mpir/tune/speed.c
2012-08-08 05:04:56 +00:00

1389 lines
43 KiB
C

/* Speed measuring program.
Copyright 1999, 2000, 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/* Usage message is in the code below, run with no arguments to print it.
See README for interesting applications.
To add a new routine foo(), create a speed_foo() function in the style of
the existing ones and add an entry in the routine[] array. Put FLAG_R if
speed_foo() wants an "r" parameter.
The routines don't have help messages or descriptions, but most have
suggestive names. See the source code for full details.
*/
#include "config.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if HAVE_UNISTD_H || _MSC_VER
#include <unistd.h> /* for getpid, R_OK */
#endif
#if TIME_WITH_SYS_TIME
# include <sys/time.h> /* for struct timeval */
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h> /* for getrusage() */
#endif
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h" /* for the benefit of speed-many.c */
#include "tests.h"
#include "speed.h"
#if 1 && defined( _MSC_VER)
#include "win_timing.h"
#endif
#if !HAVE_DECL_OPTARG
extern char *optarg;
extern int optind, opterr;
#endif
#if !HAVE_STRTOUL
#define strtoul(p,e,b) (unsigned long) strtol(p,e,b)
#endif
#ifdef SPEED_EXTRA_PROTOS
SPEED_EXTRA_PROTOS
#endif
#ifdef SPEED_EXTRA_PROTOS2
SPEED_EXTRA_PROTOS2
#endif
#define MPN_FILL(ptr, size, n) \
do { \
mp_size_t __i; \
ASSERT ((size) >= 0); \
for (__i = 0; __i < (size); __i++) \
(ptr)[__i] = (n); \
} while (0)
#if BITS_PER_MP_LIMB == 32
#define GMP_NUMB_0xAA (CNST_LIMB(0xAAAAAAAA) & GMP_NUMB_MASK)
#endif
#if BITS_PER_MP_LIMB == 64
#define GMP_NUMB_0xAA (CNST_LIMB(0xAAAAAAAAAAAAAAAA) & GMP_NUMB_MASK)
#endif
#define CMP_ABSOLUTE 1
#define CMP_RATIO 2
#define CMP_DIFFERENCE 3
#define CMP_DIFFPREV 4
int option_cmp = CMP_ABSOLUTE;
int option_cmp_pos = 0;
#define UNIT_SECONDS 1
#define UNIT_CYCLES 2
#define UNIT_CYCLESPERLIMB 3
int option_unit = UNIT_SECONDS;
#define DATA_RANDOM 1
#define DATA_RANDOM2 2
#define DATA_ZEROS 3
#define DATA_AAS 4
#define DATA_FFS 5
#define DATA_2FD 6
int option_data = DATA_RANDOM;
int option_square = 0;
double option_factor = 0.0;
mp_size_t option_step = 1;
int option_gnuplot = 0;
char *option_gnuplot_basename;
struct size_array_t {
mp_size_t start, end, inc;
} *size_array = NULL;
mp_size_t size_num = 0;
mp_size_t size_allocnum = 0;
int option_resource_usage = 0;
long option_seed = 123456789;
#define XCOLMAX 16
int xcoln,xcol[XCOLMAX];
struct speed_params sp;
#define COLUMN_WIDTH 13 /* for the free-form output */
#define FLAG_R (1<<0) /* require ".r" */
#define FLAG_R_OPTIONAL (1<<1) /* optional ".r" */
#define FLAG_RSIZE (1<<2)
#define FLAG_NODATA (1<<3) /* don't alloc xp, yp */
const struct routine_t {
/* constants */
const char *name;
speed_function_t fun;
int flag;
} routine[] = {
{ "noop", speed_noop },
{ "noop_wxs", speed_noop_wxs },
{ "noop_wxys", speed_noop_wxys },
{ "mpn_add_n", speed_mpn_add_n, FLAG_R_OPTIONAL },
{ "mpn_sub_n", speed_mpn_sub_n, FLAG_R_OPTIONAL },
#if HAVE_NATIVE_mpn_sumdiff_n
{ "mpn_sumdiff_n", speed_mpn_sumdiff_n, FLAG_R_OPTIONAL },
#endif
{ "mpn_addadd_n", speed_mpn_addadd_n, },
{ "mpn_subadd_n", speed_mpn_subadd_n, },
{ "mpn_addsub_n", speed_mpn_addsub_n, },
#if HAVE_NATIVE_mpn_karaadd
{ "mpn_karaadd", speed_mpn_karaadd, },
#endif
#if HAVE_NATIVE_mpn_karasub
{ "mpn_karasub", speed_mpn_karasub, },
#endif
{ "mpn_addmul_1", speed_mpn_addmul_1, FLAG_R },
{ "mpn_submul_1", speed_mpn_submul_1, FLAG_R },
#if HAVE_NATIVE_mpn_addmul_2
{ "mpn_addmul_2", speed_mpn_addmul_2, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_3
{ "mpn_addmul_3", speed_mpn_addmul_3, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_4
{ "mpn_addmul_4", speed_mpn_addmul_4, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_5
{ "mpn_addmul_5", speed_mpn_addmul_5, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_6
{ "mpn_addmul_6", speed_mpn_addmul_6, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_7
{ "mpn_addmul_7", speed_mpn_addmul_7, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_addmul_8
{ "mpn_addmul_8", speed_mpn_addmul_8, FLAG_R_OPTIONAL },
#endif
{ "mpn_mul_1", speed_mpn_mul_1, FLAG_R },
{ "mpn_mul_1_inplace", speed_mpn_mul_1_inplace, FLAG_R },
#if HAVE_NATIVE_mpn_mul_2
{ "mpn_mul_2", speed_mpn_mul_2, FLAG_R_OPTIONAL },
#endif
{ "mpn_divrem_euclidean_qr_1", speed_mpn_divrem_euclidean_qr_1, FLAG_R },
{ "mpn_divrem_euclidean_qr_2", speed_mpn_divrem_euclidean_qr_2, },
{ "mpn_divrem_euclidean_r_1", speed_mpn_divrem_euclidean_r_1, FLAG_R },
{ "mpn_divrem_hensel_qr_1", speed_mpn_divrem_hensel_qr_1, FLAG_R},
{ "mpn_divrem_hensel_qr_1_1", speed_mpn_divrem_hensel_qr_1_1, FLAG_R},
{ "mpn_divrem_hensel_qr_1_2", speed_mpn_divrem_hensel_qr_1_2, FLAG_R},
{ "mpn_divrem_hensel_r_1", speed_mpn_divrem_hensel_r_1, FLAG_R },
{ "mpn_rsh_divrem_hensel_qr_1", speed_mpn_rsh_divrem_hensel_qr_1, FLAG_R},
{ "mpn_rsh_divrem_hensel_qr_1_1", speed_mpn_rsh_divrem_hensel_qr_1_1, FLAG_R},
{ "mpn_rsh_divrem_hensel_qr_1_2", speed_mpn_rsh_divrem_hensel_qr_1_2, FLAG_R},
{ "mpn_divrem_hensel_rsh_qr_1", speed_mpn_divrem_hensel_rsh_qr_1, FLAG_R},
{ "mpn_divrem_1", speed_mpn_divrem_1, FLAG_R },
{ "mpn_divrem_1f", speed_mpn_divrem_1f, FLAG_R },
#if HAVE_NATIVE_mpn_divrem_1c
{ "mpn_divrem_1c", speed_mpn_divrem_1c, FLAG_R },
{ "mpn_divrem_1cf", speed_mpn_divrem_1cf,FLAG_R },
#endif
{ "mpn_mod_1", speed_mpn_mod_1, FLAG_R },
{ "mpn_mod_1_1", speed_mpn_mod_1_1,},
{ "mpn_mod_1_2", speed_mpn_mod_1_2,},
{ "mpn_mod_1_3", speed_mpn_mod_1_3,},
{ "mpn_mod_1_k", speed_mpn_mod_1_k, FLAG_R },
#if HAVE_NATIVE_mpn_mod_1c
{ "mpn_mod_1c", speed_mpn_mod_1c, FLAG_R },
#endif
{ "mpn_preinv_divrem_1", speed_mpn_preinv_divrem_1, FLAG_R },
{ "mpn_preinv_divrem_1f", speed_mpn_preinv_divrem_1f, FLAG_R },
{ "mpn_preinv_mod_1", speed_mpn_preinv_mod_1, FLAG_R },
{ "mpn_add_err1_n", speed_mpn_add_err1_n, },
{ "mpn_sub_err1_n", speed_mpn_sub_err1_n, },
{ "mpn_inv_divappr_q", speed_mpn_inv_divappr_q, },
{ "mpn_inv_div_qr", speed_mpn_inv_div_qr, },
{ "mpn_dc_divappr_q", speed_mpn_dc_divappr_q, },
{ "mpn_dc_div_qr_n", speed_mpn_dc_div_qr_n, },
{ "mpn_divrem_1_inv", speed_mpn_divrem_1_inv, FLAG_R },
{ "mpn_divrem_1f_div", speed_mpn_divrem_1f_div, FLAG_R },
{ "mpn_divrem_1f_inv", speed_mpn_divrem_1f_inv, FLAG_R },
{ "mpn_mod_1_div", speed_mpn_mod_1_div, FLAG_R },
{ "mpn_mod_1_inv", speed_mpn_mod_1_inv, FLAG_R },
{ "mpn_divrem_2", speed_mpn_divrem_2, },
{ "mpn_divrem_2_div", speed_mpn_divrem_2_div, },
{ "mpn_divrem_2_inv", speed_mpn_divrem_2_inv, },
{ "mpn_divexact_1", speed_mpn_divexact_1, FLAG_R },
{ "mpn_divexact_by3", speed_mpn_divexact_by3 },
{ "mpn_divexact_byff", speed_mpn_divexact_byff },
{ "mpn_divexact_byfobm1", speed_mpn_divexact_byfobm1, FLAG_R },
#if HAVE_NATIVE_mpn_modexact_1_odd
{ "mpn_modexact_1_odd", speed_mpn_modexact_1_odd, FLAG_R },
#endif
{ "mpn_modexact_1c_odd", speed_mpn_modexact_1c_odd, FLAG_R },
#if GMP_NUMB_BITS % 4 == 0
{ "mpn_mod_34lsub1", speed_mpn_mod_34lsub1 },
#endif
{ "mpn_dc_tdiv_qr", speed_mpn_dc_tdiv_qr },
{ "mpn_lshift", speed_mpn_lshift, FLAG_R },
{ "mpn_rshift", speed_mpn_rshift, FLAG_R },
#if HAVE_NATIVE_mpn_lshiftc
{ "mpn_lshiftc", speed_mpn_lshiftc, FLAG_R },
#endif
{ "mpn_lshift1", speed_mpn_lshift1, },
{ "mpn_rshift1", speed_mpn_rshift1, },
{ "mpn_double", speed_mpn_double, },
{ "mpn_half", speed_mpn_half, },
{ "mpn_lshift2", speed_mpn_lshift2, },
{ "mpn_rshift2", speed_mpn_rshift2, },
{ "mpn_and_n", speed_mpn_and_n, FLAG_R_OPTIONAL },
{ "mpn_andn_n", speed_mpn_andn_n, FLAG_R_OPTIONAL },
{ "mpn_nand_n", speed_mpn_nand_n, FLAG_R_OPTIONAL },
{ "mpn_ior_n", speed_mpn_ior_n, FLAG_R_OPTIONAL },
{ "mpn_iorn_n", speed_mpn_iorn_n, FLAG_R_OPTIONAL },
{ "mpn_nior_n", speed_mpn_nior_n, FLAG_R_OPTIONAL },
{ "mpn_xor_n", speed_mpn_xor_n, FLAG_R_OPTIONAL },
{ "mpn_xnor_n", speed_mpn_xnor_n, FLAG_R_OPTIONAL },
{ "mpn_com_n", speed_mpn_com_n },
{ "mpn_not", speed_mpn_not },
{ "mpn_popcount", speed_mpn_popcount },
{ "mpn_hamdist", speed_mpn_hamdist },
{ "mpn_gcd_1", speed_mpn_gcd_1, FLAG_R_OPTIONAL },
{ "mpn_gcd_1N", speed_mpn_gcd_1N, FLAG_R_OPTIONAL },
{ "mpn_hgcd", speed_mpn_hgcd },
{ "mpn_gcd", speed_mpn_gcd },
{ "mpn_gcdext", speed_mpn_gcdext },
#if 0
{ "mpn_gcdext_lehmer", speed_mpn_gcdext_lehmer },
#endif
{ "mpz_jacobi", speed_mpz_jacobi },
{ "mpn_jacobi_base", speed_mpn_jacobi_base },
{ "mpn_jacobi_base_1", speed_mpn_jacobi_base_1 },
{ "mpn_jacobi_base_2", speed_mpn_jacobi_base_2 },
{ "mpn_jacobi_base_3", speed_mpn_jacobi_base_3 },
{ "mpn_mul_basecase", speed_mpn_mul_basecase, FLAG_R_OPTIONAL },
{ "mpn_sqr_basecase", speed_mpn_sqr_basecase },
#if HAVE_NATIVE_mpn_sqr_diagonal
{ "mpn_sqr_diagonal", speed_mpn_sqr_diagonal },
#endif
{ "mpn_mul_n", speed_mpn_mul_n },
{ "mpn_sqr", speed_mpn_sqr },
{ "mpn_kara_mul_n", speed_mpn_kara_mul_n },
{ "mpn_kara_sqr_n", speed_mpn_kara_sqr_n },
{ "mpn_toom3_mul_n", speed_mpn_toom3_mul_n },
{ "mpn_toom4_mul_n", speed_mpn_toom4_mul_n },
{ "mpn_toom8h_mul", speed_mpn_toom8h_mul },
{ "mpn_toom3_sqr_n", speed_mpn_toom3_sqr_n },
{ "mpn_toom4_sqr_n", speed_mpn_toom4_sqr_n },
{ "mpn_mul_fft_main", speed_mpn_mul_fft_main, FLAG_R_OPTIONAL },
{ "mpn_sqr_fft_main", speed_mpn_sqr_fft_main, FLAG_R_OPTIONAL },
{ "mpn_mullow_n", speed_mpn_mullow_n },
{ "mpn_mullow_n_basecase", speed_mpn_mullow_n_basecase},
{ "mpn_mulhigh_n", speed_mpn_mulhigh_n },
{ "mpn_mulmod_2expm1", speed_mpn_mulmod_2expm1 },
{ "mpn_mulmod_2expp1_basecase", speed_mpn_mulmod_2expp1_basecase },
{ "mpn_get_str", speed_mpn_get_str, FLAG_R_OPTIONAL },
{ "mpn_set_str", speed_mpn_set_str, FLAG_R_OPTIONAL },
{ "mpn_set_str_basecase", speed_mpn_set_str_basecase, FLAG_R_OPTIONAL },
{ "mpn_set_str_subquad", speed_mpn_set_str_subquad, FLAG_R_OPTIONAL },
{ "mpn_sqrtrem", speed_mpn_sqrtrem },
{ "mpn_rootrem", speed_mpn_rootrem, FLAG_R },
{ "mpn_fib2_ui", speed_mpn_fib2_ui, FLAG_NODATA },
{ "mpz_fib_ui", speed_mpz_fib_ui, FLAG_NODATA },
{ "mpz_fib2_ui", speed_mpz_fib2_ui, FLAG_NODATA },
{ "mpz_lucnum_ui", speed_mpz_lucnum_ui, FLAG_NODATA },
{ "mpz_lucnum2_ui", speed_mpz_lucnum2_ui, FLAG_NODATA },
{ "mpz_add", speed_mpz_add },
{ "mpz_bin_uiui", speed_mpz_bin_uiui, FLAG_NODATA | FLAG_R_OPTIONAL },
{ "mpz_fac_ui", speed_mpz_fac_ui, FLAG_NODATA },
{ "mpz_fac_ui_small", speed_mpz_fac_ui_small, FLAG_NODATA },
{ "mpz_fac_ui_large", speed_mpz_fac_ui_large, FLAG_NODATA },
{ "mpz_powm", speed_mpz_powm },
{ "mpz_powm_mod", speed_mpz_powm_mod },
{ "mpz_powm_redc", speed_mpz_powm_redc },
{ "mpz_powm_ui", speed_mpz_powm_ui },
{ "mpz_mod", speed_mpz_mod },
{ "redc", speed_redc },
{ "mpn_store", speed_mpn_store },
{ "MPN_COPY", speed_MPN_COPY },
{ "MPN_COPY_INCR", speed_MPN_COPY_INCR },
{ "MPN_COPY_DECR", speed_MPN_COPY_DECR },
{ "memcpy", speed_memcpy },
#if HAVE_NATIVE_mpn_copyi
{ "mpn_copyi", speed_mpn_copyi },
#endif
#if HAVE_NATIVE_mpn_copyd
{ "mpn_copyd", speed_mpn_copyd },
#endif
#if HAVE_NATIVE_mpn_addlsh1_n
{ "mpn_addlsh1_n", speed_mpn_addlsh1_n },
#endif
#if HAVE_NATIVE_mpn_sublsh1_n
{ "mpn_sublsh1_n", speed_mpn_sublsh1_n },
#endif
#if HAVE_NATIVE_mpn_addlsh_n
{ "mpn_addlsh_n", speed_mpn_addlsh_n,FLAG_R },
#endif
#if HAVE_NATIVE_mpn_sublsh_n
{ "mpn_sublsh_n", speed_mpn_sublsh_n,FLAG_R },
#endif
#if HAVE_NATIVE_mpn_inclsh_n
{ "mpn_inclsh_n", speed_mpn_inclsh_n,FLAG_R },
#endif
#if HAVE_NATIVE_mpn_declsh_n
{ "mpn_declsh_n", speed_mpn_declsh_n,FLAG_R },
#endif
#if HAVE_NATIVE_mpn_rsh1add_n
{ "mpn_rsh1add_n", speed_mpn_rsh1add_n },
#endif
#if HAVE_NATIVE_mpn_rsh1sub_n
{ "mpn_rsh1sub_n", speed_mpn_rsh1sub_n },
#endif
{ "MPN_ZERO", speed_MPN_ZERO },
{ "modlimb_invert", speed_modlimb_invert, FLAG_NODATA },
{ "modlimb_invert_mul1", speed_modlimb_invert_mul1, FLAG_NODATA },
{ "modlimb_invert_loop", speed_modlimb_invert_loop, FLAG_NODATA },
{ "modlimb_invert_cond", speed_modlimb_invert_cond, FLAG_NODATA },
{ "modlimb_invert_arith", speed_modlimb_invert_arith, FLAG_NODATA },
{ "malloc_free", speed_malloc_free },
{ "malloc_realloc_free", speed_malloc_realloc_free },
{ "gmp_allocate_free", speed_gmp_allocate_free },
{ "gmp_allocate_reallocate_free", speed_gmp_allocate_reallocate_free },
{ "mpz_init_clear", speed_mpz_init_clear },
{ "mpq_init_clear", speed_mpq_init_clear },
{ "mpf_init_clear", speed_mpf_init_clear },
{ "mpz_init_realloc_clear", speed_mpz_init_realloc_clear },
{ "umul_ppmm", speed_umul_ppmm, FLAG_R_OPTIONAL },
#if HAVE_NATIVE_mpn_umul_ppmm
{ "mpn_umul_ppmm", speed_mpn_umul_ppmm, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_umul_ppmm_r
{ "mpn_umul_ppmm_r", speed_mpn_umul_ppmm_r, FLAG_R_OPTIONAL },
#endif
{ "count_leading_zeros", speed_count_leading_zeros, FLAG_NODATA | FLAG_R_OPTIONAL },
{ "count_trailing_zeros", speed_count_trailing_zeros, FLAG_NODATA | FLAG_R_OPTIONAL },
{ "udiv_qrnnd", speed_udiv_qrnnd, FLAG_R_OPTIONAL },
{ "udiv_qrnnd_preinv1", speed_udiv_qrnnd_preinv1, FLAG_R_OPTIONAL },
{ "udiv_qrnnd_preinv2", speed_udiv_qrnnd_preinv2, FLAG_R_OPTIONAL },
{ "udiv_qrnnd_c", speed_udiv_qrnnd_c, FLAG_R_OPTIONAL },
#if HAVE_NATIVE_mpn_udiv_qrnnd
{ "mpn_udiv_qrnnd", speed_mpn_udiv_qrnnd, FLAG_R_OPTIONAL },
#endif
#if HAVE_NATIVE_mpn_udiv_qrnnd_r
{ "mpn_udiv_qrnnd_r", speed_mpn_udiv_qrnnd_r, FLAG_R_OPTIONAL },
#endif
{ "invert_limb", speed_invert_limb, FLAG_R_OPTIONAL },
{ "operator_div", speed_operator_div, FLAG_R_OPTIONAL },
{ "operator_mod", speed_operator_mod, FLAG_R_OPTIONAL },
{ "gmp_randseed", speed_gmp_randseed, FLAG_R_OPTIONAL },
{ "gmp_randseed_ui", speed_gmp_randseed_ui, FLAG_R_OPTIONAL | FLAG_NODATA },
{ "mpz_urandomb", speed_mpz_urandomb, FLAG_R_OPTIONAL | FLAG_NODATA },
#ifdef SPEED_EXTRA_ROUTINES
SPEED_EXTRA_ROUTINES
#endif
#ifdef SPEED_EXTRA_ROUTINES2
SPEED_EXTRA_ROUTINES2
#endif
};
#define SUMMAX 4
struct choice_t {
const struct routine_t *p;
mp_limb_t r;
double scale;
double time;
int no_time;
double prev_time;
const char *name;
char *filename;
int colfile;
int nsum;
int sum[SUMMAX];
};
struct choice_t *choice;
int num_choices = 0;
void
data_fill (mp_ptr ptr, mp_size_t size)
{
switch (option_data) {
case DATA_RANDOM:
mpn_random (ptr, size);
break;
case DATA_RANDOM2:
mpn_random2 (ptr, size);
break;
case DATA_ZEROS:
MPN_ZERO (ptr, size);
break;
case DATA_AAS:
MPN_FILL (ptr, size, GMP_NUMB_0xAA);
break;
case DATA_FFS:
MPN_FILL (ptr, size, GMP_NUMB_MAX);
break;
case DATA_2FD:
MPN_FILL (ptr, size, GMP_NUMB_MAX);
ptr[0] -= 2;
break;
default:
abort();
/*NOTREACHED*/
}
}
/* The code here handling the various combinations of output options isn't
too attractive, but it works and is fairly clean. */
#define SIZE_TO_DIVISOR(n) \
(option_square == 1 ? (n)*(n) \
: option_square == 2 ? (n)*((n)+1)/2 \
: (n))
void
run_one (FILE *fp, struct speed_params *s, mp_size_t prev_size)
{
const char *first_open_fastest, *first_open_notfastest, *first_close;
int j,i, fastest, want_data;
double fastest_time;
TMP_DECL;
TMP_MARK;
/* allocate data, unless all routines are NODATA */
want_data = 0;
for (i = 0; i < num_choices; i++)
want_data |= ((choice[i].p->flag & FLAG_NODATA) == 0);
if (want_data)
{
SPEED_TMP_ALLOC_LIMBS (sp.xp, s->size, s->align_xp);
SPEED_TMP_ALLOC_LIMBS (sp.yp, s->size, s->align_yp);
data_fill (s->xp, s->size);
data_fill (s->yp, s->size);
}
else
{
sp.xp = NULL;
sp.yp = NULL;
}
if (prev_size == -1 && option_cmp == CMP_DIFFPREV)
{
first_open_fastest = "(#";
first_open_notfastest = " (";
first_close = ")";
}
else
{
first_open_fastest = "#";
first_open_notfastest = " ";
first_close = "";
}
fastest = -1;
fastest_time = -1.0;
for (i = 0; i < num_choices; i++)
{
if( choice[i].nsum!=0)continue;
s->r = choice[i].r;
if( choice[i].colfile==-1)
{choice[i].time = speed_measure (choice[i].p->fun, s);}
else
{FILE *fp;char buf[1024],buf2[1024],*p;int got=0;
choice[i].time=-1.0;
fp=fopen(choice[i].filename,"rt");
if(fp==0){printf("Cant open %s\n",choice[i].filename);exit(1);}
while(fgets(buf,1024,fp)!=0)
if(atoi(buf)==s->size)
{p=buf;
for(j=0;j<=choice[i].colfile;j++)
{if(sscanf(p," %s",buf2)!=1)break;
p=strstr(p,buf2)+strlen(buf2);}
if(j==choice[i].colfile+1)
{while((p=strstr(buf2,"#"))!=0)*p=' ';// exclude #
choice[i].time=atof(buf2);
}
break;}
fclose(fp);
}
choice[i].no_time = (choice[i].time == -1.0);
if (! choice[i].no_time)
choice[i].time *= choice[i].scale;
/* Apply the effect of CMP_DIFFPREV, but the new choice[i].prev_time
is before any differences. */
if(choice[i].colfile==-1)
{
double t;
t = choice[i].time;
if (t != -1.0 && option_cmp == CMP_DIFFPREV && prev_size != -1)
{
if (choice[i].prev_time == -1.0)
choice[i].no_time = 1;
else
choice[i].time = choice[i].time - choice[i].prev_time;
}
choice[i].prev_time = t;
}
}
for (i = 0; i < num_choices; i++)
{if(choice[i].nsum==0)continue;
choice[i].time=0;choice[i].no_time=0;
for(j=0;j<choice[i].nsum;j++)
{choice[i].time+=choice[choice[i].sum[j]].time;
if(choice[choice[i].sum[j]].no_time)choice[i].no_time=1;
}
}
for (i = 0; i < num_choices; i++)
{
if (choice[i].no_time || choice[i].colfile!=-1)
continue;
if (option_cmp == CMP_DIFFPREV)
{
/* Conversion for UNIT_CYCLESPERLIMB differs in CMP_DIFFPREV. */
if (option_unit == UNIT_CYCLES)
choice[i].time /= speed_cycletime;
else if (option_unit == UNIT_CYCLESPERLIMB)
{
if (prev_size == -1)
choice[i].time /= speed_cycletime;
else
choice[i].time /= (speed_cycletime
* (SIZE_TO_DIVISOR(s->size)
- SIZE_TO_DIVISOR(prev_size)));
}
}
else
{
if (option_unit == UNIT_CYCLES)
choice[i].time /= speed_cycletime;
else if (option_unit == UNIT_CYCLESPERLIMB)
choice[i].time /= (speed_cycletime * SIZE_TO_DIVISOR(s->size));
}
}
for (i = 0; i < num_choices; i++)
{
if (choice[i].no_time)
continue;
/* Look for the fastest after CMP_DIFFPREV has been applied, but
before CMP_RATIO or CMP_DIFFERENCE. There's only a fastest shown
if there's more than one routine. */
for(j=0;j<xcoln;j++)if(xcol[j]==i)break; // excluded from fastest choice
if (j==xcoln && num_choices > 1 && (fastest == -1 || choice[i].time < fastest_time))
{
fastest = i;
fastest_time = choice[i].time;
}
}
for (i = 0; i < num_choices; i++)
{
if (choice[i].no_time )
continue;
if (option_cmp != CMP_DIFFPREV)
{
if (option_cmp == CMP_RATIO && i != option_cmp_pos)
{
/* A ratio isn't affected by the units chosen. */
if (choice[option_cmp_pos].no_time || choice[option_cmp_pos].time == 0.0)
choice[i].no_time = 1;
else
choice[i].time /= choice[option_cmp_pos].time;
}
else if (option_cmp == CMP_DIFFERENCE && i != option_cmp_pos)
{
if (choice[option_cmp_pos].no_time)
{
choice[i].no_time = 1;
continue;
}
choice[i].time -= choice[option_cmp_pos].time;
}
}
}
if (option_gnuplot)
{
/* In CMP_DIFFPREV, don't print anything for the first size, start
with the second where an actual difference is available.
In CMP_RATIO, print the "first" ie option_cmp_pos column as 1.0.
The 9 decimals printed is much more than the expected precision of
the measurements actually. */
if (! (option_cmp == CMP_DIFFPREV && prev_size == -1))
{
fprintf (fp, "%-6ld ", s->size);
for (i = 0; i < num_choices; i++)
fprintf (fp, " %.9e",
choice[i].no_time ? 0.0
: (option_cmp == CMP_RATIO && i == option_cmp_pos) ? 1.0
: choice[i].time);
fprintf (fp, "\n");
}
}
else
{
fprintf (fp, "%-6ld ", s->size);
for (i = 0; i < num_choices; i++)
{
char buf[128];
int decimals;
if (choice[i].no_time)
{
fprintf (fp, " %*s", COLUMN_WIDTH, "n/a");
}
else
{if (option_unit == UNIT_CYCLESPERLIMB
|| (option_cmp == CMP_RATIO && i != option_cmp_pos))
decimals = 4;
else if (option_unit == UNIT_CYCLES)
decimals = 2;
else
decimals = 9;
sprintf (buf, "%s%.*f%s",
i == fastest ? first_open_fastest : first_open_notfastest,
decimals, choice[i].time, first_close);
fprintf (fp, " %*s", COLUMN_WIDTH, buf);
}
}
fprintf (fp, "\n");
}
TMP_FREE;
}
void
run_all (FILE *fp)
{
mp_size_t prev_size;
int i;
TMP_DECL;
TMP_MARK;
SPEED_TMP_ALLOC_LIMBS (sp.xp_block, SPEED_BLOCK_SIZE, sp.align_xp);
SPEED_TMP_ALLOC_LIMBS (sp.yp_block, SPEED_BLOCK_SIZE, sp.align_yp);
data_fill (sp.xp_block, SPEED_BLOCK_SIZE);
data_fill (sp.yp_block, SPEED_BLOCK_SIZE);
for (i = 0; i < size_num; i++)
{
sp.size = size_array[i].start;
prev_size = -1;
for (;;)
{
mp_size_t step;
if (option_data == DATA_2FD && sp.size >= 2)
sp.xp[sp.size-1] = 2;
run_one (fp, &sp, prev_size);
prev_size = sp.size;
if (option_data == DATA_2FD && sp.size >= 2)
sp.xp[sp.size-1] = MP_LIMB_T_MAX;
if (option_factor != 0.0)
{
step = (mp_size_t) (sp.size * option_factor - sp.size);
if (step < 1)
step = 1;
}
else if(size_array[i].inc > 0)
step = size_array[i].inc;
else
step = 1;
if (step < option_step)
step = option_step;
sp.size += step;
if (sp.size > size_array[i].end)
break;
}
}
TMP_FREE;
}
FILE *
fopen_for_write (const char *filename)
{
FILE *fp;
if ((fp = fopen (filename, "w")) == NULL)
{
fprintf (stderr, "Cannot create %s\n", filename);
exit(1);
}
return fp;
}
void
fclose_written (FILE *fp, const char *filename)
{
int err;
err = ferror (fp);
err |= fclose (fp);
if (err)
{
fprintf (stderr, "Error writing %s\n", filename);
exit(1);
}
}
void
run_gnuplot (int argc, char *argv[])
{
char *plot_filename;
char *data_filename;
FILE *fp;
int i;
plot_filename = (char *) (*__gmp_allocate_func)
(strlen (option_gnuplot_basename) + 20);
data_filename = (char *) (*__gmp_allocate_func)
(strlen (option_gnuplot_basename) + 20);
sprintf (plot_filename, "%s.gnuplot", option_gnuplot_basename);
sprintf (data_filename, "%s.data", option_gnuplot_basename);
fp = fopen_for_write (plot_filename);
fprintf (fp, "# Generated with:\n");
fprintf (fp, "#");
for (i = 0; i < argc; i++)
fprintf (fp, " %s", argv[i]);
fprintf (fp, "\n");
fprintf (fp, "\n");
fprintf (fp, "reset\n");
/* Putting the key at the top left is usually good, and you can change it
interactively if it's not. */
fprintf (fp, "set key left\n");
/* designed to make it possible to see crossovers easily */
fprintf (fp, "set data style lines\n");
fprintf (fp, "plot ");
for (i = 0; i < num_choices; i++)
{
fprintf (fp, " \"%s\" using 1:%d", data_filename, i+2);
fprintf (fp, " title \"%s\"", choice[i].name);
if (i != num_choices-1)
fprintf (fp, ", \\");
fprintf (fp, "\n");
}
fprintf (fp, "load \"-\"\n");
fclose_written (fp, plot_filename);
fp = fopen_for_write (data_filename);
/* Unbuffered so you can see where the program was up to if it crashes or
you kill it. */
setbuf (fp, NULL);
run_all (fp);
fclose_written (fp, data_filename);
}
/* Return a limb with n many one bits (starting from the least significant) */
#define LIMB_ONES(n) \
((n) == BITS_PER_MP_LIMB ? MP_LIMB_T_MAX \
: (n) == 0 ? CNST_LIMB(0) \
: (CNST_LIMB(1) << (n)) - 1)
mp_limb_t
r_string (const char *s)
{
const char *s_orig = s;
long n;
if (strcmp (s, "aas") == 0)
return GMP_NUMB_0xAA;
{
mpz_t z;
mp_limb_t l;
int set, siz;
mpz_init (z);
set = mpz_set_str (z, s, 0);
siz = SIZ(z);
l = (siz == 0 ? 0 : siz > 0 ? PTR(z)[0] : -PTR(z)[0]);
mpz_clear (z);
if (set == 0)
{
if (siz > 1 || siz < -1)
printf ("Warning, r parameter %s truncated to %d bits\n",
s_orig, BITS_PER_MP_LIMB);
return l;
}
}
if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
n = strtoul (s+2, (char **) &s, 16);
else
n = strtol (s, (char **) &s, 10);
if (strcmp (s, "bits") == 0)
{
mp_limb_t l;
if (n > BITS_PER_MP_LIMB)
{
fprintf (stderr, "%ld bit parameter invalid (max %d bits)\n",
n, BITS_PER_MP_LIMB);
exit (1);
}
mpn_random (&l, 1);
return (l | (CNST_LIMB(1) << (n-1))) & LIMB_ONES(n);
}
else if (strcmp (s, "ones") == 0)
{
if (n > BITS_PER_MP_LIMB)
{
fprintf (stderr, "%ld bit parameter invalid (max %d bits)\n",
n, BITS_PER_MP_LIMB);
exit (1);
}
return LIMB_ONES (n);
}
else if (*s != '\0')
{
fprintf (stderr, "invalid r parameter: %s\n", s_orig);
exit (1);
}
return n;
}
void
routine_find (struct choice_t *c, const char *s_orig)
{
const char *s;
int i;
size_t nlen;
c->name = s_orig;
c->nsum=0;
c->colfile=-1;
s = strchr (s_orig, '*');
if (s != NULL)
{
c->scale = atof(s_orig);
s++;
}
else
{
c->scale = 1.0;
s = s_orig;
}
for (i = 0; i < numberof (routine); i++)
{
nlen = strlen (routine[i].name);
if (memcmp (s, routine[i].name, nlen) != 0)
continue;
if (s[nlen] == '.')
{
/* match, with a .r parameter */
if (! (routine[i].flag & (FLAG_R|FLAG_R_OPTIONAL)))
{
fprintf (stderr,
"Choice %s bad: doesn't take a \".<r>\" parameter\n",
s_orig);
exit (1);
}
c->p = &routine[i];
c->r = r_string (s + nlen + 1);
return;
}
if (s[nlen] == '\0')
{
/* match, with no parameter */
if (routine[i].flag & FLAG_R)
{
fprintf (stderr,
"Choice %s bad: needs a \".<r>\" parameter\n",
s_orig);
exit (1);
}
c->p = &routine[i];
c->r = 0;
return;
}
}
#if SUMMAX > 4
#error Change line below as summax > 4
#endif
c->nsum=sscanf(s,"colsum=%d+%d+%d+%d",&c->sum[0],&c->sum[1],&c->sum[2],&c->sum[3]);
for(i=0;i<c->nsum;i++)c->sum[i]--;
for(i=0;i<c->nsum;i++)
{xcol[xcoln++]=c->sum[i];
if(xcoln>XCOLMAX){fprintf(stderr,"XCOLMAX not big enough\n");exit(1);}}
if(c->nsum!=0)return;
c->filename=malloc(1024);// bit of a over kill , but remember what if we have two colfile's , these pointer can get lost
if(sscanf(s,"colfile=%d,%s",&i,c->filename)==2)
{c->colfile=i;return;}
fprintf (stderr, "Choice %s unrecognised\n", s_orig);
exit (1);
}
void
usage (void)
{
int i;
speed_time_init ();
printf ("Usage: speed [-options] -s size <routine>...\n");
printf ("Measure the speed of some routines.\n");
printf ("Times are in seconds, accuracy is shown.\n");
printf ("\n");
printf (" -p num set precision as number of time units each routine must run\n");
printf (" -s x [,x]... sizes to measure: x = <size> | <start-end> | <start(step)end>\n");
printf (" single sizes or ranges, sep with comma or use multiple -s\n");
printf (" -t step step through sizes by given amount\n");
printf (" -f factor step through sizes by given factor (eg. 1.05)\n");
#if _GNU_SOURCE
printf (" -r [col] show times as ratios of the routine in column col(default column 1)\n");
printf (" -d [col] show times as difference from the routine in column col(default column 1)\n");
#else
printf (" -r col show times as ratios of the routine in column col\n");
printf (" -d col show times as difference from the routine in column col\n");
#endif
printf (" -D show times as difference from previous size shown\n");
printf (" -c show times in CPU cycles\n");
printf (" -C show times in cycles per limb\n");
printf (" -u print resource usage (memory) at end\n");
printf (" -P name output plot files \"name.gnuplot\" and \"name.data\"\n");
printf (" -a <type> use given data: random(default), random2, zeros, aas, ffs, 2fd\n");
printf (" -x, -y, -w, -W <align> specify data alignments, sources and dests\n");
printf (" -o addrs print addresses of data blocks\n");
printf (" colsum=A+B+...+Z Sums the columns A,B,.. upto a max of %d columns\n",SUMMAX);
printf (" colfile=col,filename Use the data in column col from file filename\n");
printf ("\n");
printf ("float*routine prefix can be used to multiply a column by a scale factor float.\n\n");
printf ("If both -t and -f are used, it means step by the factor or the step, whichever\n");
printf ("is greater.\n");
printf ("If both -C and -D are used, it means cycles per however many limbs between a\n");
printf ("size and the previous size.\n");
printf ("\n");
printf ("After running with -P, plots can be viewed with Gnuplot or Quickplot.\n");
printf ("\"gnuplot name.gnuplot\" (use \"set logscale xy; replot\" at the prompt for\n");
printf ("a log/log plot).\n");
printf ("\"quickplot -s name.data\" (has interactive zooming, and note -s is important\n");
printf ("when viewing more than one routine, it means same axis scales for all data).\n");
printf ("\n");
printf ("The available routines are as follows.\n");
printf ("\n");
for (i = 0; i < numberof (routine); i++)
{
if (routine[i].flag & FLAG_R)
printf ("\t%s.r\n", routine[i].name);
else if (routine[i].flag & FLAG_R_OPTIONAL)
printf ("\t%s (optional .r)\n", routine[i].name);
else
printf ("\t%s\n", routine[i].name);
}
printf ("\n");
printf ("Routines with a \".r\" need an extra parameter, for example mpn_lshift.6\n");
printf ("r should be in decimal, or use 0xN for hexadecimal.\n");
printf ("\n");
printf ("Special forms for r are \"<N>bits\" for a random N bit number, \"<N>ones\" for\n");
printf ("N one bits, or \"aas\" for 0xAA..AA.\n");
printf ("\n");
printf ("Times for sizes out of the range accepted by a routine are shown as 0.\n");
printf ("The fastest routine at each size is marked with a # (free form output only)\n");
printf ("but columns that are summed are excluded.\n");
printf ("\n");
printf ("%s", speed_time_string);
printf ("\n");
printf ("Gnuplot home page http://www.cs.dartmouth.edu/gnuplot_info.html\n");
printf ("Quickplot home page http://www.kachinatech.com/~quickplot\n");
}
void
check_align_option (const char *name, mp_size_t align)
{
if (align < 0 || align > SPEED_TMP_ALLOC_ADJUST_MASK)
{
fprintf (stderr, "Alignment request out of range: %s %ld\n",
name, (long) align);
fprintf (stderr, " should be 0 to %d (limbs), inclusive\n",
SPEED_TMP_ALLOC_ADJUST_MASK);
exit (1);
}
}
int
main (int argc, char *argv[])
{
int i;
int opt;
/* Unbuffered so output goes straight out when directed to a pipe or file
and isn't lost on killing the program half way. */
setbuf (stdout, NULL);
for (;;)
{
#if _GNU_SOURCE
opt = getopt(argc, argv, "a:CcDd::EFf:o:p:P:r::Rs:t:ux:y:w:W:z");
#else
opt = getopt(argc, argv, "a:CcDd:EFf:o:p:P:r:Rs:t:ux:y:w:W:z");
#endif
if (opt == EOF)
break;
switch (opt) {
case 'a':
if (strcmp (optarg, "random") == 0) option_data = DATA_RANDOM;
else if (strcmp (optarg, "random2") == 0) option_data = DATA_RANDOM2;
else if (strcmp (optarg, "zeros") == 0) option_data = DATA_ZEROS;
else if (strcmp (optarg, "aas") == 0) option_data = DATA_AAS;
else if (strcmp (optarg, "ffs") == 0) option_data = DATA_FFS;
else if (strcmp (optarg, "2fd") == 0) option_data = DATA_2FD;
else
{
fprintf (stderr, "unrecognised data option: %s\n", optarg);
exit (1);
}
break;
case 'C':
if (option_unit != UNIT_SECONDS) goto bad_unit;
option_unit = UNIT_CYCLESPERLIMB;
break;
case 'c':
if (option_unit != UNIT_SECONDS)
{
bad_unit:
fprintf (stderr, "cannot use more than one of -c, -C\n");
exit (1);
}
option_unit = UNIT_CYCLES;
break;
case 'D':
if (option_cmp != CMP_ABSOLUTE) goto bad_cmp;
option_cmp = CMP_DIFFPREV;
break;
case 'd':
if (option_cmp != CMP_ABSOLUTE)
{
bad_cmp:
fprintf (stderr, "cannot use more than one of -d, -D, -r\n");
exit (1);
}
option_cmp = CMP_DIFFERENCE;
option_cmp_pos=0;
if(optarg!=0)option_cmp_pos=atoi(optarg)-1;
break;
case 'E':
option_square = 1;
break;
case 'F':
option_square = 2;
break;
case 'f':
option_factor = atof (optarg);
if (option_factor <= 1.0)
{
fprintf (stderr, "-f factor must be > 1.0\n");
exit (1);
}
break;
case 'o':
speed_option_set (optarg);
break;
case 'P':
option_gnuplot = 1;
option_gnuplot_basename = optarg;
break;
case 'p':
speed_precision = atoi (optarg);
break;
case 'R':
option_seed = time (NULL);
break;
case 'r':
if (option_cmp != CMP_ABSOLUTE)
goto bad_cmp;
option_cmp = CMP_RATIO;
option_cmp_pos=0;
if(optarg!=0)option_cmp_pos = atoi(optarg)-1;
break;
case 's':
{
char *s;
for (s = strtok (optarg, ","); s != NULL; s = strtok (NULL, ","))
{
if (size_num == size_allocnum)
{
size_array = (struct size_array_t *)
__gmp_allocate_or_reallocate
(size_array,
size_allocnum * sizeof(size_array[0]),
(size_allocnum+10) * sizeof(size_array[0]));
size_allocnum += 10;
}
size_array[size_num].inc = 0;
if (sscanf (s, "%ld(%ld)%ld",
&size_array[size_num].start,
&size_array[size_num].inc,
&size_array[size_num].end) != 3)
{
if (sscanf (s, "%ld-%ld",
&size_array[size_num].start,
&size_array[size_num].end) != 2)
{
size_array[size_num].start = size_array[size_num].end
= atol (s);
}
}
if (size_array[size_num].start < 0
|| size_array[size_num].end < 0
|| size_array[size_num].start > size_array[size_num].end)
{
fprintf (stderr, "invalid size parameter: %s\n", s);
exit (1);
}
size_num++;
}
}
break;
case 't':
option_step = atol (optarg);
if (option_step < 1)
{
fprintf (stderr, "-t step must be >= 1\n");
exit (1);
}
break;
case 'u':
option_resource_usage = 1;
break;
case 'z':
sp.cache = 1;
break;
case 'x':
sp.align_xp = atol (optarg);
check_align_option ("-x", sp.align_xp);
break;
case 'y':
sp.align_yp = atol (optarg);
check_align_option ("-y", sp.align_yp);
break;
case 'w':
sp.align_wp = atol (optarg);
check_align_option ("-w", sp.align_wp);
break;
case 'W':
sp.align_wp2 = atol (optarg);
check_align_option ("-W", sp.align_wp2);
break;
case '?':
exit(1);
}
}
if (optind >= argc)
{
usage ();
exit (1);
}
if (size_num == 0)
{
fprintf (stderr, "-s <size> must be specified\n");
exit (1);
}
gmp_randinit_default (__gmp_rands);
__gmp_rands_initialized = 1;
gmp_randseed_ui (__gmp_rands, option_seed);
choice = (struct choice_t *) (*__gmp_allocate_func)
((argc - optind) * sizeof(choice[0]));
for ( ; optind < argc; optind++)
{
struct choice_t c;
routine_find (&c, argv[optind]);
choice[num_choices] = c;
num_choices++;
}
if ((option_cmp == CMP_RATIO || option_cmp == CMP_DIFFERENCE) &&
num_choices < 2)
{
fprintf (stderr, "WARNING, -d or -r does nothing when only one routine requested\n");
}
speed_time_init ();
if (option_unit == UNIT_CYCLES || option_unit == UNIT_CYCLESPERLIMB)
speed_cycletime_need_cycles ();
else
speed_cycletime_need_seconds ();
if (option_gnuplot)
{
run_gnuplot (argc, argv);
}
else
{
if (option_unit == UNIT_SECONDS)
printf ("overhead %.9f secs", speed_measure (speed_noop, NULL));
else
printf ("overhead %.2f cycles",
speed_measure (speed_noop, NULL) / speed_cycletime);
printf (", precision %d units of %.2e secs",
speed_precision, speed_unittime);
if (speed_cycletime == 1.0 || speed_cycletime == 0.0)
printf (", CPU freq unknown\n");
else
printf (", CPU freq %.2f MHz\n", 1e-6/speed_cycletime);
printf (" ");
for (i = 0; i < num_choices; i++)
printf (" %*s", COLUMN_WIDTH, choice[i].name);
printf ("\n");
run_all (stdout);
}
if (option_resource_usage)
{
#if HAVE_GETRUSAGE
{
/* This doesn't give data sizes on linux 2.0.x, only utime. */
struct rusage r;
if (getrusage (RUSAGE_SELF, &r) != 0)
perror ("getrusage");
else
printf ("getrusage(): utime %ld.%06ld data %ld stack %ld maxresident %ld\n",
r.ru_utime.tv_sec, r.ru_utime.tv_usec,
r.ru_idrss, r.ru_isrss, r.ru_ixrss);
}
#else
printf ("getrusage() not available\n");
#endif
/* Linux kernel. */
{
char buf[128];
sprintf (buf, "/proc/%d/status", getpid());
if (access (buf, R_OK) == 0)
{
sprintf (buf, "cat /proc/%d/status", getpid());
system (buf);
}
}
}
return 0;
}