mpir/mpn/generic/gcd.c

794 lines
20 KiB
C

/* Schönhage's 1987 algorithm, reorganized into hgcd form
Copyright 2004, 2005 Niels Möller
Copyright 2008 Jason Martin
Copyright 2009 William Hart
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <stdio.h> /* for NULL */
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
/* ******************************************************************
* Here we are including the original GMP version of mpn_gcd
* but we rename it as mpn_basic_gcd. It needs to be available
* for the ngcd algorithm to call in the base case.
*
* Preconditions [U = (up, usize) and V = (vp, vsize)]:
*
* 1. V is odd.
* 2. numbits(U) >= numbits(V).
*
* Both U and V are destroyed by the operation. The result is left at vp,
* and its size is returned.
*
* Ken Weber (kweber@mat.ufrgs.br, kweber@mcs.kent.edu)
*
* Funding for this work has been partially provided by Conselho
* Nacional de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do
* Brazil, Grant 301314194-2, and was done while I was a visiting
* reseacher in the Instituto de Matema'tica at Universidade Federal
* do Rio Grande do Sul (UFRGS).
*
* Refer to K. Weber, The accelerated integer GCD algorithm, ACM
* Transactions on Mathematical Software, v. 21 (March), 1995,
* pp. 111-122.
*
* *****************************************************************/
/* If MIN (usize, vsize) >= GCD_ACCEL_THRESHOLD, then the accelerated
algorithm is used, otherwise the binary algorithm is used. This may be
adjusted for different architectures. */
#ifndef GCD_ACCEL_THRESHOLD
#define GCD_ACCEL_THRESHOLD 5
#endif
/* When U and V differ in size by more than BMOD_THRESHOLD, the accelerated
algorithm reduces using the bmod operation. Otherwise, the k-ary reduction
is used. 0 <= BMOD_THRESHOLD < GMP_NUMB_BITS. */
enum
{
BMOD_THRESHOLD = GMP_NUMB_BITS/2
};
/* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize == 2.
Both U and V must be odd. */
static inline mp_size_t
gcd_2 (mp_ptr vp, mp_srcptr up)
{
mp_limb_t u0, u1, v0, v1;
mp_size_t vsize;
u0 = up[0];
u1 = up[1];
v0 = vp[0];
v1 = vp[1];
while (u1 != v1 && u0 != v0)
{
unsigned long int r;
if (u1 > v1)
{
u1 -= v1 + (u0 < v0);
u0 = (u0 - v0) & GMP_NUMB_MASK;
count_trailing_zeros (r, u0);
u0 = ((u1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (u0 >> r);
u1 >>= r;
}
else /* u1 < v1. */
{
v1 -= u1 + (v0 < u0);
v0 = (v0 - u0) & GMP_NUMB_MASK;
count_trailing_zeros (r, v0);
v0 = ((v1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (v0 >> r);
v1 >>= r;
}
}
vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
/* If U == V == GCD, done. Otherwise, compute GCD (V, |U - V|). */
if (u1 == v1 && u0 == v0)
return vsize;
v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 : v0-u0;
vp[0] = mpn_gcd_1 (vp, vsize, v0);
return 1;
}
/* The function find_a finds 0 < N < 2^GMP_NUMB_BITS such that there exists
0 < |D| < 2^GMP_NUMB_BITS, and N == D * C mod 2^(2*GMP_NUMB_BITS).
In the reference article, D was computed along with N, but it is better to
compute D separately as D <-- N / C mod 2^(GMP_NUMB_BITS + 1), treating
the result as a twos' complement signed integer.
Initialize N1 to C mod 2^(2*GMP_NUMB_BITS). According to the reference
article, N2 should be initialized to 2^(2*GMP_NUMB_BITS), but we use
2^(2*GMP_NUMB_BITS) - N1 to start the calculations within double
precision. If N2 > N1 initially, the first iteration of the while loop
will swap them. In all other situations, N1 >= N2 is maintained. */
#if HAVE_NATIVE_mpn_gcd_finda
#define find_a(cp) mpn_gcd_finda (cp)
#else
static
#if ! defined (__i386__)
inline /* don't inline this for the x86 */
#endif
mp_limb_t
find_a (mp_srcptr cp)
{
unsigned long int leading_zero_bits = 0;
mp_limb_t n1_l = cp[0]; /* N1 == n1_h * 2^GMP_NUMB_BITS + n1_l. */
mp_limb_t n1_h = cp[1];
mp_limb_t n2_l = (-n1_l & GMP_NUMB_MASK); /* N2 == n2_h * 2^GMP_NUMB_BITS + n2_l. */
mp_limb_t n2_h = (~n1_h & GMP_NUMB_MASK);
/* Main loop. */
while (n2_h != 0) /* While N2 >= 2^GMP_NUMB_BITS. */
{
/* N1 <-- N1 % N2. */
if (((GMP_NUMB_HIGHBIT >> leading_zero_bits) & n2_h) == 0)
{
unsigned long int i;
count_leading_zeros (i, n2_h);
i -= GMP_NAIL_BITS;
i -= leading_zero_bits;
leading_zero_bits += i;
n2_h = ((n2_h << i) & GMP_NUMB_MASK) | (n2_l >> (GMP_NUMB_BITS - i));
n2_l = (n2_l << i) & GMP_NUMB_MASK;
do
{
if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
{
n1_h -= n2_h + (n1_l < n2_l);
n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
}
n2_l = (n2_l >> 1) | ((n2_h << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK);
n2_h >>= 1;
i -= 1;
}
while (i != 0);
}
if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
{
n1_h -= n2_h + (n1_l < n2_l);
n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
}
MP_LIMB_T_SWAP (n1_h, n2_h);
MP_LIMB_T_SWAP (n1_l, n2_l);
}
return n2_l;
}
#endif
mp_size_t
mpn_basic_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp, mp_size_t vsize)
{
mp_ptr orig_vp = vp;
mp_size_t orig_vsize = vsize;
int binary_gcd_ctr; /* Number of times binary gcd will execute. */
mp_size_t scratch;
mp_ptr tp;
TMP_DECL;
ASSERT (usize >= 1);
ASSERT (vsize >= 1);
ASSERT (usize >= vsize);
ASSERT (vp[0] & 1);
ASSERT (up[usize - 1] != 0);
ASSERT (vp[vsize - 1] != 0);
#if WANT_ASSERT
if (usize == vsize)
{
int uzeros, vzeros;
count_leading_zeros (uzeros, up[usize - 1]);
count_leading_zeros (vzeros, vp[vsize - 1]);
ASSERT (uzeros <= vzeros);
}
#endif
ASSERT (! MPN_OVERLAP_P (up, usize, vp, vsize));
ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, up, usize));
ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, vp, vsize));
TMP_MARK;
/* Use accelerated algorithm if vsize is over GCD_ACCEL_THRESHOLD.
Two EXTRA limbs for U and V are required for kary reduction. */
if (vsize >= GCD_ACCEL_THRESHOLD)
{
unsigned long int vbitsize, d;
mp_ptr orig_up = up;
mp_size_t orig_usize = usize;
mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) * BYTES_PER_MP_LIMB);
MPN_COPY (anchor_up, orig_up, usize);
up = anchor_up;
count_leading_zeros (d, up[usize - 1]);
d -= GMP_NAIL_BITS;
d = usize * GMP_NUMB_BITS - d;
count_leading_zeros (vbitsize, vp[vsize - 1]);
vbitsize -= GMP_NAIL_BITS;
vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
ASSERT (d >= vbitsize);
d = d - vbitsize + 1;
/* Use bmod reduction to quickly discover whether V divides U. */
up[usize++] = 0; /* Insert leading zero. */
mpn_bdivmod (up, up, usize, vp, vsize, d);
/* Now skip U/V mod 2^d and any low zero limbs. */
d /= GMP_NUMB_BITS, up += d, usize -= d;
while (usize != 0 && up[0] == 0)
up++, usize--;
if (usize == 0) /* GCD == ORIG_V. */
goto done;
vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
MPN_COPY (vp, orig_vp, vsize);
do /* Main loop. */
{
/* mpn_com_n can't be used here because anchor_up and up may
partially overlap */
if ((up[usize - 1] & GMP_NUMB_HIGHBIT) != 0) /* U < 0; take twos' compl. */
{
mp_size_t i;
anchor_up[0] = -up[0] & GMP_NUMB_MASK;
for (i = 1; i < usize; i++)
anchor_up[i] = (~up[i] & GMP_NUMB_MASK);
up = anchor_up;
}
MPN_NORMALIZE_NOT_ZERO (up, usize);
if ((up[0] & 1) == 0) /* Result even; remove twos. */
{
unsigned int r;
count_trailing_zeros (r, up[0]);
mpn_rshift (anchor_up, up, usize, r);
usize -= (anchor_up[usize - 1] == 0);
}
else if (anchor_up != up)
MPN_COPY_INCR (anchor_up, up, usize);
MPN_PTR_SWAP (anchor_up,usize, vp,vsize);
up = anchor_up;
if (vsize <= 2) /* Kary can't handle < 2 limbs and */
break; /* isn't efficient for == 2 limbs. */
d = vbitsize;
count_leading_zeros (vbitsize, vp[vsize - 1]);
vbitsize -= GMP_NAIL_BITS;
vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
d = d - vbitsize + 1;
if (d > BMOD_THRESHOLD) /* Bmod reduction. */
{
up[usize++] = 0;
mpn_bdivmod (up, up, usize, vp, vsize, d);
d /= GMP_NUMB_BITS, up += d, usize -= d;
}
else /* Kary reduction. */
{
mp_limb_t bp[2], cp[2];
/* C <-- V/U mod 2^(2*GMP_NUMB_BITS). */
{
mp_limb_t u_inv, hi, lo;
modlimb_invert (u_inv, up[0]);
cp[0] = (vp[0] * u_inv) & GMP_NUMB_MASK;
umul_ppmm (hi, lo, cp[0], up[0] << GMP_NAIL_BITS);
lo >>= GMP_NAIL_BITS;
cp[1] = (vp[1] - hi - cp[0] * up[1]) * u_inv & GMP_NUMB_MASK;
}
/* U <-- find_a (C) * U. */
up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
usize++;
/* B <-- A/C == U/V mod 2^(GMP_NUMB_BITS + 1).
bp[0] <-- U/V mod 2^GMP_NUMB_BITS and
bp[1] <-- ( (U - bp[0] * V)/2^GMP_NUMB_BITS ) / V mod 2
Like V/U above, but simplified because only the low bit of
bp[1] is wanted. */
{
mp_limb_t v_inv, hi, lo;
modlimb_invert (v_inv, vp[0]);
bp[0] = (up[0] * v_inv) & GMP_NUMB_MASK;
umul_ppmm (hi, lo, bp[0], vp[0] << GMP_NAIL_BITS);
lo >>= GMP_NAIL_BITS;
bp[1] = (up[1] + hi + (bp[0] & vp[1])) & 1;
}
up[usize++] = 0;
if (bp[1] != 0) /* B < 0: U <-- U + (-B) * V. */
{
mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0] & GMP_NUMB_MASK);
mpn_add_1 (up + vsize, up + vsize, usize - vsize, c);
}
else /* B >= 0: U <-- U - B * V. */
{
mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
}
up += 2, usize -= 2; /* At least two low limbs are zero. */
}
/* Must remove low zero limbs before complementing. */
while (usize != 0 && up[0] == 0)
up++, usize--;
}
while (usize != 0);
/* Compute GCD (ORIG_V, GCD (ORIG_U, V)). Binary will execute twice. */
up = orig_up, usize = orig_usize;
binary_gcd_ctr = 2;
}
else
binary_gcd_ctr = 1;
scratch = MPN_NGCD_LEHMER_ITCH (vsize);
if (usize + 1 > scratch)
scratch = usize + 1;
tp = TMP_ALLOC_LIMBS (scratch);
/* Finish up with the binary algorithm. Executes once or twice. */
for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
{
#if 1
if (usize > vsize)
{
/* FIXME: Could use mpn_bdivmod. */
mp_size_t rsize;
mpn_tdiv_qr (tp + vsize, tp, 0, up, usize, vp, vsize);
rsize = vsize;
MPN_NORMALIZE (tp, rsize);
if (rsize == 0)
continue;
MPN_COPY (up, tp, vsize);
}
vsize = mpn_ngcd_lehmer (vp, up, vp, vsize, tp);
#else
if (usize > 2) /* First make U close to V in size. */
{
unsigned long int vbitsize, d;
count_leading_zeros (d, up[usize - 1]);
d -= GMP_NAIL_BITS;
d = usize * GMP_NUMB_BITS - d;
count_leading_zeros (vbitsize, vp[vsize - 1]);
vbitsize -= GMP_NAIL_BITS;
vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
d = d - vbitsize - 1;
if (d != -(unsigned long int)1 && d > 2)
{
mpn_bdivmod (up, up, usize, vp, vsize, d); /* Result > 0. */
d /= (unsigned long int)GMP_NUMB_BITS, up += d, usize -= d;
}
}
/* Start binary GCD. */
do
{
mp_size_t zeros;
/* Make sure U is odd. */
MPN_NORMALIZE (up, usize);
while (up[0] == 0)
up += 1, usize -= 1;
if ((up[0] & 1) == 0)
{
unsigned int r;
count_trailing_zeros (r, up[0]);
mpn_rshift (up, up, usize, r);
usize -= (up[usize - 1] == 0);
}
/* Keep usize >= vsize. */
if (usize < vsize)
MPN_PTR_SWAP (up, usize, vp, vsize);
if (usize <= 2) /* Double precision. */
{
if (vsize == 1)
vp[0] = mpn_gcd_1 (up, usize, vp[0]);
else
vsize = gcd_2 (vp, up);
break; /* Binary GCD done. */
}
/* Count number of low zero limbs of U - V. */
for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
continue;
/* If U < V, swap U and V; in any case, subtract V from U. */
if (zeros == vsize) /* Subtract done. */
up += zeros, usize -= zeros;
else if (usize == vsize)
{
mp_size_t size = vsize;
do
size--;
while (up[size] == vp[size]);
if (up[size] < vp[size]) /* usize == vsize. */
MP_PTR_SWAP (up, vp);
up += zeros, usize = size + 1 - zeros;
mpn_sub_n (up, up, vp + zeros, usize);
}
else
{
mp_size_t size = vsize - zeros;
up += zeros, usize -= zeros;
if (mpn_sub_n (up, up, vp + zeros, size))
{
while (up[size] == 0) /* Propagate borrow. */
up[size++] = -(mp_limb_t)1;
up[size] -= 1;
}
}
}
while (usize); /* End binary GCD. */
#endif
}
done:
if (vp != gp)
MPN_COPY_INCR (gp, vp, vsize);
TMP_FREE;
return vsize;
}
/* ******************************************************************
* END of original GMP mpn_gcd
* *****************************************************************/
/*
* The remainder of this code is from Moller's patches.
*
* To make this code work with "make tune" we need to conditionally
* exclude the Moller code when this file gets included inside of
* gcd_bin.c in ../tune.
*/
#ifndef INSIDE_TUNE_GCD_BIN
/* For input of size n, matrix elements are of size at most ceil(n/2)
- 1, but we need one limb extra. */
void
mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p)
{
mp_size_t s = (n+1)/2;
M->alloc = s;
M->n = 1;
MPN_ZERO (p, 4 * s);
M->p[0][0] = p;
M->p[0][1] = p + s;
M->p[1][0] = p + 2 * s;
M->p[1][1] = p + 3 * s;
M->tp = p + 4*s;
M->p[0][0][0] = M->p[1][1][0] = 1;
}
#define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
/* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
with elements of size at most (n+1)/2 - 1. Returns new size of a,
b, or zero if no reduction is possible. */
static mp_size_t
nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
struct ngcd_matrix *M, mp_ptr tp)
{
mp_size_t s = n/2 + 1;
mp_size_t nn;
ASSERT (n > s);
ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
if (!nn)
return 0;
for (;;)
{
n = nn;
ASSERT (n > s);
nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
if (!nn )
return n;
}
}
/* Size analysis for nhgcd:
For the recursive calls, we have n1 <= ceil(n / 2). Then the
storage need is determined by the storage for the recursive call
computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that use M1
(after this, the storage needed for M1 can be recycled).
Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
= 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2. For the
matrix multiplication we need 4*n1 + 3*ceil(n1/2) + 3, so 3n + 3 will do.
In total, 5 * ceil(n/4) + 3n + 3 <= 17 ceil(n/4) + 3.
For the recursive call, we need S(n1) = S(ceil(n/2)).
S(n) <= 17*ceil(n/4) + 3 + S(ceil(n/2))
<= 17*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 3k + S(ceil(n/2^k))
<= 17*(2 ceil(n/4) + k) + 3k + S(n/2^k)
<= 34 ceil(n/4) + 20k + S(n/2^k)
*/
mp_size_t
mpn_nhgcd_itch (mp_size_t n)
{
unsigned k;
mp_size_t nn;
/* Inefficient way to almost compute
log_2(n/NHGCD_BASE_THRESHOLD) */
for (k = 0, nn = n;
ABOVE_THRESHOLD (nn, NHGCD_THRESHOLD);
nn = (nn + 1) / 2)
k++;
if (k == 0)
return NHGCD_BASE_ITCH (n);
return 35 * ((n+3) / 4) + 20 * k
+ NHGCD_BASE_ITCH (NHGCD_THRESHOLD);
}
/* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
with elements of size at most (n+1)/2 - 1. Returns new size of a,
b, or zero if no reduction is possible. */
mp_size_t
mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
struct ngcd_matrix *M, mp_ptr tp)
{
mp_size_t s = n/2 + 1;
mp_size_t n2 = (3*n)/4 + 1;
mp_size_t p, nn;
unsigned count;
int success = 0;
ASSERT (n > s);
ASSERT ((ap[n-1] | bp[n-1]) > 0);
ASSERT ((n+1)/2 - 1 < M->alloc);
if (BELOW_THRESHOLD (n, NHGCD_THRESHOLD))
return nhgcd_base (ap, bp, n, M, tp);
p = n/2;
nn = mpn_nhgcd (ap + p, bp + p, n - p, M, tp);
if (nn > 0)
{
/* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
= 2 (n - 1) */
n = mpn_ngcd_matrix_adjust (M, p + nn, ap, bp, p, tp);
success = 1;
}
count = 0;
while (n > n2)
{
count++;
/* Needs n + 1 storage */
nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
if (!nn)
return success ? n : 0;
n = nn;
success = 1;
}
if (n > s + 2)
{
struct ngcd_matrix M1;
mp_size_t scratch;
p = 2*s - n + 1;
scratch = MPN_NGCD_MATRIX_INIT_ITCH (n-p);
mpn_ngcd_matrix_init(&M1, n - p, tp);
nn = mpn_nhgcd (ap + p, bp + p, n - p, &M1, tp + scratch);
if (nn > 0)
{
/* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
= 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
n = mpn_ngcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch);
/* Needs M->n <= n2 - s - 1 < n/4 */
mpn_ngcd_matrix_mul (M, &M1, tp + scratch);
success = 1;
}
}
/* FIXME: This really is the base case */
for (count = 0;; count++)
{
/* Needs s+3 < n */
nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
if (!nn)
return success ? n : 0;
n = nn;
success = 1;
}
}
#define EVEN_P(x) (((x) & 1) == 0)
#define LGCD_THRESHOLD 64
#define P_SIZE(n) (n/2)
mp_size_t
mpn_gcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
{
mp_size_t init_scratch;
mp_size_t scratch;
mp_ptr tp;
TMP_DECL;
ASSERT (an >= n);
if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
{
if (BELOW_THRESHOLD (n, LGCD_THRESHOLD))
return mpn_lgcd (gp, ap, an, bp, n);
return mpn_basic_gcd (gp, ap, an, bp, n);
}
init_scratch = MPN_NGCD_MATRIX_INIT_ITCH (n-P_SIZE(n));
scratch = mpn_nhgcd_itch ((n+1)/2);
/* Space needed for mpn_ngcd_matrix_adjust */
if (scratch < 2*n)
scratch = 2*n;
if (scratch < MPN_NGCD_LEHMER_ITCH(n)) /* Space needed by Lehmer GCD */
scratch = MPN_NGCD_LEHMER_ITCH(n);
TMP_MARK;
if (an + 1 > init_scratch + scratch)
tp = TMP_ALLOC_LIMBS (an + 1);
else
tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
if (an > n)
{
mp_ptr rp = tp;
mp_ptr qp = rp + n;
mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
MPN_COPY (ap, rp, n);
an = n;
MPN_NORMALIZE (ap, an);
if (an == 0)
{
MPN_COPY (gp, bp, n);
TMP_FREE;
return n;
}
}
while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
{
struct ngcd_matrix M;
mp_size_t p = P_SIZE(n);
mp_size_t nn;
mpn_ngcd_matrix_init (&M, n - p, tp);
nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
if (nn > 0)
/* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
= 2(n-1) */
n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp + init_scratch);
else
{
mp_size_t gn;
n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
if (n == 0)
{
TMP_FREE;
return gn;
}
}
}
ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
if (ap[n-1] < bp[n-1])
MP_PTR_SWAP (ap, bp);
if (BELOW_THRESHOLD (n, LGCD_THRESHOLD))
{
n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
TMP_FREE;
return n;
}
an = n;
MPN_NORMALIZE (bp, n);
if (n == 0)
{
MPN_COPY (gp, ap, an);
TMP_FREE;
return an;
}
if (EVEN_P (bp[0]))
{
/* Then a must be odd (since the calling convention implies that
there's no common factor of 2) */
ASSERT (!EVEN_P (ap[0]));
while (bp[0] == 0)
{
bp++;
n--;
}
if (EVEN_P(bp[0]))
{
int count;
count_trailing_zeros (count, bp[0]);
ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
n -= (bp[n-1] == 0);
}
}
TMP_FREE;
return mpn_basic_gcd (gp, ap, an, bp, n);
}
#endif