mpir/mpz/powm.c
2008-04-17 21:03:07 +00:00

462 lines
11 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* mpz_powm(res,base,exp,mod) -- Set RES to (base**exp) mod MOD.
Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2002, 2005 Free Software
Foundation, Inc. Contributed by Paul Zimmermann.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#ifdef BERKELEY_MP
#include "mp.h"
#endif
/* Set cp[] <- tp[]/R^n mod mp[]. Clobber tp[].
mp[] is n limbs; tp[] is 2n limbs. */
#if ! WANT_REDC_GLOBAL
static
#endif
void
redc (mp_ptr cp, mp_srcptr mp, mp_size_t n, mp_limb_t Nprim, mp_ptr tp)
{
mp_limb_t cy;
mp_limb_t q;
mp_size_t j;
ASSERT_MPN (tp, 2*n);
for (j = 0; j < n; j++)
{
q = (tp[0] * Nprim) & GMP_NUMB_MASK;
tp[0] = mpn_addmul_1 (tp, mp, n, q);
tp++;
}
cy = mpn_add_n (cp, tp, tp - n, n);
if (cy != 0)
mpn_sub_n (cp, cp, mp, n);
}
/* Compute t = a mod m, a is defined by (ap,an), m is defined by (mp,mn), and
t is defined by (tp,mn). */
static void
reduce (mp_ptr tp, mp_srcptr ap, mp_size_t an, mp_srcptr mp, mp_size_t mn)
{
mp_ptr qp;
TMP_DECL;
TMP_MARK;
qp = TMP_ALLOC_LIMBS (an - mn + 1);
mpn_tdiv_qr (qp, tp, 0L, ap, an, mp, mn);
TMP_FREE;
}
#if REDUCE_EXPONENT
/* Return the group order of the ring mod m. */
static mp_limb_t
phi (mp_limb_t t)
{
mp_limb_t d, m, go;
go = 1;
if (t % 2 == 0)
{
t = t / 2;
while (t % 2 == 0)
{
go *= 2;
t = t / 2;
}
}
for (d = 3;; d += 2)
{
m = d - 1;
for (;;)
{
unsigned long int q = t / d;
if (q < d)
{
if (t <= 1)
return go;
if (t == d)
return go * m;
return go * (t - 1);
}
if (t != q * d)
break;
go *= m;
m = d;
t = q;
}
}
}
#endif
/* average number of calls to redc for an exponent of n bits
with the sliding window algorithm of base 2^k: the optimal is
obtained for the value of k which minimizes 2^(k-1)+n/(k+1):
n\k 4 5 6 7 8
128 156* 159 171 200 261
256 309 307* 316 343 403
512 617 607* 610 632 688
1024 1231 1204 1195* 1207 1256
2048 2461 2399 2366 2360* 2396
4096 4918 4787 4707 4665* 4670
*/
/* Use REDC instead of usual reduction for sizes < POWM_THRESHOLD. In REDC
each modular multiplication costs about 2*n^2 limbs operations, whereas
using usual reduction it costs 3*K(n), where K(n) is the cost of a
multiplication using Karatsuba, and a division is assumed to cost 2*K(n),
for example using Burnikel-Ziegler's algorithm. This gives a theoretical
threshold of a*SQR_KARATSUBA_THRESHOLD, with a=(3/2)^(1/(2-ln(3)/ln(2))) ~
2.66. */
/* For now, also disable REDC when MOD is even, as the inverse can't handle
that. At some point, we might want to make the code faster for that case,
perhaps using CRR. */
#ifndef POWM_THRESHOLD
#define POWM_THRESHOLD ((8 * SQR_KARATSUBA_THRESHOLD) / 3)
#endif
#define HANDLE_NEGATIVE_EXPONENT 1
#undef REDUCE_EXPONENT
void
#ifndef BERKELEY_MP
mpz_powm (mpz_ptr r, mpz_srcptr b, mpz_srcptr e, mpz_srcptr m)
#else /* BERKELEY_MP */
pow (mpz_srcptr b, mpz_srcptr e, mpz_srcptr m, mpz_ptr r)
#endif /* BERKELEY_MP */
{
mp_ptr xp, tp, qp, gp, this_gp;
mp_srcptr bp, ep, mp;
mp_size_t bn, es, en, mn, xn;
mp_limb_t invm, c;
unsigned long int enb;
mp_size_t i, K, j, l, k;
int m_zero_cnt, e_zero_cnt;
int sh;
int use_redc;
#if HANDLE_NEGATIVE_EXPONENT
mpz_t new_b;
#endif
#if REDUCE_EXPONENT
mpz_t new_e;
#endif
TMP_DECL;
mp = PTR(m);
mn = ABSIZ (m);
if (mn == 0)
DIVIDE_BY_ZERO;
TMP_MARK;
es = SIZ (e);
if (es <= 0)
{
if (es == 0)
{
/* Exponent is zero, result is 1 mod m, i.e., 1 or 0 depending on if
m equals 1. */
SIZ(r) = (mn == 1 && mp[0] == 1) ? 0 : 1;
PTR(r)[0] = 1;
TMP_FREE; /* we haven't really allocated anything here */
return;
}
#if HANDLE_NEGATIVE_EXPONENT
MPZ_TMP_INIT (new_b, mn + 1);
if (! mpz_invert (new_b, b, m))
DIVIDE_BY_ZERO;
b = new_b;
es = -es;
#else
DIVIDE_BY_ZERO;
#endif
}
en = es;
#if REDUCE_EXPONENT
/* Reduce exponent by dividing it by phi(m) when m small. */
if (mn == 1 && mp[0] < 0x7fffffffL && en * GMP_NUMB_BITS > 150)
{
MPZ_TMP_INIT (new_e, 2);
mpz_mod_ui (new_e, e, phi (mp[0]));
e = new_e;
}
#endif
use_redc = mn < POWM_THRESHOLD && mp[0] % 2 != 0;
if (use_redc)
{
/* invm = -1/m mod 2^BITS_PER_MP_LIMB, must have m odd */
modlimb_invert (invm, mp[0]);
invm = -invm;
}
else
{
/* Normalize m (i.e. make its most significant bit set) as required by
division functions below. */
count_leading_zeros (m_zero_cnt, mp[mn - 1]);
m_zero_cnt -= GMP_NAIL_BITS;
if (m_zero_cnt != 0)
{
mp_ptr new_mp;
new_mp = TMP_ALLOC_LIMBS (mn);
mpn_lshift (new_mp, mp, mn, m_zero_cnt);
mp = new_mp;
}
}
/* Determine optimal value of k, the number of exponent bits we look at
at a time. */
count_leading_zeros (e_zero_cnt, PTR(e)[en - 1]);
e_zero_cnt -= GMP_NAIL_BITS;
enb = en * GMP_NUMB_BITS - e_zero_cnt; /* number of bits of exponent */
k = 1;
K = 2;
while (2 * enb > K * (2 + k * (3 + k)))
{
k++;
K *= 2;
if (k == 10) /* cap allocation */
break;
}
tp = TMP_ALLOC_LIMBS (2 * mn);
qp = TMP_ALLOC_LIMBS (mn + 1);
gp = __GMP_ALLOCATE_FUNC_LIMBS (K / 2 * mn);
/* Compute x*R^n where R=2^BITS_PER_MP_LIMB. */
bn = ABSIZ (b);
bp = PTR(b);
/* Handle |b| >= m by computing b mod m. FIXME: It is not strictly necessary
for speed or correctness to do this when b and m have the same number of
limbs, perhaps remove mpn_cmp call. */
if (bn > mn || (bn == mn && mpn_cmp (bp, mp, mn) >= 0))
{
/* Reduce possibly huge base while moving it to gp[0]. Use a function
call to reduce, since we don't want the quotient allocation to
live until function return. */
if (use_redc)
{
reduce (tp + mn, bp, bn, mp, mn); /* b mod m */
MPN_ZERO (tp, mn);
mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); /* unnormnalized! */
}
else
{
reduce (gp, bp, bn, mp, mn);
}
}
else
{
/* |b| < m. We pad out operands to become mn limbs, which simplifies
the rest of the function, but slows things down when the |b| << m. */
if (use_redc)
{
MPN_ZERO (tp, mn);
MPN_COPY (tp + mn, bp, bn);
MPN_ZERO (tp + mn + bn, mn - bn);
mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn);
}
else
{
MPN_COPY (gp, bp, bn);
MPN_ZERO (gp + bn, mn - bn);
}
}
/* Compute xx^i for odd g < 2^i. */
xp = TMP_ALLOC_LIMBS (mn);
mpn_sqr_n (tp, gp, mn);
if (use_redc)
redc (xp, mp, mn, invm, tp); /* xx = x^2*R^n */
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
this_gp = gp;
for (i = 1; i < K / 2; i++)
{
mpn_mul_n (tp, this_gp, xp, mn);
this_gp += mn;
if (use_redc)
redc (this_gp, mp, mn, invm, tp); /* g[i] = x^(2i+1)*R^n */
else
mpn_tdiv_qr (qp, this_gp, 0L, tp, 2 * mn, mp, mn);
}
/* Start the real stuff. */
ep = PTR (e);
i = en - 1; /* current index */
c = ep[i]; /* current limb */
sh = GMP_NUMB_BITS - e_zero_cnt; /* significant bits in ep[i] */
sh -= k; /* index of lower bit of ep[i] to take into account */
if (sh < 0)
{ /* k-sh extra bits are needed */
if (i > 0)
{
i--;
c <<= (-sh);
sh += GMP_NUMB_BITS;
c |= ep[i] >> sh;
}
}
else
c >>= sh;
for (j = 0; c % 2 == 0; j++)
c >>= 1;
MPN_COPY (xp, gp + mn * (c >> 1), mn);
while (--j >= 0)
{
mpn_sqr_n (tp, xp, mn);
if (use_redc)
redc (xp, mp, mn, invm, tp);
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
}
while (i > 0 || sh > 0)
{
c = ep[i];
l = k; /* number of bits treated */
sh -= l;
if (sh < 0)
{
if (i > 0)
{
i--;
c <<= (-sh);
sh += GMP_NUMB_BITS;
c |= ep[i] >> sh;
}
else
{
l += sh; /* last chunk of bits from e; l < k */
}
}
else
c >>= sh;
c &= ((mp_limb_t) 1 << l) - 1;
/* This while loop implements the sliding window improvement--loop while
the most significant bit of c is zero, squaring xx as we go. */
while ((c >> (l - 1)) == 0 && (i > 0 || sh > 0))
{
mpn_sqr_n (tp, xp, mn);
if (use_redc)
redc (xp, mp, mn, invm, tp);
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
if (sh != 0)
{
sh--;
c = (c << 1) + ((ep[i] >> sh) & 1);
}
else
{
i--;
sh = GMP_NUMB_BITS - 1;
c = (c << 1) + (ep[i] >> sh);
}
}
/* Replace xx by xx^(2^l)*x^c. */
if (c != 0)
{
for (j = 0; c % 2 == 0; j++)
c >>= 1;
/* c0 = c * 2^j, i.e. xx^(2^l)*x^c = (A^(2^(l - j))*c)^(2^j) */
l -= j;
while (--l >= 0)
{
mpn_sqr_n (tp, xp, mn);
if (use_redc)
redc (xp, mp, mn, invm, tp);
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
}
mpn_mul_n (tp, xp, gp + mn * (c >> 1), mn);
if (use_redc)
redc (xp, mp, mn, invm, tp);
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
}
else
j = l; /* case c=0 */
while (--j >= 0)
{
mpn_sqr_n (tp, xp, mn);
if (use_redc)
redc (xp, mp, mn, invm, tp);
else
mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);
}
}
if (use_redc)
{
/* Convert back xx to xx/R^n. */
MPN_COPY (tp, xp, mn);
MPN_ZERO (tp + mn, mn);
redc (xp, mp, mn, invm, tp);
if (mpn_cmp (xp, mp, mn) >= 0)
mpn_sub_n (xp, xp, mp, mn);
}
else
{
if (m_zero_cnt != 0)
{
mp_limb_t cy;
cy = mpn_lshift (tp, xp, mn, m_zero_cnt);
tp[mn] = cy;
mpn_tdiv_qr (qp, xp, 0L, tp, mn + (cy != 0), mp, mn);
mpn_rshift (xp, xp, mn, m_zero_cnt);
}
}
xn = mn;
MPN_NORMALIZE (xp, xn);
if ((ep[0] & 1) && SIZ(b) < 0 && xn != 0)
{
mp = PTR(m); /* want original, unnormalized m */
mpn_sub (xp, mp, mn, xp, xn);
xn = mn;
MPN_NORMALIZE (xp, xn);
}
MPZ_REALLOC (r, xn);
SIZ (r) = xn;
MPN_COPY (PTR(r), xp, xn);
__GMP_FREE_FUNC_LIMBS (gp, K / 2 * mn);
TMP_FREE;
}