride < K.
|
|
|
|
A must have space for at least (nprime + 1)*K limbs.
|
|
T must have space for at least (nprime + 1) limbs.
|
|
Adds weight signal for negacyclic convolution to result if b=1
|
|
(nothing if b=-1).
|
|
We need Mp so that ord(sqrt(2)^Mp) == K, with K = 2^k.
|
|
*/
|
|
static void
|
|
mpn_mul_fft_decompose (mp_ptr A, mp_ptr *Ap, mp_size_t K, mp_size_t offset,
|
|
mp_size_t stride, mp_size_t nprime, mp_srcptr n,
|
|
mp_size_t nl, mp_size_t l, mp_size_t Mp, mp_ptr T, int b)
|
|
{
|
|
mp_size_t i, j;
|
|
mp_ptr tmp;
|
|
const mp_size_t Kl = K * l;
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
ASSERT(b == 1 || b == -1);
|
|
ASSERT(Mp * K == 4 * nprime * GMP_LIMB_BITS);
|
|
ASSERT(b == -1 || Mp % 2 == 0);
|
|
|
|
if (nl > Kl + 1)
|
|
{
|
|
/* FIXME: We really don't want to do this multiple times if
|
|
stride > 0 ! */
|
|
TRACE(printf ("mpn_mul_fft_decompose: This takes too long!\n");)
|
|
tmp = TMP_ALLOC_LIMBS(Kl + 1);
|
|
mpn_mul_fft_reduce (tmp, n, nl, Kl, b);
|
|
n = tmp;
|
|
nl = Kl + 1;
|
|
}
|
|
|
|
A += (nprime + 1) * offset;
|
|
n += l * offset;
|
|
nl -= (l * offset < nl) ? l * offset : nl;
|
|
/* for b=1, since we use {T, nprime+1} as temporary array below,
|
|
and only the first l limbs may be non-zero, except for the last
|
|
part, we can set {T+l, nprime+1-l} to zero now. */
|
|
MPN_FFT_ZERO (T + l, nprime + 1 - l);
|
|
|
|
for (i = offset; i < K; i += 1 << stride)
|
|
{
|
|
Ap[i] = A;
|
|
/* store the next l limbs of n into A[0..nprime] */
|
|
|
|
/* nl == 0 => j == 0, nl unchanged */
|
|
j = (l <= nl && i < K - 1) ? l : nl; /* store j next limbs */
|
|
nl -= j;
|
|
nl -= (nl > (l << stride) - l) ? (l << stride) - l : nl;
|
|
if (b == 1 && i != 0 && j > 0)
|
|
{
|
|
/* add weight signal for negacyclic convolution. We need a
|
|
root of unity here whose order is twice the transform
|
|
length K. Since ord(sqrt(2)^Mp) = K, sqrt(2)^(Mp/2)
|
|
will do, so long as Mp is even. */
|
|
#define FORCE_EXPENSIVE_DECOMPOSE 0
|
|
if ((FORCE_EXPENSIVE_DECOMPOSE) || (i & (Mp / 2) & 1))
|
|
{
|
|
#ifdef COUNT_ZEROCOPY
|
|
printf ("mpn_mul_fft_decompose: MPN_FFT_COPY 1 with %d limbs\n",
|
|
j);
|
|
#endif
|
|
MPN_FFT_COPY (T, n, j);
|
|
ASSERT_ALWAYS (j <= l + 1);
|
|
if (j < l)
|
|
MPN_FFT_ZERO (T + j, l - j);
|
|
mpn_fft_mul_sqrt2exp_modF (A, T, i * (Mp / 2), nprime);
|
|
}
|
|
else
|
|
{
|
|
/* i * Mp / 2 is even, so weight signal is
|
|
sqrt(2)^(i * Mp / 2) = 2^(i * Mp / 4).
|
|
Shift directly into A. */
|
|
const mp_size_t c = (i * Mp) / 4;
|
|
const mp_size_t d = c % GMP_NUMB_BITS;
|
|
const mp_size_t e = c / GMP_NUMB_BITS;
|
|
|
|
#undef DECOMPOSE_CAREFUL_CHECK
|
|
#ifdef DECOMPOSE_CAREFUL_CHECK
|
|
/* Do it the expensive way and store result
|
|
in T for comparison */
|
|
MPN_FFT_COPY (T, n, j);
|
|
ASSERT_ALWAYS (j <= l + 1);
|
|
if (j < l)
|
|
MPN_FFT_ZERO (T + j, l - j);
|
|
mpn_fft_mul_2exp_modF (A, T, c, nprime);
|
|
MPN_COPY (T, A, nprime + 1);
|
|
#endif
|
|
|
|
/* Copy data from n to A+e, shifted by d bits. */
|
|
if (e + j < nprime || (e + j == nprime && d <= 1))
|
|
{
|
|
/* The shifted data fits without wrapping */
|
|
MPN_FFT_ZERO (A, e);
|
|
if (d == 0)
|
|
{
|
|
MPN_COPY(A + e, n, j);
|
|
MPN_FFT_ZERO (A + e + j, nprime + 1 - e - j);
|
|
}
|
|
else
|
|
{
|
|
A[e + j] = mpn_lshift (A + e, n, j, d);
|
|
/* Now zero A[e + j + 1 ... nprime] */
|
|
MPN_FFT_ZERO (A + e + j + 1, nprime - e - j);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const int of = j + e - nprime;
|
|
|
|
if (d == 0)
|
|
{
|
|
/* Here, e + j > nprime, i.e. there is wrapping
|
|
but d == 0, so no bit shifting */
|
|
mp_limb_t cc;
|
|
|
|
ASSERT(e + j > nprime); /* Hence of > 0 */
|
|
|
|
/* Store ~(N_hi) to A[0 ... of[ */
|
|
mpn_com_n (A, n + nprime - e, of);
|
|
cc = mpn_add_1 (A, A, of, ONE);
|
|
|
|
MPN_FFT_STORE (A + of, nprime - j, cc - ONE);
|
|
|
|
/* Store n_lo * w^e */
|
|
ASSERT(nprime - e > 0);
|
|
cc = mpn_sub_1 (A + e, n, nprime - e, ONE - cc);
|
|
A[nprime] = 0;
|
|
MPN_INCR_U (A, nprime + 1, cc);
|
|
}
|
|
else
|
|
{
|
|
/* Here, e + j >= nprime and d != 0 */
|
|
mp_limb_t cc;
|
|
|
|
/* We want n*2^i with i < nprime*w, i > (nprime-j)*w,
|
|
Store nprime-e words, shifted left by d, at A+e.
|
|
*/
|
|
|
|
cc = mpn_lshift (A + e, n, nprime - e, d);
|
|
A[nprime] = 0;
|
|
|
|
if (of > 0)
|
|
{
|
|
/* Store a_hi to A[0 ... of] */
|
|
A[of] = mpn_lshift (A, n + nprime - e, of, d);
|
|
A[0] |= cc;
|
|
/* And do binary negate */
|
|
mpn_com_n (A, A, of + 1);
|
|
cc = mpn_add_1 (A, A, of + 1, ONE);
|
|
}
|
|
else
|
|
{
|
|
A[0] = (mp_limb_t)(-(mp_limb_signed_t)cc);
|
|
cc = (cc == 0);
|
|
}
|
|
|
|
/* Store cc-1 to A[of+1 ... e[ */
|
|
MPN_FFT_STORE (A + of + 1, nprime - j - 1,
|
|
cc - ONE);
|
|
|
|
cc = mpn_sub_1 (A + e, A + e, nprime - e, ONE - cc);
|
|
MPN_INCR_U (A, nprime + 1, cc);
|
|
}
|
|
}
|
|
#ifdef DECOMPOSE_CAREFUL_CHECK
|
|
ASSERT(A[nprime] <= 1);
|
|
if (A[nprime] == 1)
|
|
{
|
|
/* Fully normalize for the sake of the
|
|
following comparison */
|
|
mp_limb_t cc;
|
|
cc = mpn_sub_1 (A, A, nprime, 1);
|
|
A[nprime] = 0;
|
|
mpn_add_1 (A, A, nprime + 1, cc);
|
|
}
|
|
if (mpn_cmp (A, T, nprime + 1) != 0)
|
|
{
|
|
printf ("nprime = %d, i = %d, j = %d, d = %d, "
|
|
"e = %d\n", nprime, i, j, d, e);
|
|
for (i = 0; i < nprime + 1; i++)
|
|
printf ("%d: %lx %lx %c\n", i, A[i], T[i],
|
|
(A[i] != T[i]) ? '!' : ' ');
|
|
abort ();
|
|
}
|
|
MPN_ZERO (T, nprime + 1);
|
|
#endif
|
|
}
|
|
}
|
|
else /* b = -1 or i == 0 or j == 0. No weight to be added here. */
|
|
{
|
|
#ifdef COUNT_ZEROCOPY
|
|
printf ("mpn_mul_fft_decompose: MPN_FFT_COPY 2 with %d limbs\n",
|
|
j);
|
|
#endif
|
|
MPN_COPY (A, n, j);
|
|
MPN_FFT_ZERO (A + j, nprime + 1 - j);
|
|
}
|
|
|
|
ASSERT(A[nprime] <= 1);
|
|
n += l << stride;
|
|
A += (nprime + 1) << stride;
|
|
}
|
|
ASSERT_ALWAYS (nl == 0 || (nl == 1 && stride > 0 && offset == 0));
|
|
TMP_FREE;
|
|
}
|
|
|
|
|
|
/*
|
|
A0 <- A0+A1
|
|
A1 <- (A0-A1)*2^e0
|
|
|
|
Butterfly using a rotating buffer instead of temp space.
|
|
The variable rotbuf is a size-1 array of coefficients; this might be
|
|
exchanged with one of the coefficients of A.
|
|
*/
|
|
|
|
static inline void
|
|
mpn_fft_butterfly_rotbuf (mp_ptr *A, mp_size_t i0, mp_size_t i1,
|
|
mp_size_t e0, mp_ptr *rotbuf, mp_size_t n)
|
|
{
|
|
mp_size_t d, e = e0;
|
|
|
|
ASSERT(e0 != 0);
|
|
DIVMOD_2GMP_NUMB_BITS(d, e); /* 0 <= d < 2*n, 0 <= e0 < 2*GMP_NUMB_BITS */
|
|
mpn_fft_lshsub_modF (rotbuf[0], A[i0], A[i1], d, n);
|
|
mpn_fft_add_modF (A[i0], A[i0], A[i1], n);
|
|
if (e != 0)
|
|
mpn_fft_mul_sqrt2exp_modF (A[i1], rotbuf[0], e, n);
|
|
else
|
|
{
|
|
mp_ptr tmp = rotbuf[0];
|
|
rotbuf[0] = A[i1];
|
|
A[i1] = tmp;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
mpn_fft_butterfly_rotbuf0 (mp_ptr *A, mp_size_t i0, mp_size_t i1,
|
|
mp_ptr *rotbuf, mp_size_t n)
|
|
{
|
|
mp_ptr tmp;
|
|
mpn_fft_sub_modF (rotbuf[0], A[i0], A[i1], n);
|
|
mpn_fft_add_modF (A[i0], A[i0], A[i1], n);
|
|
tmp = rotbuf[0];
|
|
rotbuf[0] = A[i1];
|
|
A[i1] = tmp;
|
|
}
|
|
|
|
/*
|
|
In this version, the shift e0 is in [0..N], so we have to do one more test on e0.
|
|
*/
|
|
|
|
static inline void
|
|
mpn_fft_butterfly_rotbufN (mp_ptr *A, mp_size_t i0, mp_size_t i1,
|
|
mp_size_t e0, mp_ptr *rotbuf, mp_size_t n)
|
|
{
|
|
mp_size_t N = MUL_4GMP_NUMB_BITS(n); /* 4 * n * GMP_NUMB_BITS */
|
|
mp_size_t d;
|
|
|
|
if (e0 >= N)
|
|
e0 -= N;
|
|
DIVMOD_2GMP_NUMB_BITS (d,e0); /* 0 <= d < 2*n, 0 <= e0 < 2*GMP_NUMB_BITS */
|
|
mpn_fft_lshsub_modF (rotbuf[0], A[i0], A[i1], d, n);
|
|
mpn_fft_add_modF (A[i0], A[i0], A[i1], n);
|
|
if (e0 != 0)
|
|
mpn_fft_mul_sqrt2exp_modF (A[i1], rotbuf[0], e0, n);
|
|
else
|
|
{
|
|
mp_ptr tmp = rotbuf[0];
|
|
rotbuf[0] = A[i1];
|
|
A[i1] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Radix 4 transform.
|
|
This uses a rotating buffer: the array Ap gets unsorted (but we
|
|
usually don't care).
|
|
*/
|
|
|
|
static void
|
|
mpn_fft_fft_radix4Rec (mp_ptr *Ap, mp_size_t ind_start, mp_size_t k,
|
|
mp_size_t omega, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mp_size_t i, stride, stride2, K;
|
|
|
|
K = 1<<k;
|
|
stride2 = 1<<(k-2);
|
|
stride = 1<<(k-1);
|
|
|
|
if (k == 1) {
|
|
mpn_fft_butterfly_rotbuf0(Ap, ind_start, ind_start+1, rotbuf, n);
|
|
return;
|
|
}
|
|
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind_start, ind_start+stride, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf (Ap, ind_start+stride2, ind_start+stride+stride2,
|
|
omega*stride2, rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind_start+stride, ind_start+stride+stride2,
|
|
rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind_start, ind_start+stride2, rotbuf, n);
|
|
|
|
for (i = 1; i < stride2; ++i) {
|
|
mpn_fft_butterfly_rotbuf(Ap, ind_start+i, ind_start+i+stride, omega*i, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind_start+i+stride2, ind_start+i+stride+stride2,
|
|
omega*(i+stride2), rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbuf(Ap, ind_start+i+stride, ind_start+i+stride+stride2,
|
|
omega*i*2, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind_start+i, ind_start+i+stride2, omega*i*2, rotbuf, n);
|
|
}
|
|
|
|
if (k == 3) {
|
|
mpn_fft_butterfly_rotbuf0(Ap, ind_start+stride+stride2, ind_start+stride+stride2+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0(Ap, ind_start+stride, ind_start+stride+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0(Ap, ind_start, ind_start+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0(Ap, ind_start+stride2, ind_start+stride2+1, rotbuf, n);
|
|
}
|
|
|
|
if (k > 3) {
|
|
mp_size_t omega4 = omega<<2;
|
|
mpn_fft_fft_radix4Rec(Ap, ind_start, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4Rec(Ap, ind_start+stride2, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4Rec(Ap, ind_start+stride, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4Rec(Ap, ind_start+stride+stride2, k-2, omega4, n, rotbuf);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mpn_fft_fft_radix4 (mp_ptr *Ap, mp_size_t k, mp_size_t omega,
|
|
mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mpn_fft_fft_radix4Rec(Ap, 0, k, omega, n, rotbuf);
|
|
}
|
|
|
|
/*
|
|
The "Neg" versions multiply by the *inverse* of the root. This is used for
|
|
the backward transform. Propagating this bit of information saves the %N, since
|
|
only at the end we do N-blah.
|
|
FIXME: The Neg and non-Neg versions can probably be merged at almost no cost.
|
|
*/
|
|
|
|
|
|
static void
|
|
mpn_fft_fft_radix4RecNeg (mp_ptr *Ap, mp_size_t ind_start, mp_size_t k,
|
|
mp_size_t omega, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mp_size_t i, stride, stride2, K;
|
|
mp_size_t N = MUL_4GMP_NUMB_BITS(n); /* 4 * n * GMP_NUMB_BITS */
|
|
|
|
K = 1 << k;
|
|
stride2 = 1 << (k - 2);
|
|
stride = 1 << (k - 1);
|
|
|
|
if (k == 1)
|
|
{
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start, ind_start+1, 0, rotbuf, n);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < stride2; ++i) {
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+i, ind_start+i+stride, N-omega*i, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+i+stride2, ind_start+i+stride+stride2,
|
|
N-omega*(i+stride2), rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+i+stride, ind_start+i+stride+stride2,
|
|
N-omega*i*2, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+i, ind_start+i+stride2, N-omega*i*2, rotbuf, n);
|
|
}
|
|
|
|
if (k == 3) {
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+stride+stride2, ind_start+stride+stride2+1, 0, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+stride, ind_start+stride+1, 0, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start, ind_start+1, 0, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind_start+stride2, ind_start+stride2+1, 0, rotbuf, n);
|
|
}
|
|
|
|
if (k > 3) {
|
|
mp_size_t omega4 = omega<<2;
|
|
mpn_fft_fft_radix4RecNeg(Ap, ind_start, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4RecNeg(Ap, ind_start+stride2, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4RecNeg(Ap, ind_start+stride, k-2, omega4, n, rotbuf);
|
|
mpn_fft_fft_radix4RecNeg(Ap, ind_start+stride+stride2, k-2, omega4, n, rotbuf);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mpn_fft_fft_radix4Neg (mp_ptr *Ap, mp_size_t k, mp_size_t omega,
|
|
mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mpn_fft_fft_radix4RecNeg(Ap, 0, k, omega, n, rotbuf);
|
|
}
|
|
|
|
static void
|
|
mpn_fft_fft_radix4Inv(mp_ptr *Ap, mp_size_t k, mp_size_t omega,
|
|
mp_size_t n, mp_ptr *rotbuf, mp_size_t **ll)
|
|
{
|
|
mp_size_t i;
|
|
|
|
/* Bit-reverse table Ap.
|
|
FIXME: these bit-rev copies might be avaoided. But do they really cost? */
|
|
for (i = 0; i < 1<<k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[k][i];
|
|
if (i < j) {
|
|
tmp = Ap[i];
|
|
Ap[i] = Ap[j];
|
|
Ap[j] = tmp;
|
|
}
|
|
}
|
|
|
|
mpn_fft_fft_radix4RecNeg(Ap, 0, k, omega, n, rotbuf);
|
|
|
|
/* Bit-reverse table Ap (again!) */
|
|
for (i = 0; i < 1<<k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[k][i];
|
|
if (i < j) {
|
|
tmp = Ap[i];
|
|
Ap[i] = Ap[j];
|
|
Ap[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Twisted variant of radix 4.
|
|
The roots are different; this is used in the first step of Bailey's algorithm.
|
|
This twisted version avoids the normalisation phase (linear cost) of the
|
|
original algorithm.
|
|
*/
|
|
|
|
static void mpn_fft_fftR4_twistedRec(mp_ptr * Ap, mp_size_t ind, mp_size_t k,
|
|
mp_size_t omega, mp_size_t om_curr, mp_size_t om_mult, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
const mp_size_t stride = 1<<(k-1);
|
|
const mp_size_t stride2 = 1<<(k-2);
|
|
mp_size_t i;
|
|
|
|
if (k == 0)
|
|
return;
|
|
|
|
ASSERT (omega != 0);
|
|
|
|
if (om_mult == 0)
|
|
{
|
|
if (k == 1) {
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind, ind + 1, rotbuf, n);
|
|
return;
|
|
}
|
|
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind, ind+stride, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf (Ap, ind+stride2, ind+stride+stride2, omega*om_curr*stride2, rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind+stride, ind+stride+stride2, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind, ind+stride2, rotbuf, n);
|
|
|
|
for (i = 1; i < stride2; ++i) {
|
|
mp_size_t root = omega*om_curr*i;
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i, ind+stride+i, root, rotbuf, n);
|
|
root = omega*om_curr*(i+stride2);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i+stride2, ind+stride+stride2+i, root, rotbuf, n);
|
|
root = 2*omega*om_curr*i;
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i+stride, ind+stride+stride2+i, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i, ind+stride2+i, root, rotbuf, n);
|
|
}
|
|
|
|
if (k == 3) {
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind+stride+stride2, ind+stride+stride2+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind+stride, ind+stride+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind, ind+1, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf0 (Ap, ind+stride2, ind+stride2+1, rotbuf, n);
|
|
}
|
|
|
|
if (k > 3) {
|
|
mpn_fft_fftR4_twistedRec(Ap, ind, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (k == 1)
|
|
{
|
|
mpn_fft_butterfly_rotbuf (Ap, ind, ind + 1, omega * om_mult, rotbuf, n);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < stride2; ++i) {
|
|
mp_size_t root = omega*(om_curr*i + om_mult);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i, ind+stride+i, root, rotbuf, n);
|
|
root = omega*(om_curr*(i+stride2) + om_mult);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i+stride2, ind+stride+stride2+i, root, rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i+stride, ind+stride+stride2+i, omega*(om_curr*i + om_mult)*2, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i, ind+stride2+i, omega*(om_curr*i + om_mult)*2, rotbuf, n);
|
|
}
|
|
|
|
if (k == 3) {
|
|
mp_size_t root = omega*om_mult*4;
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+stride+stride2, ind+stride+stride2+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+stride, ind+stride+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind, ind+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+stride2, ind+stride2+1, root, rotbuf, n);
|
|
}
|
|
|
|
if (k > 3) {
|
|
mpn_fft_fftR4_twistedRec(Ap, ind, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRec(Ap, ind+stride+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
}
|
|
}
|
|
|
|
|
|
static void mpn_fft_fftR4_twisted(mp_ptr * Ap, mp_size_t rk, mp_size_t k1, mp_size_t k,
|
|
mp_size_t omega, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mpn_fft_fftR4_twistedRec(Ap, 0, k1, omega, 1<<(k-k1), rk, n, rotbuf);
|
|
}
|
|
|
|
/*
|
|
Neg version for reverse transform.
|
|
(see comments above)
|
|
*/
|
|
|
|
static void mpn_fft_fftR4_twistedRecNeg(mp_ptr * Ap, mp_size_t ind, mp_size_t k,
|
|
mp_size_t omega, mp_size_t om_curr, mp_size_t om_mult, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mp_size_t stride = 1<<(k-1);
|
|
mp_size_t stride2 = 1<<(k-2);
|
|
mp_size_t i;
|
|
mp_size_t N = MUL_4GMP_NUMB_BITS(n); /* 4 * n * GMP_NUMB_BITS */
|
|
|
|
|
|
if (k == 0)
|
|
return;
|
|
|
|
if (k == 1)
|
|
{
|
|
mpn_fft_butterfly_rotbufN (Ap, ind, ind + 1, N - omega * om_mult, rotbuf,
|
|
n);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < stride2; ++i) {
|
|
mp_size_t root = omega*(om_curr*i + om_mult);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+i, ind+stride+i, N-root, rotbuf, n);
|
|
root = omega*(om_curr*(i+stride2) + om_mult);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+i+stride2, ind+stride+stride2+i, N-root, rotbuf, n);
|
|
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+i+stride, ind+stride+stride2+i, N-omega*(om_curr*i + om_mult)*2, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+i, ind+stride2+i, N-omega*(om_curr*i + om_mult)*2, rotbuf, n);
|
|
}
|
|
|
|
if (k == 3) {
|
|
mp_size_t root = N-omega*om_mult*4;
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+stride+stride2, ind+stride+stride2+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+stride, ind+stride+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind, ind+1, root, rotbuf, n);
|
|
mpn_fft_butterfly_rotbufN(Ap, ind+stride2, ind+stride2+1, root, rotbuf, n);
|
|
}
|
|
|
|
if (k > 3) {
|
|
mpn_fft_fftR4_twistedRecNeg(Ap, ind, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRecNeg(Ap, ind+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRecNeg(Ap, ind+stride, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
mpn_fft_fftR4_twistedRecNeg(Ap, ind+stride+stride2, k-2, omega, om_curr<<2, om_mult<<2, n, rotbuf);
|
|
}
|
|
}
|
|
|
|
|
|
static void mpn_fft_fftR4_twistedNeg(mp_ptr * Ap, mp_size_t rk, mp_size_t k1, mp_size_t k,
|
|
mp_size_t omega, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
mpn_fft_fftR4_twistedRecNeg(Ap, 0, k1, omega, 1<<(k-k1), rk, n, rotbuf);
|
|
}
|
|
|
|
/*
|
|
Radix-2 version of the previous function. Obsolete, now, but more easy to
|
|
understand; so I let it here.
|
|
*/
|
|
|
|
static void mpn_fft_fft_twistedRec(mp_ptr * Ap, mp_size_t ind, mp_size_t k,
|
|
mp_size_t omega, mp_size_t om_curr, mp_size_t om_mult, mp_size_t n, mp_ptr *rotbuf)
|
|
{
|
|
const mp_size_t stride = 1<<(k-1);
|
|
mp_size_t i;
|
|
|
|
if (k == 0)
|
|
return;
|
|
|
|
for (i = 0; i < stride; ++i) {
|
|
mp_size_t root = (omega*(om_curr*i + om_mult));
|
|
mpn_fft_butterfly_rotbuf(Ap, ind+i, ind+stride+i, root, rotbuf, n);
|
|
}
|
|
mpn_fft_fft_twistedRec(Ap, ind, k-1, omega, om_curr<<1, om_mult<<1, n, rotbuf);
|
|
mpn_fft_fft_twistedRec(Ap, ind+stride, k-1, omega, om_curr<<1, om_mult<<1, n, rotbuf);
|
|
}
|
|
|
|
|
|
static void mpn_fft_fft_twisted(mp_ptr * Ap, mp_size_t rk, mp_size_t k1, mp_size_t k,
|
|
mp_size_t omega, mp_size_t n, mp_ptr * rotbuf)
|
|
{
|
|
mpn_fft_fft_twistedRec(Ap, 0, k1, omega, 1<<(k-k1), rk, n, rotbuf);
|
|
}
|
|
|
|
/*
|
|
Bailey's algorithm.
|
|
This cuts a 2^k-length transform in 2 blocks. Let k = k1+k2:
|
|
- First do 2^k2 transforms of length 2^k1
|
|
- Then do 2^k1 transforms of length 2^k2
|
|
The small transforms are done using radix 4. We tried radix 8, but this does not seem
|
|
to pay... Also tried cutting into 3 or 4 parts, but this also failed. Maybe have to
|
|
investigate more for very large inputs.
|
|
*/
|
|
|
|
|
|
static void
|
|
mpn_fft_fft_bailey (mp_ptr * Ap, mp_size_t k, mp_size_t omega,
|
|
mp_size_t n, mp_ptr * rotbuf)
|
|
{
|
|
const mp_size_t k1 = k >> 1;
|
|
const mp_size_t k2 = k - k1;
|
|
mp_size_t i, j;
|
|
const mp_size_t K1 = 1 << k1;
|
|
const mp_size_t K2 = 1 << k2;
|
|
mp_size_t omegai;
|
|
mp_ptr *BufA;
|
|
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
BufA = TMP_ALLOC_MP_PTRS (K1);
|
|
|
|
for (i = 0; i < K2; ++i) {
|
|
// copy the i-th column of Ap into BufA (pointers... no real copy)
|
|
for (j = 0; j < K1; ++j)
|
|
BufA[j] = Ap[i+K2*j];
|
|
// do the level k1 transform
|
|
mpn_fft_fftR4_twisted(BufA, i, k1, k, omega, n, rotbuf);
|
|
// copy back (since with the rotating buffer, the pointers have been
|
|
// moved around.
|
|
for (j = 0; j < K1; ++j)
|
|
Ap[i+K2*j] = BufA[j];
|
|
}
|
|
|
|
omegai = omega<<k1;
|
|
for (j = 0; j < K1; ++j)
|
|
mpn_fft_fft_radix4(Ap+j*K2, k2, omegai, n, rotbuf);
|
|
|
|
TMP_FREE;
|
|
}
|
|
|
|
static void
|
|
mpn_fft_fft_bailey_decompose (mp_ptr A, mp_ptr *Ap, mp_size_t k,
|
|
mp_size_t omega, mp_size_t nprime, mp_srcptr n,
|
|
mp_size_t nl, mp_size_t l, mp_ptr *rotbuf, int b)
|
|
{
|
|
const mp_size_t k1 = k >> 1;
|
|
const mp_size_t k2 = k - k1;
|
|
mp_size_t i, j;
|
|
const mp_size_t K1 = 1 << k1;
|
|
const mp_size_t K2 = 1 << k2;
|
|
mp_size_t omegai;
|
|
mp_ptr *BufA;
|
|
mp_ptr T, tmp;
|
|
const mp_size_t Kl = l << k;
|
|
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
BufA = TMP_ALLOC_MP_PTRS (K1);
|
|
|
|
T = TMP_ALLOC_LIMBS(nprime + 1);
|
|
|
|
if (nl > Kl)
|
|
{
|
|
tmp = TMP_ALLOC_LIMBS(Kl + 1);
|
|
mpn_mul_fft_reduce (tmp, n, nl, Kl, b);
|
|
n = tmp;
|
|
nl = Kl + 1;
|
|
}
|
|
|
|
for (i = 0; i < K2; ++i) {
|
|
/* Do the decomposition */
|
|
/* omega is equal to Mp value */
|
|
mpn_mul_fft_decompose (A, Ap, 1<<k, i, k2, nprime, n, nl, l,
|
|
omega, T, b);
|
|
|
|
// copy the i-th column of Ap into BufA (pointers... no real copy)
|
|
for (j = 0; j < K1; ++j)
|
|
BufA[j] = Ap[i+K2*j];
|
|
// do the level k1 transform
|
|
mpn_fft_fftR4_twisted(BufA, i, k1, k, omega, nprime, rotbuf);
|
|
// copy back (since with the rotating buffer, the pointers have been
|
|
// moved around.
|
|
for (j = 0; j < K1; ++j)
|
|
Ap[i+K2*j] = BufA[j];
|
|
}
|
|
|
|
omegai = omega<<k1;
|
|
for (j = 0; j < K1; ++j)
|
|
mpn_fft_fft_radix4(Ap+j*K2, k2, omegai, nprime, rotbuf);
|
|
|
|
TMP_FREE;
|
|
}
|
|
|
|
/*
|
|
Bailey's algorithm for inverse transform.
|
|
We use functions that propagate the fact that the root should be inverted
|
|
before multiplying (i.e. the shift count negated)
|
|
*/
|
|
|
|
static void
|
|
mpn_fft_fft_baileyInv (mp_ptr * Ap, mp_size_t k, mp_size_t omega,
|
|
mp_size_t n, mp_ptr * rotbuf, mp_size_t ** ll)
|
|
{
|
|
const mp_size_t k1 = k >> 1;
|
|
const mp_size_t k2 = k - k1;
|
|
mp_size_t i, j;
|
|
const mp_size_t K1 = 1 << k1;
|
|
const mp_size_t K2 = 1 << k2;
|
|
mp_size_t omegai;
|
|
mp_ptr *BufA;
|
|
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
|
|
// Bit-reverse table Ap.
|
|
// FIXME: these bit-rev copies might be avoided. But do they really cost?
|
|
for (i = 0; i < 1<<k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[k][i];
|
|
if (i < j) {
|
|
tmp = Ap[i];
|
|
Ap[i] = Ap[j];
|
|
Ap[j] = tmp;
|
|
}
|
|
}
|
|
|
|
BufA = TMP_ALLOC_MP_PTRS (K1);
|
|
|
|
for (i = 0; i < K2; ++i) {
|
|
// copy the i-th column of Ap into BufA (pointers... no real copy)
|
|
for (j = 0; j < K1; ++j)
|
|
BufA[j] = Ap[i+K2*j];
|
|
// do the level k1 transform
|
|
mpn_fft_fftR4_twistedNeg(BufA, i, k1, k, omega, n, rotbuf);
|
|
// copy back (since with the rotating buffer, the pointers have been
|
|
// moved around.
|
|
for (j = 0; j < K1; ++j)
|
|
Ap[i+K2*j] = BufA[j];
|
|
}
|
|
|
|
omegai = (omega<<k1) ;
|
|
for (j = 0; j < K1; ++j)
|
|
mpn_fft_fft_radix4Neg(Ap+j*K2, k2, omegai, n, rotbuf);
|
|
|
|
// Bit-reverse table Ap (again...)
|
|
for (i = 0; i < 1<<k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[k][i];
|
|
if (i < j) {
|
|
tmp = Ap[i];
|
|
Ap[i] = Ap[j];
|
|
Ap[j] = tmp;
|
|
}
|
|
}
|
|
|
|
TMP_FREE;
|
|
}
|
|
|
|
/* a[i] <- a[i]*b[i] mod 2^(n*GMP_NUMB_BITS)+1 for 0 <= i < K */
|
|
static void
|
|
mpn_fft_mul_modF_K (mp_ptr *ap, mp_ptr *bp, mp_size_t n, mp_size_t K)
|
|
{
|
|
mp_size_t i;
|
|
int sqr = (ap == bp);
|
|
TMP_DECL;
|
|
|
|
TMP_MARK;
|
|
|
|
if (n >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
|
|
{
|
|
mp_size_t k, K2, nprime2, Nprime2, M2, maxLK, l;
|
|
mp_size_t **_fft_l;
|
|
mp_ptr *Ap, *Bp, A, B, T;
|
|
|
|
k = mpn_fft_best_k (n, sqr);
|
|
K2 = 1 << k;
|
|
ASSERT_ALWAYS((n & (K2 - 1)) == 0);
|
|
maxLK = LCM_GMP_NUMB_BITS (k);
|
|
M2 = MUL_GMP_NUMB_BITS(n) >> k;
|
|
l = n >> k;
|
|
Nprime2 = ((2 * M2 + k + 2 + maxLK) / maxLK) * maxLK;
|
|
/* Nprime2 = ceil((2*M2+k+3)/maxLK)*maxLK*/
|
|
nprime2 = DIV_GMP_NUMB_BITS (Nprime2); /* Nprime2 / GMP_NUMB_BITS */
|
|
|
|
/* we should ensure that nprime2 is a multiple of the next K */
|
|
if (nprime2 >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
|
|
{
|
|
mp_size_t K3;
|
|
for (;;)
|
|
{
|
|
K3 = 1L << mpn_fft_best_k (nprime2, sqr);
|
|
if ((nprime2 & (K3 - 1)) == 0)
|
|
break;
|
|
nprime2 = (nprime2 + K3 - 1) & -K3;
|
|
Nprime2 = nprime2 * GMP_LIMB_BITS;
|
|
/* warning: since nprime2 changed, K3 may change too! */
|
|
}
|
|
}
|
|
ASSERT_ALWAYS(nprime2 < n); /* otherwise we'll loop */
|
|
|
|
Ap = TMP_ALLOC_MP_PTRS (K2);
|
|
Bp = TMP_ALLOC_MP_PTRS (K2);
|
|
A = TMP_ALLOC_LIMBS (2 * K2 * (nprime2 + 1));
|
|
T = TMP_ALLOC_LIMBS (2 * (nprime2 + 1));
|
|
B = A + K2 * (nprime2 + 1);
|
|
_fft_l = TMP_ALLOC_TYPE (k + 1, mp_size_t *);
|
|
for (i = 0; i <= k; i++)
|
|
_fft_l[i] = TMP_ALLOC_TYPE (1UL<<i, mp_size_t);
|
|
mpn_fft_initl (_fft_l, k);
|
|
|
|
TRACE (printf ("recurse: %dx%d limbs -> %d times %dx%d (%1.2f)\n", n,
|
|
n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));
|
|
for (i = 0; i < K; i++, ap++, bp++)
|
|
{
|
|
mpn_fft_normalize (*ap, n);
|
|
if (!sqr)
|
|
mpn_fft_normalize (*bp, n);
|
|
mpn_mul_fft_internal (*ap, n, *ap, n + 1, *bp, n + 1, k, Ap, Bp,
|
|
A, B, nprime2, l, _fft_l, T, 1, 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mp_ptr a, b, tp, tpn;
|
|
mp_limb_t cc;
|
|
mp_size_t n2 = 2 * n;
|
|
tp = TMP_ALLOC_LIMBS (n2);
|
|
tpn = tp + n;
|
|
TRACE (printf ("mpn_fft_mul_modF_K: mpn_mul_n %d of %d limbs\n", K, n));
|
|
/* FIXME: write a special loop for the square case, to put the test
|
|
out of the loop, and optimize the case a[n] != 0: maybe normalizing
|
|
a and b will be faster? */
|
|
for (i = 0; i < K; i++)
|
|
{
|
|
a = *ap++;
|
|
b = *bp++;
|
|
if (LIKELY(a[0] >= a[n]))
|
|
{
|
|
a[0] -= a[n];
|
|
a[n] = 0;
|
|
}
|
|
if (LIKELY(b[0] >= b[n]))
|
|
{
|
|
b[0] -= b[n];
|
|
b[n] = 0;
|
|
}
|
|
if (sqr)
|
|
mpn_sqr_n (tp, a, n);
|
|
else
|
|
mpn_mul_n (tp, b, a, n);
|
|
cc = a[n] && mpn_add_n (tpn, tpn, b, n);
|
|
cc += b[n] && mpn_add_n (tpn, tpn, a, n);
|
|
cc += b[n] && a[n];
|
|
/* 0 <= cc <= 3 */
|
|
cc += mpn_sub_n (a, tp, tpn, n);
|
|
/* 0 <= cc <= 4 */
|
|
a[n] = 0;
|
|
MPN_INCR_U (a, n + 1, cc);
|
|
}
|
|
}
|
|
TMP_FREE;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Mix Point-wise multiplication and inverse FFT.
|
|
* This is useful, since we save one pass on the whole data, thus
|
|
* improving the locality.
|
|
*
|
|
* FIXME: A lot of duplicated code in this function. At some point it
|
|
* will be necessary to clean-up things to keep it possible to maintain.
|
|
*
|
|
*/
|
|
static void
|
|
mpn_fft_mul_modF_K_fftInv (mp_ptr *ap, mp_ptr *bp, mp_size_t n, mp_size_t Mp, mp_size_t old_k,
|
|
mp_ptr *rotbuf, mp_size_t**ll)
|
|
{
|
|
mp_size_t i, j;
|
|
int sqr = (ap == bp);
|
|
TMP_DECL;
|
|
|
|
TMP_MARK;
|
|
|
|
if (n >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
|
|
{
|
|
mp_size_t k, K2, nprime2, Nprime2, M2, maxLK, l;
|
|
mp_size_t **_fft_l;
|
|
mp_ptr *Ap, *Bp, A, B, T;
|
|
|
|
k = mpn_fft_best_k (n, sqr);
|
|
K2 = 1 << k;
|
|
ASSERT_ALWAYS((n & (K2 - 1)) == 0);
|
|
maxLK = LCM_GMP_NUMB_BITS(k);
|
|
M2 = MUL_GMP_NUMB_BITS(n) >> k;
|
|
l = n >> k;
|
|
Nprime2 = ((2 * M2 + k + 2 + maxLK) / maxLK) * maxLK;
|
|
/* Nprime2 = ceil((2*M2+k+3)/maxLK)*maxLK*/
|
|
nprime2 = DIV_GMP_NUMB_BITS(Nprime2);
|
|
|
|
/* we should ensure that nprime2 is a multiple of the next K */
|
|
if (nprime2 >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
|
|
{
|
|
mp_size_t K3;
|
|
for (;;)
|
|
{
|
|
K3 = 1L << mpn_fft_best_k (nprime2, sqr);
|
|
if ((nprime2 & (K3 - 1)) == 0)
|
|
break;
|
|
nprime2 = (nprime2 + K3 - 1) & -K3;
|
|
Nprime2 = nprime2 * GMP_LIMB_BITS;
|
|
/* warning: since nprime2 changed, K3 may change too! */
|
|
}
|
|
}
|
|
ASSERT_ALWAYS(nprime2 < n); /* otherwise we'll loop */
|
|
|
|
Ap = TMP_ALLOC_MP_PTRS (K2);
|
|
Bp = TMP_ALLOC_MP_PTRS (K2);
|
|
A = TMP_ALLOC_LIMBS (2 * K2 * (nprime2 + 1));
|
|
T = TMP_ALLOC_LIMBS (2 * (nprime2 + 1));
|
|
B = A + K2 * (nprime2 + 1);
|
|
_fft_l = TMP_ALLOC_TYPE (k + 1, mp_size_t *);
|
|
for (i = 0; i <= k; i++)
|
|
_fft_l[i] = TMP_ALLOC_TYPE (1UL<<i, mp_size_t);
|
|
mpn_fft_initl (_fft_l, k);
|
|
|
|
TRACE (printf ("recurse: %dx%d limbs -> %d times %dx%d (%1.2f)\n", n,
|
|
n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));
|
|
|
|
{
|
|
mp_size_t k1, k2, N, K1, omega, omegai;
|
|
mp_ptr tp, tpn, *BufA;
|
|
mp_size_t n2 = n << 1;
|
|
tp = TMP_ALLOC_LIMBS (n2);
|
|
tpn = tp + n;
|
|
|
|
k1 = old_k >> 1;
|
|
k2 = old_k - k1;
|
|
N = MUL_4GMP_NUMB_BITS(n); /* 4 * n * GMP_NUMB_BITS */
|
|
K1 = 1 << k1;
|
|
K2 = 1 << k2; /* we overwrite the previous variable, here,
|
|
but it is no longer used */
|
|
omega = Mp;
|
|
|
|
BufA = TMP_ALLOC_MP_PTRS (K1);
|
|
|
|
for (i = 0; i < K2; ++i) {
|
|
// copy the i-th column of Ap into BufA (pointers... no real copy)
|
|
for (j = 0; j < K1; ++j) {
|
|
// Do the point-wise multiplication, the bitreverse and the
|
|
// column selection at once. Should help locality (not
|
|
// readibility).
|
|
mp_size_t ind = ll[old_k][i+K2*j];
|
|
|
|
mpn_fft_normalize (ap[ind], n);
|
|
if (!sqr)
|
|
mpn_fft_normalize (bp[ind], n);
|
|
mpn_mul_fft_internal (ap[ind], n, ap[ind], n + 1, bp[ind], n + 1, k, Ap, Bp,
|
|
A, B, nprime2, l, _fft_l, T, 1, 1);
|
|
|
|
BufA[j] = ap[ind];
|
|
}
|
|
// do the level k1 transform
|
|
mpn_fft_fftR4_twistedNeg(BufA, i, k1, old_k, omega, n, rotbuf);
|
|
// copy back (since with the rotating buffer, the pointers have been
|
|
// moved around.
|
|
for (j = 0; j < K1; ++j)
|
|
ap[ll[old_k][i+K2*j]] = BufA[j];
|
|
}
|
|
|
|
for (i = 0; i < 1<<old_k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[old_k][i];
|
|
if (i < j) {
|
|
tmp = ap[i];
|
|
ap[i] = ap[j];
|
|
ap[j] = tmp;
|
|
}
|
|
}
|
|
|
|
omegai = (omega<<k1) ;
|
|
for (j = 0; j < K1; ++j)
|
|
mpn_fft_fft_radix4Neg(ap+j*K2, k2, omegai, n, rotbuf);
|
|
|
|
// Bit-reverse table Ap (again...)
|
|
for (i = 0; i < 1<<old_k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[old_k][i];
|
|
if (i < j) {
|
|
tmp = ap[i];
|
|
ap[i] = ap[j];
|
|
ap[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mp_size_t k1, k2, N, K1, K2, omega, omegai;
|
|
mp_ptr a, b, tp, tpn, *BufA;
|
|
mp_limb_t cc;
|
|
mp_size_t n2 = 2 * n;
|
|
tp = TMP_ALLOC_LIMBS (n2);
|
|
tpn = tp + n;
|
|
|
|
k1 = old_k / 2;
|
|
k2 = old_k-k1;
|
|
N = MUL_4GMP_NUMB_BITS(n); /* 4 * n * GMP_NUMB_BITS */
|
|
K1 = 1<<k1;
|
|
K2 = 1<<k2;
|
|
omega = Mp;
|
|
|
|
BufA = TMP_ALLOC_MP_PTRS (K1);
|
|
|
|
|
|
for (i = 0; i < K2; ++i) {
|
|
// copy the i-th column of Ap into BufA (pointers... no real copy)
|
|
for (j = 0; j < K1; ++j) {
|
|
// Do the point-wise multiplication, the bitreverse and the
|
|
// column selection at once. Should help locality (not
|
|
// readibility).
|
|
int ind = ll[old_k][i+K2*j];
|
|
|
|
a = ap[ind]; b = bp[ind];
|
|
if (sqr)
|
|
mpn_sqr_n (tp, a, n);
|
|
else
|
|
mpn_mul_n (tp, b, a, n);
|
|
if (a[n] != 0)
|
|
cc = mpn_add_n (tpn, tpn, b, n);
|
|
else
|
|
cc = 0;
|
|
if (b[n] != 0)
|
|
cc += mpn_add_n (tpn, tpn, a, n) + a[n];
|
|
if (cc != 0)
|
|
{
|
|
/* FIXME: use MPN_INCR_U here, since carry is not expected. */
|
|
cc = mpn_add_1 (tp, tp, n2, cc);
|
|
ASSERT (cc == 0);
|
|
}
|
|
a[n] = mpn_sub_n (a, tp, tpn, n) && mpn_add_1 (a, a, n, ONE);
|
|
|
|
BufA[j] = ap[ind];
|
|
}
|
|
// do the level k1 transform
|
|
mpn_fft_fftR4_twistedNeg(BufA, i, k1, old_k, omega, n, rotbuf);
|
|
// copy back (since with the rotating buffer, the pointers have been
|
|
// moved around.
|
|
for (j = 0; j < K1; ++j)
|
|
ap[ll[old_k][i+K2*j]] = BufA[j];
|
|
}
|
|
|
|
for (i = 0; i < 1<<old_k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[old_k][i];
|
|
if (i < j) {
|
|
tmp = ap[i];
|
|
ap[i] = ap[j];
|
|
ap[j] = tmp;
|
|
}
|
|
}
|
|
|
|
omegai = (omega<<k1) ;
|
|
for (j = 0; j < K1; ++j)
|
|
mpn_fft_fft_radix4Neg(ap+j*K2, k2, omegai, n, rotbuf);
|
|
|
|
// Bit-reverse table Ap (again...)
|
|
for (i = 0; i < 1<<old_k; ++i) {
|
|
mp_ptr tmp;
|
|
mp_size_t j = ll[old_k][i];
|
|
if (i < j) {
|
|
tmp = ap[i];
|
|
ap[i] = ap[j];
|
|
ap[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
TMP_FREE;
|
|
}
|
|
|
|
|
|
/* R <- A/2^k mod 2^(n*GMP_NUMB_BITS)+1,
|
|
where A = {a, n+1} is semi-normalized.
|
|
Returns full-normalized R.
|
|
Assumes 0 < k < GMP_NUMB_BITS.
|
|
{r, n+1} and {a, n+1} may overlap, provided r <= a (like mpn_rshift).
|
|
*/
|
|
static void
|
|
mpn_fft_div_2exp_modF (mp_ptr r, mp_srcptr a, mp_size_t k, mp_size_t n)
|
|
{
|
|
mp_limb_t cc;
|
|
|
|
/* Let c be the value of the low k bits from a: the idea is to subtract
|
|
c*(B^n+1) to {a, n+1} to make the low k bits vanish, and then shift
|
|
right by k bits. */
|
|
ASSERT_ALWAYS (0 < k && k < GMP_NUMB_BITS);
|
|
cc = mpn_rshift (r, a, n + 1, k);
|
|
/* now r[n] = 0, and r[n-1] < 2^(GMP_NUMB_BITS + 1 - k), and we have to
|
|
subtract cc at r[n-1] */
|
|
if (r[n - 1] < cc)
|
|
{
|
|
MPN_INCR_U (r, n, ONE); /* compensates borrow in r[n] below.
|
|
Since r[n - 1] < cc, the carry
|
|
propagation cannot attain r[n]. */
|
|
r[n] = r[n - 1] >= cc; /* rare case where R = B^n */
|
|
}
|
|
r[n - 1] -= cc;
|
|
}
|
|
|
|
/* A <- A/sqrt(2)^k mod 2^(n*GMP_NUMB_BITS)+1.
|
|
Assumes 0 < k < 4*n*GMP_NUMB_BITS.
|
|
FIXME: can we use the trick used in mpn_fft_div_sqrt2exp_modF above? */
|
|
static void
|
|
mpn_fft_div_sqrt2exp_modF (mp_ptr r, mp_srcptr a, mp_size_t k, mp_size_t n)
|
|
{
|
|
ASSERT (r != a);
|
|
#ifdef NO_SQRT_2
|
|
ASSERT_ALWAYS (k % 2 == 0);
|
|
#endif
|
|
ASSERT (0 < k && k < MUL_4GMP_NUMB_BITS(n));
|
|
mpn_fft_mul_sqrt2exp_modF (r, a, MUL_4GMP_NUMB_BITS(n) - k, n);
|
|
/* 1/2^k = 2^(2nL-k) mod 2^(n*GMP_NUMB_BITS)+1 */
|
|
/* normalize so that R < 2^(n*GMP_NUMB_BITS)+1 */
|
|
mpn_fft_normalize (r, n);
|
|
}
|
|
|
|
/* {rp,n} <- {ap,an} mod 2^(n*GMP_NUMB_BITS)+b, where b=1 or b=-1.
|
|
Returns carry out, i.e. 1 iff b=1 and {ap,an}=-1 mod 2^(n*GMP_NUMB_BITS)+1,
|
|
then {rp,n}=0. No restriction on an, except an >= 1.
|
|
*/
|
|
static mp_limb_t
|
|
mpn_fft_norm_modF (mp_ptr rp, mp_size_t n, mp_srcptr ap, mp_size_t an, int b)
|
|
{
|
|
if (an <= n)
|
|
{
|
|
#ifdef COUNT_ZEROCOPY
|
|
printf ("mpn_fft_norm_modF: MPN_FFT_COPY with %d limbs\n", an);
|
|
#endif
|
|
MPN_COPY (rp, ap, an);
|
|
if (an < n)
|
|
MPN_FFT_ZERO (rp + an, n - an);
|
|
return 0;
|
|
}
|
|
else /* an > n */
|
|
{
|
|
mp_size_t l;
|
|
mp_limb_t cc;
|
|
mp_size_t i;
|
|
|
|
l = (an <= 2 * n) ? an - n : n;
|
|
if (b == -1)
|
|
cc = mpn_add (rp, ap, n, ap + n, l);
|
|
else
|
|
cc = (mp_limb_t)(-(mp_limb_signed_t)mpn_sub (rp, ap, n, ap + n, l));
|
|
ap += n + l;
|
|
an -= n + l;
|
|
for (i = -1; an > 0; i = -b * i)
|
|
{ /* it remains to deal with {ap, an} */
|
|
l = (an <= n) ? an : n;
|
|
if (i == -1)
|
|
cc += mpn_add (rp, rp, n, ap, l);
|
|
else
|
|
cc -= mpn_sub (rp, rp, n, ap, l);
|
|
ap += l;
|
|
an -= l;
|
|
}
|
|
if (b == 1)
|
|
{
|
|
if (cc & GMP_LIMB_HIGHBIT) /* cc < 0 */
|
|
cc = mpn_add_1 (rp, rp, n, (mp_limb_t)(-(mp_limb_signed_t)cc));
|
|
cc = mpn_sub_1 (rp, rp, n, cc);
|
|
}
|
|
else /* b = -1: necessarily cc >= 0 */
|
|
cc = mpn_add_1 (rp, rp, n, cc);
|
|
return mpn_add_1 (rp, rp, n, cc);
|
|
}
|
|
}
|
|
|
|
|
|
/* op <- n*m mod 2^N+b with fft of size 2^k where N=pl*GMP_NUMB_BITS
|
|
n and m have respectively nl and ml limbs
|
|
op must have space for pl+1 limbs if rec=1 (and pl limbs if rec=0).
|
|
One must have pl = mpn_fft_next_size (pl, k).
|
|
T must have space for 2 * (nprime + 1) limbs.
|
|
|
|
If rec=0, then store only the pl low bits of the result, and return
|
|
the out carry.
|
|
|
|
Assumes b=1 (negacyclic convolution) or b=-1 (cyclic convolution).
|
|
*/
|
|
static int
|
|
mpn_mul_fft_internal (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
mp_size_t k,
|
|
mp_ptr *Ap, mp_ptr *Bp,
|
|
mp_ptr A, mp_ptr B,
|
|
mp_size_t nprime, mp_size_t l,
|
|
mp_size_t **_fft_l,
|
|
mp_ptr T, mp_size_t rec, int b)
|
|
{
|
|
const mp_size_t K = 1<<k; /* K = the transform length */
|
|
/* Choose Mp so that sqrt(2)^Mp has order 2^k.
|
|
Remember: sqrt(2) has order 4*Nprime (mod 2^Nprime + 1) */
|
|
const mp_size_t Mp = (4 * nprime * GMP_LIMB_BITS) >> k;
|
|
mp_size_t i, pla, lo, sh, j;
|
|
int ii;
|
|
int sqr;
|
|
mp_ptr p;
|
|
mp_limb_t cc;
|
|
mp_ptr rotbufA[1], rotbufB[1]; /* we need two rotating buffers, otherwise
|
|
some Ap[i] may point to the B[] array,
|
|
and will be erase since we use the B[]
|
|
array to store the final result {p,pla} */
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
rotbufA[0] = TMP_ALLOC_LIMBS(nprime+1);
|
|
rotbufB[0] = TMP_ALLOC_LIMBS(nprime+1);
|
|
|
|
ASSERT(b == 1 || b == -1);
|
|
|
|
sqr = n == m && nl == ml;
|
|
|
|
TRACE (printf ("mpn_mul_fft_internal: pl=%d k=%d K=%d np=%d l=%d Mp=%d "
|
|
"rec=%d sqr=%d b=%d\n", pl,k,K,nprime,l,Mp,rec,sqr,b));
|
|
|
|
#define BAILEY_THRESHOLD 9
|
|
|
|
/* direct fft's */
|
|
/* This threshold for Bailey's algorithm has been determined
|
|
experimentally on an Opteron. */
|
|
if (k >= BAILEY_THRESHOLD) {
|
|
TRACE(printf("Calling mpn_fft_fft_bailey(Ap, %d, %d, %d, T, ...)\n",
|
|
k,Mp,nprime);)
|
|
/* decomposition of inputs into arrays Ap[i] and Bp[i] */
|
|
#ifdef MERGED_BAILEY_DECOMPOSE
|
|
mpn_fft_fft_bailey_decompose (A, Ap, k, Mp, nprime, n, nl, l, rotbufA, b);
|
|
if (!sqr)
|
|
mpn_fft_fft_bailey_decompose (B, Bp, k, Mp, nprime, m, ml, l, rotbufB, b);
|
|
#else
|
|
mpn_mul_fft_decompose (A, Ap, K, 0, 0, nprime, n, nl, l, Mp, T, b);
|
|
mpn_fft_fft_bailey (Ap, k, Mp, nprime, rotbufA);
|
|
if (!sqr) {
|
|
mpn_mul_fft_decompose (B, Bp, K, 0, 0, nprime, m, ml, l, Mp, T, b);
|
|
mpn_fft_fft_bailey (Bp, k, Mp, nprime, rotbufB);
|
|
}
|
|
#endif
|
|
} else {
|
|
TRACE(printf("Calling mpn_fft_fft_radix4(Ap, %d, %d, %d, T, ...)\n",
|
|
k,Mp,nprime);)
|
|
/* decomposition of inputs into arrays Ap[i] and Bp[i] */
|
|
mpn_mul_fft_decompose (A, Ap, K, 0, 0, nprime, n, nl, l, Mp, T, b);
|
|
if (sqr == 0)
|
|
mpn_mul_fft_decompose (B, Bp, K, 0, 0, nprime, m, ml, l, Mp, T, b);
|
|
|
|
mpn_fft_fft_radix4 (Ap, k, Mp, nprime, rotbufA);
|
|
if (!sqr)
|
|
mpn_fft_fft_radix4 (Bp, k, Mp, nprime, rotbufB);
|
|
}
|
|
|
|
/*
|
|
* We want to multipy the K transformed elements of A and B (or A and A
|
|
* if we're squaring), with products reduced (mod 2^Nprime+1)
|
|
*
|
|
* Then we must do the backward transform.
|
|
*
|
|
* If we are below Bailey's threshold, we assume that the data fits in
|
|
* the cache and do those 2 tasks separately. Otherwise we mix them: we
|
|
* do the point-wise products for the elements of one column, then we
|
|
* readily do the transform of the column since we have it in cache.
|
|
* The code becomes messy (especially when you add the bitreverse
|
|
* stuff), but this saves a bit.
|
|
*/
|
|
if (k >= BAILEY_THRESHOLD) {
|
|
mpn_fft_mul_modF_K_fftInv (Ap, (sqr) ? Ap : Bp, nprime, Mp, k, rotbufA, _fft_l);
|
|
} else {
|
|
mpn_fft_mul_modF_K (Ap, (sqr) ? Ap : Bp, nprime, K);
|
|
TRACE(printf("mpn_mul_fft_internal: Calling mpn_fft_fft_radix4Inv(Ap, %d, "
|
|
"%d, %d, T, ...)\n", k, Mp, nprime);)
|
|
mpn_fft_fft_radix4Inv (Ap, k, Mp, nprime, rotbufA, _fft_l);
|
|
}
|
|
|
|
Bp[0] = T + nprime + 1;
|
|
|
|
/* addition of terms in result p */
|
|
MPN_FFT_ZERO (T, nprime + 1);
|
|
|
|
pla = l * (K - 1) + nprime + 1; /* number of required limbs for p */
|
|
p = B; /* B has K*(n' + 1) limbs, which is >= pla, i.e. enough */
|
|
ASSERT (K * (nprime + 1) >= pla);
|
|
MPN_FFT_ZERO (p, pla);
|
|
|
|
cc = 0; /* will accumulate the (signed) carry at p[pla] */
|
|
for (i = K - 1, lo = l * i + nprime,sh = l * i; i >= 0; i--,lo -= l,sh -= l)
|
|
{
|
|
mp_ptr n = p + sh;
|
|
|
|
j = (K - i) & (K - 1);
|
|
|
|
/* Multiply by appropriate root and reorder. We want to divide by the
|
|
transform length, so divide by sqrt(2)^(2*k) == 2^k */
|
|
if (j > 0 && b == 1)
|
|
mpn_fft_div_sqrt2exp_modF (Bp[0], Ap[K - j],
|
|
2 * k + (K - j) * (Mp / 2), nprime);
|
|
else /* No unweighting to be done, only divide by transform length */
|
|
mpn_fft_div_2exp_modF (Bp[0], Ap[(K - j) & (K - 1)], k, nprime);
|
|
Bp[j] = Bp[0];
|
|
|
|
if (mpn_add_n (n, n, Bp[j], nprime + 1))
|
|
cc += mpn_add_1 (n + nprime + 1, n + nprime + 1,
|
|
pla - sh - nprime - 1, ONE);
|
|
T[2 * l] = (b == 1) ? i + 1 : K; /* T = (i + 1)*2^(2*M) */
|
|
if (mpn_cmp (Bp[j], T, nprime + 1) > 0)
|
|
{ /* subtract 2^N'+1 from {n, nprime} */
|
|
cc -= mpn_sub_1 (n, n , pla - sh, ONE);
|
|
cc -= mpn_sub_1 (p + lo, p + lo, pla - lo, ONE);
|
|
}
|
|
}
|
|
if (cc == (mp_limb_t)(-(mp_limb_signed_t)ONE))
|
|
{
|
|
if ((cc = mpn_add_1 (p + pla - pl, p + pla - pl, pl, ONE)))
|
|
{
|
|
/* p[pla-pl]...p[pla-1] are all zero */
|
|
mpn_sub_1 (p + pla - pl - 1, p + pla - pl - 1, pl + 1, ONE);
|
|
mpn_sub_1 (p + pla - 1, p + pla - 1, 1, ONE);
|
|
}
|
|
}
|
|
else if (cc == ONE)
|
|
{
|
|
if (pla >= 2 * pl)
|
|
{
|
|
while ((cc = mpn_add_1 (p + pla - 2 * pl, p + pla - 2 * pl, 2 * pl, cc)))
|
|
;
|
|
}
|
|
else
|
|
{
|
|
cc = mpn_sub_1 (p + pla - pl, p + pla - pl, pl, cc);
|
|
ASSERT (cc == 0);
|
|
}
|
|
}
|
|
else
|
|
ASSERT (cc == 0);
|
|
|
|
/* here p < 2^(2M) [K 2^(M(K-1)) + (K-1) 2^(M(K-2)) + ... ]
|
|
< K 2^(2M) [2^(M(K-1)) + 2^(M(K-2)) + ... ]
|
|
< K 2^(2M) 2^(M(K-1))*2 = 2^(M*K+M+k+1) */
|
|
ii = (int) mpn_fft_norm_modF (op, pl, p, pla, b);
|
|
if (rec) /* store the carry out */
|
|
op[pl] = ii;
|
|
|
|
TMP_FREE;
|
|
|
|
return ii;
|
|
}
|
|
|
|
/* return the lcm of a and 2^k */
|
|
static inline mp_size_t
|
|
mpn_mul_fft_lcm (mp_size_t a, mp_size_t k)
|
|
{
|
|
mp_size_t l = k;
|
|
|
|
while ((a & 1) == 0 && k > 0)
|
|
{
|
|
a >>= 1;
|
|
k --;
|
|
}
|
|
return a << l;
|
|
}
|
|
|
|
/* put in {op, pl} the product of {n, nl} * {m, ml} mod (B^pl+1)
|
|
where B = 2^GMP_NUMB_BITS. */
|
|
int
|
|
mpn_mul_fft (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
int k)
|
|
{
|
|
return mpn_mul_fft_aux (op, pl, n, nl, m, ml, k, 1);
|
|
}
|
|
|
|
/* put in {op, pl} the product of {n, nl} * {m, ml} mod (B^pl-1)
|
|
where B = 2^GMP_NUMB_BITS. */
|
|
int
|
|
mpn_mul_fft_mersenne (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
mp_size_t k)
|
|
{
|
|
return mpn_mul_fft_aux (op, pl, n, nl, m, ml, k, -1);
|
|
}
|
|
|
|
/* put in {op, pl} + carry out the product {n, nl} * {m, ml}
|
|
modulo 2^(pl*GMP_NUMB_BITS) + b, where b = 1 or b = -1.
|
|
*/
|
|
int
|
|
mpn_mul_fft_aux (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
mp_size_t k, int b)
|
|
{
|
|
mp_size_t maxLK, i, c;
|
|
const mp_size_t K = 1 << k;
|
|
mp_size_t N, Nprime, nprime, M, l;
|
|
mp_ptr *Ap, *Bp, A, T, B;
|
|
mp_size_t **_fft_l;
|
|
int sqr = (n == m && nl == ml);
|
|
TMP_DECL;
|
|
|
|
TRACE (printf ("\nmpn_mul_fft_aux: mpn_mul_fft pl=%ld nl=%ld ml=%ld k=%d "
|
|
"b=%d\n", pl, nl, ml, k, b));
|
|
ASSERT_ALWAYS (mpn_fft_next_size (pl, k) == pl);
|
|
|
|
TMP_MARK;
|
|
|
|
/* first reduce {n, nl} or {m, ml} if nl > pl or ml > pl */
|
|
if (nl > pl)
|
|
{
|
|
mp_ptr nn = TMP_ALLOC_LIMBS(pl + (b == 1));
|
|
if ((i = (mp_size_t)mpn_fft_norm_modF (nn, pl, n, nl, b)))
|
|
nn[pl] = CNST_LIMB(1);
|
|
n = nn;
|
|
nl = pl + i;
|
|
}
|
|
if ((!sqr) && (ml > pl))
|
|
{
|
|
mp_ptr mm = TMP_ALLOC_LIMBS(pl + (b == 1));
|
|
if ((i = (mp_size_t)mpn_fft_norm_modF (mm, pl, m, ml, b)))
|
|
mm[pl] = CNST_LIMB(1);
|
|
m = mm;
|
|
ml = pl + i;
|
|
}
|
|
else if (sqr)
|
|
{
|
|
m = n;
|
|
ml = nl;
|
|
}
|
|
/* now nl,ml <= pl if b=-1, nl,ml <= pl+1 if b=1 */
|
|
|
|
N = MUL_GMP_NUMB_BITS(pl); /* The entire integer product will be mod 2^N+b */
|
|
_fft_l = TMP_ALLOC_TYPE (k + 1, mp_size_t *);
|
|
for (i = 0; i <= k; i++)
|
|
_fft_l[i] = TMP_ALLOC_TYPE (1UL << i, mp_size_t);
|
|
mpn_fft_initl (_fft_l, k);
|
|
M = N >> k; /* The number of bits we need to be able to store in each
|
|
of the 2^k pieces */
|
|
|
|
l = 1 + DIV_GMP_NUMB_BITS(M - 1); /* nb of limbs in each of the 2^k pieces */
|
|
|
|
/* Choose maxLK so that an order 4*2^k root of unity exists for the
|
|
negacyclic transform (which needs a root of unity of order twice the
|
|
transform length for the weight signal), or an order 2*2^k root of
|
|
unity for the cyclic transform (which uses no weight signal) */
|
|
#ifdef NO_SQRT_2
|
|
c = (b == -1) ? 1 : 0;
|
|
#else
|
|
c = (b == -1) ? 2 : 1;
|
|
#endif
|
|
ASSERT(k >= c);
|
|
maxLK = LCM_GMP_NUMB_BITS (k - c);
|
|
/* maxLK = lcm (GMP_NUMB_BITS, 2^(k-1) for b=1, 2^(k-2) for b=-1) */
|
|
/* When we do the transforms with elements (mod 2^Nprime+1), we need
|
|
GMP_NUMB_BITS|Nprime so that shifts are fast, and
|
|
transformlength|2*c*Nprime so that transformlength|ord(2) for b==1 or
|
|
transformlength|ord(sqrt(2)) for b==-1 */
|
|
|
|
Nprime = 2 * M + k + 2; /* make Nprime large enough so that the coefficients
|
|
in the product polynomial are not affected by
|
|
reduction (mod 2^Nprime+1).
|
|
FIXME is the +2 necessary? */
|
|
Nprime = (Nprime / maxLK + 1) * maxLK; /* Round up Nprime to multiple of
|
|
both GMP_NUMB_BITS and 2^(k-1) */
|
|
|
|
nprime = DIV_GMP_NUMB_BITS(Nprime); /* number of limbs in poly coefficient */
|
|
TRACE(printf ("mpn_mul_fft_aux: N=%d K=%d, M=%d, l=%d, maxLK=%d, Np=%d, "
|
|
"np=%d\n", N, K, M, l, maxLK, Nprime, nprime);)
|
|
/* we should ensure that recursively, nprime is a multiple of the next K */
|
|
if (nprime >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
|
|
{
|
|
mp_size_t K2;
|
|
for (;;)
|
|
{
|
|
K2 = 1L << mpn_fft_best_k (nprime, sqr);
|
|
if ((nprime & (K2 - 1)) == 0)
|
|
break;
|
|
nprime = (nprime + K2 - 1) & -K2; /* round up nprime to multiple of K2 */
|
|
Nprime = nprime * GMP_LIMB_BITS;
|
|
/* warning: since nprime changed, K2 may change too! */
|
|
}
|
|
TRACE (printf ("mpn_mul_fft_aux: new maxLK=%d, Np=%d, np=%d\n", maxLK, Nprime, nprime));
|
|
}
|
|
ASSERT_ALWAYS (nprime < pl); /* otherwise we'll loop */
|
|
|
|
T = TMP_ALLOC_LIMBS (2 * (nprime + 1));
|
|
|
|
TRACE (printf ("mpn_mul_fft_aux: %dx%d limbs -> %d times %dx%d limbs (%1.2f)\n",
|
|
pl, pl, K, nprime, nprime, 2.0 * (double) N / Nprime / K);
|
|
printf (" temp space %ld\n", 2 * K * (nprime + 1));)
|
|
|
|
A = __GMP_ALLOCATE_FUNC_LIMBS (2 * K * (nprime + 1));
|
|
B = A + K * (nprime + 1);
|
|
Ap = TMP_ALLOC_MP_PTRS (K);
|
|
Bp = TMP_ALLOC_MP_PTRS (K);
|
|
|
|
i = mpn_mul_fft_internal (op, pl, n, nl, m, ml, k, Ap, Bp, A, B, nprime,
|
|
l, _fft_l, T, 0, b);
|
|
|
|
TMP_FREE;
|
|
__GMP_FREE_FUNC_LIMBS (A, 2 * K * (nprime + 1));
|
|
|
|
return i;
|
|
}
|
|
|
|
/* multiply {n, nl} by {m, ml}, and put the result in {op, nl+ml},
|
|
using one modular product mod 2^N-1 and one mod 2^(aN)+1,
|
|
with a >= 1. */
|
|
void
|
|
mpn_mul_fft_full_a (mp_ptr op,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml, int a)
|
|
{
|
|
mp_size_t pl = nl + ml; /* total number of limbs of the result */
|
|
int sqr = n == m && nl == ml;
|
|
mp_size_t l, h;
|
|
mp_limb_t muh, cc;
|
|
mp_size_t k1, k2, i;
|
|
mp_ptr tp;
|
|
|
|
while (1)
|
|
{
|
|
|
|
ASSERT_ALWAYS(a > 0);
|
|
l = (pl + a + (a > 1)) / (a + 1); /* ceil(pl/(a+1)) */
|
|
/* Warning: for a > 1, the product may be larger than (2^N-1) * (2^(aN)+1),
|
|
thus we take one extra limb. */
|
|
|
|
k1 = mpn_fft_best_k (l, 2 + sqr); /* for 2^N-1 */
|
|
k2 = mpn_fft_best_k (a * l, sqr); /* for 2^(aN)+1 */
|
|
|
|
/* we must have l multiple of 2^k1 and a*l multiple of 2^k2.
|
|
FIXME: the optimal k1 and k2 values might change in the while loop. */
|
|
while (1)
|
|
{
|
|
h = mpn_fft_next_size (l, k1);
|
|
if (h != l)
|
|
l = h;
|
|
else
|
|
{
|
|
h = mpn_fft_next_size (a * l, k2);
|
|
if (h != a * l)
|
|
l = (h + a - 1) / a; /* ceil(h/a) */
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
h = a * l;
|
|
/* now mpn_fft_next_size (l, k1) = l
|
|
and mpn_fft_next_size (h, k2) = h with h = a * l */
|
|
|
|
/* we perform one FFT mod 2^(aN)+1 and one mod 2^N-1.
|
|
Let P = n * m. Assume P = lambda * (2^(aN)+1) + mu,
|
|
with 0 <= mu < 2^(aN)+1, and 0 <= lambda < 2^N-1.
|
|
Then P = mu mod (2^(aN)+1)
|
|
and P = 2*lambda+mu mod (2^N-1).
|
|
Let A := P mod (2^(aN)+1) and B := P mod (2^N-1),
|
|
with 0 <= A < 2^(aN)+1 and 0 <= B < 2^N-1.
|
|
Then mu = A, and lambda = (B-A)/2 mod (2^N-1). */
|
|
|
|
if (h < pl) break;
|
|
a--;
|
|
}
|
|
|
|
muh = mpn_mul_fft (op, h, n, nl, m, ml, k2); /* mu = muh+{op,h} */
|
|
|
|
tp = __GMP_ALLOCATE_FUNC_LIMBS (l);
|
|
mpn_mul_fft_mersenne (tp, l, n, nl, m, ml, k1); /* B */
|
|
|
|
/* now compute B-A mod 2^N-1, where B = {tp, l}, and A = cc + {op, h} */
|
|
for (cc = muh, i = 0; i < a; i++)
|
|
cc += mpn_sub_n (tp, tp, op + i * l, l);
|
|
/* cc is a borrow at tp[0] */
|
|
while (cc > 0) /* add cc*(2^N-1): if cc=1 after the first loop, then
|
|
tp[l-1] = 111...111, and cc=0 after the 2nd loop */
|
|
cc = mpn_sub_1 (tp, tp, l, cc);
|
|
/* Check whether {tp,l} = 111...111, in which case we should reduce it
|
|
to 000...000. */
|
|
for (i = 0; i < l && ~tp[i] == 0; i++);
|
|
if (i == l)
|
|
mpn_add_1 (tp, tp, l, 1); /* reduces {tp,l} to 000...000 */
|
|
|
|
/* make cc + {tp, l} even, and divide by 2 */
|
|
if (tp[0] & (mp_limb_t) 1)
|
|
cc = 1 - mpn_sub_1 (tp, tp, l, 1); /* add 2^N-1 */
|
|
/* now we have to compute lambda * (2^(aN)+1) + mu,
|
|
where 2*lambda = {tp, l} and mu = muh + {op, h} */
|
|
mpn_rshift (op + h, tp, pl - h, 1); /* divide by 2 to obtain lambda */
|
|
if (pl < l + h) /* i.e. pl - h < l: it remains high limbs in {tp, l} */
|
|
{
|
|
/* since the product is P = lambda * (2^N+1) + mu, if cc=1, the product
|
|
would exceed pl < h+l limbs */
|
|
ASSERT_ALWAYS (cc == 0);
|
|
cc = tp[pl - h] & 1;
|
|
}
|
|
op[pl - 1] |= cc << (GMP_NUMB_BITS - 1);
|
|
__GMP_FREE_FUNC_LIMBS (tp, l);
|
|
|
|
/* since n * m has at most pl limbs, the high part of lambda should be 0 */
|
|
cc = mpn_add_n (op, op, op + h, pl - h); /* add lambda to mu */
|
|
MPN_INCR_U (op + pl - h, h, cc);
|
|
MPN_INCR_U (op + h, pl - h, muh);
|
|
}
|
|
|
|
/* multiply {n, nl} by {m, ml}, and put the result in {op, nl+ml} */
|
|
void
|
|
mpn_mul_fft_full (mp_ptr op,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml)
|
|
{
|
|
#ifndef MUL_FFT_FULL_TABLE2
|
|
mpn_mul_fft_full_a (op, n, nl, m, ml, 1);
|
|
#else
|
|
int a = mpn_fft_best_a ((nl + ml) / 2, n == m && nl == ml);
|
|
mpn_mul_fft_full_a (op, n, nl, m, ml, a);
|
|
#endif
|
|
return;
|
|
}
|