mpir/doc/mpir.info-2

3556 lines
192 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This is mpir.info, produced by makeinfo version 5.2 from mpir.texi.
This manual describes how to install and use MPIR, the Multiple
Precision Integers and Rationals library, version 2.7.2.
Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Free Software Foundation, Inc.
Copyright 2008, 2009, 2010 William Hart
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and
with the Back-Cover Texts being "You have freedom to copy and modify
this GNU Manual, like GNU software". A copy of the license is included
in *note GNU Free Documentation License::.
INFO-DIR-SECTION GNU libraries
START-INFO-DIR-ENTRY
* mpir: (mpir). MPIR Multiple Precision Integers and Rationals Library.
END-INFO-DIR-ENTRY

File: mpir.info, Node: Nth Root Algorithm, Next: Perfect Square Algorithm, Prev: Square Root Algorithm, Up: Root Extraction Algorithms
15.5.2 Nth Root
---------------
Integer Nth roots are taken using Newton's method with the following
iteration, where A is the input and n is the root to be taken.
1 A
a[i+1] = - * ( --------- + (n-1)*a[i] )
n a[i]^(n-1)
The initial approximation a[1] is generated bitwise by successively
powering a trial root with or without new 1 bits, aiming to be just
above the true root. The iteration converges quadratically when started
from a good approximation. When n is large more initial bits are needed
to get good convergence. The current implementation is not particularly
well optimized.

File: mpir.info, Node: Perfect Square Algorithm, Next: Perfect Power Algorithm, Prev: Nth Root Algorithm, Up: Root Extraction Algorithms
15.5.3 Perfect Square
---------------------
A significant fraction of non-squares can be quickly identified by
checking whether the input is a quadratic residue modulo small integers.
'mpz_perfect_square_p' first tests the input mod 256, which means
just examining the low byte. Only 44 different values occur for squares
mod 256, so 82.8% of inputs can be immediately identified as
non-squares.
On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, for
a total 99.25% of inputs identified as non-squares. On a 64-bit system
97 is tested too, for a total 99.62%.
These moduli are chosen because they're factors of 2^24-1 (or 2^48-1
for 64-bits), and such a remainder can be quickly taken just using
additions (see 'mpn_mod_34lsub1').
When nails are in use moduli are instead selected by the 'gen-psqr.c'
program and applied with an 'mpn_mod_1'. The same 2^24-1 or 2^48-1
could be done with nails using some extra bit shifts, but this is not
currently implemented.
In any case each modulus is applied to the 'mpn_mod_34lsub1' or
'mpn_mod_1' remainder and a table lookup identifies non-squares. By
using a "modexact" style calculation, and suitably permuted tables, just
one multiply each is required, see the code for details. Moduli are
also combined to save operations, so long as the lookup tables don't
become too big. 'gen-psqr.c' does all the pre-calculations.
A square root must still be taken for any value that passes these
tests, to verify it's really a square and not one of the small fraction
of non-squares that get through (ie. a pseudo-square to all the tested
bases).
Clearly more residue tests could be done, 'mpz_perfect_square_p' only
uses a compact and efficient set. Big inputs would probably benefit
from more residue testing, small inputs might be better off with less.
The assumed distribution of squares versus non-squares in the input
would affect such considerations.

File: mpir.info, Node: Perfect Power Algorithm, Prev: Perfect Square Algorithm, Up: Root Extraction Algorithms
15.5.4 Perfect Power
--------------------
Detecting perfect powers is required by some factorization algorithms.
Currently 'mpz_perfect_power_p' is implemented using repeated Nth root
extractions, though naturally only prime roots need to be considered.
(*Note Nth Root Algorithm::.)
If a prime divisor p with multiplicity e can be found, then only
roots which are divisors of e need to be considered, much reducing the
work necessary. To this end divisibility by a set of small primes is
checked.

File: mpir.info, Node: Radix Conversion Algorithms, Next: Other Algorithms, Prev: Root Extraction Algorithms, Up: Algorithms
15.6 Radix Conversion
=====================
Radix conversions are less important than other algorithms. A program
dominated by conversions should probably use a different data
representation.
* Menu:
* Binary to Radix::
* Radix to Binary::

File: mpir.info, Node: Binary to Radix, Next: Radix to Binary, Prev: Radix Conversion Algorithms, Up: Radix Conversion Algorithms
15.6.1 Binary to Radix
----------------------
Conversions from binary to a power-of-2 radix use a simple and fast O(N)
bit extraction algorithm.
Conversions from binary to other radices use one of two algorithms.
Sizes below 'GET_STR_PRECOMPUTE_THRESHOLD' use a basic O(N^2) method.
Repeated divisions by b^n are made, where b is the radix and n is the
biggest power that fits in a limb. But instead of simply using the
remainder r from such divisions, an extra divide step is done to give a
fractional limb representing r/b^n. The digits of r can then be
extracted using multiplications by b rather than divisions. Special
case code is provided for decimal, allowing multiplications by 10 to
optimize to shifts and adds.
Above 'GET_STR_PRECOMPUTE_THRESHOLD' a sub-quadratic algorithm is
used. For an input t, powers b^(n*2^i) of the radix are calculated,
until a power between t and sqrt(t) is reached. t is then divided by
that largest power, giving a quotient which is the digits above that
power, and a remainder which is those below. These two parts are in
turn divided by the second highest power, and so on recursively. When a
piece has been divided down to less than 'GET_STR_DC_THRESHOLD' limbs,
the basecase algorithm described above is used.
The advantage of this algorithm is that big divisions can make use of
the sub-quadratic divide and conquer division (*note Divide and Conquer
Division::), and big divisions tend to have less overheads than lots of
separate single limb divisions anyway. But in any case the cost of
calculating the powers b^(n*2^i) must first be overcome.
'GET_STR_PRECOMPUTE_THRESHOLD' and 'GET_STR_DC_THRESHOLD' represent
the same basic thing, the point where it becomes worth doing a big
division to cut the input in half. 'GET_STR_PRECOMPUTE_THRESHOLD'
includes the cost of calculating the radix power required, whereas
'GET_STR_DC_THRESHOLD' assumes that's already available, which is the
case when recursing.
Since the base case produces digits from least to most significant
but they want to be stored from most to least, it's necessary to
calculate in advance how many digits there will be, or at least be sure
not to underestimate that. For MPIR the number of input bits is
multiplied by 'chars_per_bit_exactly' from 'mp_bases', rounding up. The
result is either correct or one too big.
Examining some of the high bits of the input could increase the
chance of getting the exact number of digits, but an exact result every
time would not be practical, since in general the difference between
numbers 100... and 99... is only in the last few bits and the work to
identify 99... might well be almost as much as a full conversion.
'mpf_get_str' doesn't currently use the algorithm described here, it
multiplies or divides by a power of b to move the radix point to the
just above the highest non-zero digit (or at worst one above that
location), then multiplies by b^n to bring out digits. This is O(N^2)
and is certainly not optimal.
The r/b^n scheme described above for using multiplications to bring
out digits might be useful for more than a single limb. Some brief
experiments with it on the base case when recursing didn't give a
noticeable improvement, but perhaps that was only due to the
implementation. Something similar would work for the sub-quadratic
divisions too, though there would be the cost of calculating a bigger
radix power.
Another possible improvement for the sub-quadratic part would be to
arrange for radix powers that balanced the sizes of quotient and
remainder produced, ie. the highest power would be an b^(n*k)
approximately equal to sqrt(t), not restricted to a 2^i factor. That
ought to smooth out a graph of times against sizes, but may or may not
be a net speedup.

File: mpir.info, Node: Radix to Binary, Prev: Binary to Radix, Up: Radix Conversion Algorithms
15.6.2 Radix to Binary
----------------------
This section is out-of-date.
Conversions from a power-of-2 radix into binary use a simple and fast
O(N) bitwise concatenation algorithm.
Conversions from other radices use one of two algorithms. Sizes
below 'SET_STR_THRESHOLD' use a basic O(N^2) method. Groups of n digits
are converted to limbs, where n is the biggest power of the base b which
will fit in a limb, then those groups are accumulated into the result by
multiplying by b^n and adding. This saves multi-precision operations,
as per Knuth section 4.4 part E (*note References::). Some special case
code is provided for decimal, giving the compiler a chance to optimize
multiplications by 10.
Above 'SET_STR_THRESHOLD' a sub-quadratic algorithm is used. First
groups of n digits are converted into limbs. Then adjacent limbs are
combined into limb pairs with x*b^n+y, where x and y are the limbs.
Adjacent limb pairs are combined into quads similarly with x*b^(2n)+y.
This continues until a single block remains, that being the result.
The advantage of this method is that the multiplications for each x
are big blocks, allowing Karatsuba and higher algorithms to be used.
But the cost of calculating the powers b^(n*2^i) must be overcome.
'SET_STR_THRESHOLD' usually ends up quite big, around 5000 digits, and
on some processors much bigger still.
'SET_STR_THRESHOLD' is based on the input digits (and tuned for
decimal), though it might be better based on a limb count, so as to be
independent of the base. But that sort of count isn't used by the base
case and so would need some sort of initial calculation or estimate.
The main reason 'SET_STR_THRESHOLD' is so much bigger than the
corresponding 'GET_STR_PRECOMPUTE_THRESHOLD' is that 'mpn_mul_1' is much
faster than 'mpn_divrem_1' (often by a factor of 10, or more).

File: mpir.info, Node: Other Algorithms, Next: Assembler Coding, Prev: Radix Conversion Algorithms, Up: Algorithms
15.7 Other Algorithms
=====================
* Menu:
* Prime Testing Algorithm::
* Factorial Algorithm::
* Binomial Coefficients Algorithm::
* Fibonacci Numbers Algorithm::
* Lucas Numbers Algorithm::
* Random Number Algorithms::

File: mpir.info, Node: Prime Testing Algorithm, Next: Factorial Algorithm, Prev: Other Algorithms, Up: Other Algorithms
15.7.1 Prime Testing
--------------------
This section is somewhat out-of-date.
The primality testing in 'mpz_probab_prime_p' (*note Number Theoretic
Functions::) first does some trial division by small factors and then
uses the Miller-Rabin probabilistic primality testing algorithm, as
described in Knuth section 4.5.4 algorithm P (*note References::).
For an odd input n, and with n = q*2^k+1 where q is odd, this
algorithm selects a random base x and tests whether x^q mod n is 1 or
-1, or an x^(q*2^j) mod n is 1, for 1<=j<=k. If so then n is probably
prime, if not then n is definitely composite.
Any prime n will pass the test, but some composites do too. Such
composites are known as strong pseudoprimes to base x. No n is a strong
pseudoprime to more than 1/4 of all bases (see Knuth exercise 22), hence
with x chosen at random there's no more than a 1/4 chance a "probable
prime" will in fact be composite.
In fact strong pseudoprimes are quite rare, making the test much more
powerful than this analysis would suggest, but 1/4 is all that's proven
for an arbitrary n.

File: mpir.info, Node: Factorial Algorithm, Next: Binomial Coefficients Algorithm, Prev: Prime Testing Algorithm, Up: Other Algorithms
15.7.2 Factorial
----------------
This section is out-of-date.
Factorials are calculated by a combination of removal of twos,
powering, and binary splitting. The procedure can be best illustrated
with an example,
23! = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23
has factors of two removed,
23! = 2^{19}.1.1.3.1.5.3.7.1.9.5.11.3.13.7.15.1.17.9.19.5.21.11.23
and the resulting terms collected up according to their multiplicity,
23! = 2^{19}.(3.5)^3.(7.9.11)^2.(13.15.17.19.21.23)
Each sequence such as 13.15.17.19.21.23 is evaluated by splitting
into every second term, as for instance (13.17.21).(15.19.23), and the
same recursively on each half. This is implemented iteratively using
some bit twiddling.
Such splitting is more efficient than repeated Nx1 multiplies since
it forms big multiplies, allowing Karatsuba and higher algorithms to be
used. And even below the Karatsuba threshold a big block of work can be
more efficient for the basecase algorithm.
Splitting into subsequences of every second term keeps the resulting
products more nearly equal in size than would the simpler approach of
say taking the first half and second half of the sequence. Nearly equal
products are more efficient for the current multiply implementation.

File: mpir.info, Node: Binomial Coefficients Algorithm, Next: Fibonacci Numbers Algorithm, Prev: Factorial Algorithm, Up: Other Algorithms
15.7.3 Binomial Coefficients
----------------------------
Binomial coefficients C(n,k) are calculated by first arranging k <= n/2
using C(n,k) = C(n,n-k) if necessary, and then evaluating the following
product simply from i=2 to i=k.
k (n-k+i)
C(n,k) = (n-k+1) * prod -------
i=2 i
It's easy to show that each denominator i will divide the product so
far, so the exact division algorithm is used (*note Exact Division::).
The numerators n-k+i and denominators i are first accumulated into as
many fit a limb, to save multi-precision operations, though for
'mpz_bin_ui' this applies only to the divisors, since n is an 'mpz_t'
and n-k+i in general won't fit in a limb at all.

File: mpir.info, Node: Fibonacci Numbers Algorithm, Next: Lucas Numbers Algorithm, Prev: Binomial Coefficients Algorithm, Up: Other Algorithms
15.7.4 Fibonacci Numbers
------------------------
The Fibonacci functions 'mpz_fib_ui' and 'mpz_fib2_ui' are designed for
calculating isolated F[n] or F[n],F[n-1] values efficiently.
For small n, a table of single limb values in '__gmp_fib_table' is
used. On a 32-bit limb this goes up to F[47], or on a 64-bit limb up to
F[93]. For convenience the table starts at F[-1].
Beyond the table, values are generated with a binary powering
algorithm, calculating a pair F[n] and F[n-1] working from high to low
across the bits of n. The formulas used are
F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k
F[2k-1] = F[k]^2 + F[k-1]^2
F[2k] = F[2k+1] - F[2k-1]
At each step, k is the high b bits of n. If the next bit of n is 0
then F[2k],F[2k-1] is used, or if it's a 1 then F[2k+1],F[2k] is used,
and the process repeated until all bits of n are incorporated. Notice
these formulas require just two squares per bit of n.
It'd be possible to handle the first few n above the single limb
table with simple additions, using the defining Fibonacci recurrence
F[k+1]=F[k]+F[k-1], but this is not done since it usually turns out to
be faster for only about 10 or 20 values of n, and including a block of
code for just those doesn't seem worthwhile. If they really mattered
it'd be better to extend the data table.
Using a table avoids lots of calculations on small numbers, and makes
small n go fast. A bigger table would make more small n go fast, it's
just a question of balancing size against desired speed. For MPIR the
code is kept compact, with the emphasis primarily on a good powering
algorithm.
'mpz_fib2_ui' returns both F[n] and F[n-1], but 'mpz_fib_ui' is only
interested in F[n]. In this case the last step of the algorithm can
become one multiply instead of two squares. One of the following two
formulas is used, according as n is odd or even.
F[2k] = F[k]*(F[k]+2F[k-1])
F[2k+1] = (2F[k]+F[k-1])*(2F[k]-F[k-1]) + 2*(-1)^k
F[2k+1] here is the same as above, just rearranged to be a multiply.
For interest, the 2*(-1)^k term both here and above can be applied just
to the low limb of the calculation, without a carry or borrow into
further limbs, which saves some code size. See comments with
'mpz_fib_ui' and the internal 'mpn_fib2_ui' for how this is done.

File: mpir.info, Node: Lucas Numbers Algorithm, Next: Random Number Algorithms, Prev: Fibonacci Numbers Algorithm, Up: Other Algorithms
15.7.5 Lucas Numbers
--------------------
'mpz_lucnum2_ui' derives a pair of Lucas numbers from a pair of
Fibonacci numbers with the following simple formulas.
L[k] = F[k] + 2*F[k-1]
L[k-1] = 2*F[k] - F[k-1]
'mpz_lucnum_ui' is only interested in L[n], and some work can be
saved. Trailing zero bits on n can be handled with a single square
each.
L[2k] = L[k]^2 - 2*(-1)^k
And the lowest 1 bit can be handled with one multiply of a pair of
Fibonacci numbers, similar to what 'mpz_fib_ui' does.
L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k

File: mpir.info, Node: Random Number Algorithms, Prev: Lucas Numbers Algorithm, Up: Other Algorithms
15.7.6 Random Numbers
---------------------
For the 'urandomb' functions, random numbers are generated simply by
concatenating bits produced by the generator. As long as the generator
has good randomness properties this will produce well-distributed N bit
numbers.
For the 'urandomm' functions, random numbers in a range 0<=R<N are
generated by taking values R of ceil(log2(N)) bits each until one
satisfies R<N. This will normally require only one or two attempts, but
the attempts are limited in case the generator is somehow degenerate and
produces only 1 bits or similar.
The Mersenne Twister generator is by Matsumoto and Nishimura (*note
References::). It has a non-repeating period of 2^19937-1, which is a
Mersenne prime, hence the name of the generator. The state is 624 words
of 32-bits each, which is iterated with one XOR and shift for each
32-bit word generated, making the algorithm very fast. Randomness
properties are also very good and this is the default algorithm used by
MPIR.
Linear congruential generators are described in many text books, for
instance Knuth volume 2 (*note References::). With a modulus M and
parameters A and C, a integer state S is iterated by the formula S <-
A*S+C mod M. At each step the new state is a linear function of the
previous, mod M, hence the name of the generator.
In MPIR only moduli of the form 2^N are supported, and the current
implementation is not as well optimized as it could be. Overheads are
significant when N is small, and when N is large clearly the multiply at
each step will become slow. This is not a big concern, since the
Mersenne Twister generator is better in every respect and is therefore
recommended for all normal applications.
For both generators the current state can be deduced by observing
enough output and applying some linear algebra (over GF(2) in the case
of the Mersenne Twister). This generally means raw output is unsuitable
for cryptographic applications without further hashing or the like.

File: mpir.info, Node: Assembler Coding, Prev: Other Algorithms, Up: Algorithms
15.8 Assembler Coding
=====================
The assembler subroutines in MPIR are the most significant source of
speed at small to moderate sizes. At larger sizes algorithm selection
becomes more important, but of course speedups in low level routines
will still speed up everything proportionally.
Carry handling and widening multiplies that are important for MPIR
can't be easily expressed in C. GCC 'asm' blocks help a lot and are
provided in 'longlong.h', but hand coding low level routines invariably
offers a speedup over generic C by a factor of anything from 2 to 10.
* Menu:
* Assembler Code Organisation::
* Assembler Basics::
* Assembler Carry Propagation::
* Assembler Cache Handling::
* Assembler Functional Units::
* Assembler Floating Point::
* Assembler SIMD Instructions::
* Assembler Software Pipelining::
* Assembler Loop Unrolling::
* Assembler Writing Guide::

File: mpir.info, Node: Assembler Code Organisation, Next: Assembler Basics, Prev: Assembler Coding, Up: Assembler Coding
15.8.1 Code Organisation
------------------------
The various 'mpn' subdirectories contain machine-dependent code, written
in C or assembler. The 'mpn/generic' subdirectory contains default
code, used when there's no machine-specific version of a particular
file.
Each 'mpn' subdirectory is for an ISA family. Generally 32-bit and
64-bit variants in a family cannot share code and have separate
directories. Within a family further subdirectories may exist for CPU
variants.
In each directory a 'nails' subdirectory may exist, holding code with
nails support for that CPU variant. A 'NAILS_SUPPORT' directive in each
file indicates the nails values the code handles. Nails code only
exists where it's faster, or promises to be faster, than plain code.
There's no effort put into nails if they're not going to enhance a given
CPU.

File: mpir.info, Node: Assembler Basics, Next: Assembler Carry Propagation, Prev: Assembler Code Organisation, Up: Assembler Coding
15.8.2 Assembler Basics
-----------------------
'mpn_addmul_1' and 'mpn_submul_1' are the most important routines for
overall MPIR performance. All multiplications and divisions come down
to repeated calls to these. 'mpn_add_n', 'mpn_sub_n', 'mpn_lshift' and
'mpn_rshift' are next most important.
On some CPUs assembler versions of the internal functions
'mpn_mul_basecase' and 'mpn_sqr_basecase' give significant speedups,
mainly through avoiding function call overheads. They can also
potentially make better use of a wide superscalar processor, as can
bigger primitives like 'mpn_addmul_2' or 'mpn_addmul_4'.
The restrictions on overlaps between sources and destinations (*note
Low-level Functions::) are designed to facilitate a variety of
implementations. For example, knowing 'mpn_add_n' won't have partly
overlapping sources and destination means reading can be done far ahead
of writing on superscalar processors, and loops can be vectorized on a
vector processor, depending on the carry handling.

File: mpir.info, Node: Assembler Carry Propagation, Next: Assembler Cache Handling, Prev: Assembler Basics, Up: Assembler Coding
15.8.3 Carry Propagation
------------------------
The problem that presents most challenges in MPIR is propagating carries
from one limb to the next. In functions like 'mpn_addmul_1' and
'mpn_add_n', carries are the only dependencies between limb operations.
On processors with carry flags, a straightforward CISC style 'adc' is
generally best. AMD K6 'mpn_addmul_1' however is an example of an
unusual set of circumstances where a branch works out better.
On RISC processors generally an add and compare for overflow is used.
This sort of thing can be seen in 'mpn/generic/aors_n.c'. Some carry
propagation schemes require 4 instructions, meaning at least 4 cycles
per limb, but other schemes may use just 1 or 2. On wide superscalar
processors performance may be completely determined by the number of
dependent instructions between carry-in and carry-out for each limb.
On vector processors good use can be made of the fact that a carry
bit only very rarely propagates more than one limb. When adding a
single bit to a limb, there's only a carry out if that limb was
'0xFF...FF' which on random data will be only 1 in 2^mp_bits_per_limb.
'mpn/cray/add_n.c' is an example of this, it adds all limbs in parallel,
adds one set of carry bits in parallel and then only rarely needs to
fall through to a loop propagating further carries.
On the x86s, GCC (as of version 2.95.2) doesn't generate particularly
good code for the RISC style idioms that are necessary to handle carry
bits in C. Often conditional jumps are generated where 'adc' or 'sbb'
forms would be better. And so unfortunately almost any loop involving
carry bits needs to be coded in assembler for best results.

File: mpir.info, Node: Assembler Cache Handling, Next: Assembler Functional Units, Prev: Assembler Carry Propagation, Up: Assembler Coding
15.8.4 Cache Handling
---------------------
MPIR aims to perform well both on operands that fit entirely in L1 cache
and those which don't.
Basic routines like 'mpn_add_n' or 'mpn_lshift' are often used on
large operands, so L2 and main memory performance is important for them.
'mpn_mul_1' and 'mpn_addmul_1' are mostly used for multiply and square
basecases, so L1 performance matters most for them, unless assembler
versions of 'mpn_mul_basecase' and 'mpn_sqr_basecase' exist, in which
case the remaining uses are mostly for larger operands.
For L2 or main memory operands, memory access times will almost
certainly be more than the calculation time. The aim therefore is to
maximize memory throughput, by starting a load of the next cache line
while processing the contents of the previous one. Clearly this is only
possible if the chip has a lock-up free cache or some sort of prefetch
instruction. Most current chips have both these features.
Prefetching sources combines well with loop unrolling, since a
prefetch can be initiated once per unrolled loop (or more than once if
the loop covers more than one cache line).
On CPUs without write-allocate caches, prefetching destinations will
ensure individual stores don't go further down the cache hierarchy,
limiting bandwidth. Of course for calculations which are slow anyway,
like 'mpn_divrem_1', write-throughs might be fine.
The distance ahead to prefetch will be determined by memory latency
versus throughput. The aim of course is to have data arriving
continuously, at peak throughput. Some CPUs have limits on the number
of fetches or prefetches in progress.
If a special prefetch instruction doesn't exist then a plain load can
be used, but in that case care must be taken not to attempt to read past
the end of an operand, since that might produce a segmentation
violation.
Some CPUs or systems have hardware that detects sequential memory
accesses and initiates suitable cache movements automatically, making
life easy.

File: mpir.info, Node: Assembler Functional Units, Next: Assembler Floating Point, Prev: Assembler Cache Handling, Up: Assembler Coding
15.8.5 Functional Units
-----------------------
When choosing an approach for an assembler loop, consideration is given
to what operations can execute simultaneously and what throughput can
thereby be achieved. In some cases an algorithm can be tweaked to
accommodate available resources.
Loop control will generally require a counter and pointer updates,
costing as much as 5 instructions, plus any delays a branch introduces.
CPU addressing modes might reduce pointer updates, perhaps by allowing
just one updating pointer and others expressed as offsets from it, or on
CISC chips with all addressing done with the loop counter as a scaled
index.
The final loop control cost can be amortised by processing several
limbs in each iteration (*note Assembler Loop Unrolling::). This at
least ensures loop control isn't a big fraction the work done.
Memory throughput is always a limit. If perhaps only one load or one
store can be done per cycle then 3 cycles/limb will the top speed for
"binary" operations like 'mpn_add_n', and any code achieving that is
optimal.
Integer resources can be freed up by having the loop counter in a
float register, or by pressing the float units into use for some
multiplying, perhaps doing every second limb on the float side (*note
Assembler Floating Point::).
Float resources can be freed up by doing carry propagation on the
integer side, or even by doing integer to float conversions in integers
using bit twiddling.

File: mpir.info, Node: Assembler Floating Point, Next: Assembler SIMD Instructions, Prev: Assembler Functional Units, Up: Assembler Coding
15.8.6 Floating Point
---------------------
Floating point arithmetic is used in MPIR for multiplications on CPUs
with poor integer multipliers. It's mostly useful for 'mpn_mul_1',
'mpn_addmul_1' and 'mpn_submul_1' on 64-bit machines, and
'mpn_mul_basecase' on both 32-bit and 64-bit machines.
With IEEE 53-bit double precision floats, integer multiplications
producing up to 53 bits will give exact results. Breaking a 64x64
multiplication into eight 16x32->48 bit pieces is convenient. With some
care though six 21x32->53 bit products can be used, if one of the lower
two 21-bit pieces also uses the sign bit.
For the 'mpn_mul_1' family of functions on a 64-bit machine, the
invariant single limb is split at the start, into 3 or 4 pieces. Inside
the loop, the bignum operand is split into 32-bit pieces. Fast
conversion of these unsigned 32-bit pieces to floating point is highly
machine-dependent. In some cases, reading the data into the integer
unit, zero-extending to 64-bits, then transferring to the floating point
unit back via memory is the only option.
Converting partial products back to 64-bit limbs is usually best done
as a signed conversion. Since all values are smaller than 2^53, signed
and unsigned are the same, but most processors lack unsigned
conversions.
Here is a diagram showing 16x32 bit products for an 'mpn_mul_1' or
'mpn_addmul_1' with a 64-bit limb. The single limb operand V is split
into four 16-bit parts. The multi-limb operand U is split in the loop
into two 32-bit parts.
+---+---+---+---+
|v48|v32|v16|v00| V operand
+---+---+---+---+
+-------+---+---+
x | u32 | u00 | U operand (one limb)
+---------------+
---------------------------------
+-----------+
| u00 x v00 | p00 48-bit products
+-----------+
+-----------+
| u00 x v16 | p16
+-----------+
+-----------+
| u00 x v32 | p32
+-----------+
+-----------+
| u00 x v48 | p48
+-----------+
+-----------+
| u32 x v00 | r32
+-----------+
+-----------+
| u32 x v16 | r48
+-----------+
+-----------+
| u32 x v32 | r64
+-----------+
+-----------+
| u32 x v48 | r80
+-----------+
p32 and r32 can be summed using floating-point addition, and likewise
p48 and r48. p00 and p16 can be summed with r64 and r80 from the
previous iteration.
For each loop then, four 49-bit quantities are transfered to the
integer unit, aligned as follows,
|-----64bits----|-----64bits----|
+------------+
| p00 + r64' | i00
+------------+
+------------+
| p16 + r80' | i16
+------------+
+------------+
| p32 + r32 | i32
+------------+
+------------+
| p48 + r48 | i48
+------------+
The challenge then is to sum these efficiently and add in a carry
limb, generating a low 64-bit result limb and a high 33-bit carry limb
(i48 extends 33 bits into the high half).

File: mpir.info, Node: Assembler SIMD Instructions, Next: Assembler Software Pipelining, Prev: Assembler Floating Point, Up: Assembler Coding
15.8.7 SIMD Instructions
------------------------
The single-instruction multiple-data support in current microprocessors
is aimed at signal processing algorithms where each data point can be
treated more or less independently. There's generally not much support
for propagating the sort of carries that arise in MPIR.
SIMD multiplications of say four 16x16 bit multiplies only do as much
work as one 32x32 from MPIR's point of view, and need some shifts and
adds besides. But of course if say the SIMD form is fully pipelined and
uses less instruction decoding then it may still be worthwhile.
On the x86 chips, MMX has so far found a use in 'mpn_rshift' and
'mpn_lshift', and is used in a special case for 16-bit multipliers in
the P55 'mpn_mul_1'. SSE2 is used for Pentium 4 'mpn_mul_1',
'mpn_addmul_1', and 'mpn_submul_1'.

File: mpir.info, Node: Assembler Software Pipelining, Next: Assembler Loop Unrolling, Prev: Assembler SIMD Instructions, Up: Assembler Coding
15.8.8 Software Pipelining
--------------------------
Software pipelining consists of scheduling instructions around the
branch point in a loop. For example a loop might issue a load not for
use in the present iteration but the next, thereby allowing extra cycles
for the data to arrive from memory.
Naturally this is wanted only when doing things like loads or
multiplies that take several cycles to complete, and only where a CPU
has multiple functional units so that other work can be done in the
meantime.
A pipeline with several stages will have a data value in progress at
each stage and each loop iteration moves them along one stage. This is
like juggling.
If the latency of some instruction is greater than the loop time then
it will be necessary to unroll, so one register has a result ready to
use while another (or multiple others) are still in progress. (*note
Assembler Loop Unrolling::).

File: mpir.info, Node: Assembler Loop Unrolling, Next: Assembler Writing Guide, Prev: Assembler Software Pipelining, Up: Assembler Coding
15.8.9 Loop Unrolling
---------------------
Loop unrolling consists of replicating code so that several limbs are
processed in each loop. At a minimum this reduces loop overheads by a
corresponding factor, but it can also allow better register usage, for
example alternately using one register combination and then another.
Judicious use of 'm4' macros can help avoid lots of duplication in the
source code.
Any amount of unrolling can be handled with a loop counter that's
decremented by N each time, stopping when the remaining count is less
than the further N the loop will process. Or by subtracting N at the
start, the termination condition becomes when the counter C is less than
0 (and the count of remaining limbs is C+N).
Alternately for a power of 2 unroll the loop count and remainder can
be established with a shift and mask. This is convenient if also making
a computed jump into the middle of a large loop.
The limbs not a multiple of the unrolling can be handled in various
ways, for example
* A simple loop at the end (or the start) to process the excess.
Care will be wanted that it isn't too much slower than the unrolled
part.
* A set of binary tests, for example after an 8-limb unrolling, test
for 4 more limbs to process, then a further 2 more or not, and
finally 1 more or not. This will probably take more code space
than a simple loop.
* A 'switch' statement, providing separate code for each possible
excess, for example an 8-limb unrolling would have separate code
for 0 remaining, 1 remaining, etc, up to 7 remaining. This might
take a lot of code, but may be the best way to optimize all cases
in combination with a deep pipelined loop.
* A computed jump into the middle of the loop, thus making the first
iteration handle the excess. This should make times smoothly
increase with size, which is attractive, but setups for the jump
and adjustments for pointers can be tricky and could become quite
difficult in combination with deep pipelining.

File: mpir.info, Node: Assembler Writing Guide, Prev: Assembler Loop Unrolling, Up: Assembler Coding
15.8.10 Writing Guide
---------------------
This is a guide to writing software pipelined loops for processing limb
vectors in assembler.
First determine the algorithm and which instructions are needed.
Code it without unrolling or scheduling, to make sure it works. On a
3-operand CPU try to write each new value to a new register, this will
greatly simplify later steps.
Then note for each instruction the functional unit and/or issue port
requirements. If an instruction can use either of two units, like U0 or
U1 then make a category "U0/U1". Count the total using each unit (or
combined unit), and count all instructions.
Figure out from those counts the best possible loop time. The goal
will be to find a perfect schedule where instruction latencies are
completely hidden. The total instruction count might be the limiting
factor, or perhaps a particular functional unit. It might be possible
to tweak the instructions to help the limiting factor.
Suppose the loop time is N, then make N issue buckets, with the final
loop branch at the end of the last. Now fill the buckets with dummy
instructions using the functional units desired. Run this to make sure
the intended speed is reached.
Now replace the dummy instructions with the real instructions from
the slow but correct loop you started with. The first will typically be
a load instruction. Then the instruction using that value is placed in
a bucket an appropriate distance down. Run the loop again, to check it
still runs at target speed.
Keep placing instructions, frequently measuring the loop. After a
few you will need to wrap around from the last bucket back to the top of
the loop. If you used the new-register for new-value strategy above
then there will be no register conflicts. If not then take care not to
clobber something already in use. Changing registers at this time is
very error prone.
The loop will overlap two or more of the original loop iterations,
and the computation of one vector element result will be started in one
iteration of the new loop, and completed one or several iterations
later.
The final step is to create feed-in and wind-down code for the loop.
A good way to do this is to make a copy (or copies) of the loop at the
start and delete those instructions which don't have valid antecedents,
and at the end replicate and delete those whose results are unwanted
(including any further loads).
The loop will have a minimum number of limbs loaded and processed, so
the feed-in code must test if the request size is smaller and skip
either to a suitable part of the wind-down or to special code for small
sizes.

File: mpir.info, Node: Internals, Next: Contributors, Prev: Algorithms, Up: Top
16 Internals
************
*This chapter is provided only for informational purposes and the
various internals described here may change in future MPIR releases.
Applications expecting to be compatible with future releases should use
only the documented interfaces described in previous chapters.*
* Menu:
* Integer Internals::
* Rational Internals::
* Float Internals::
* Raw Output Internals::
* C++ Interface Internals::

File: mpir.info, Node: Integer Internals, Next: Rational Internals, Prev: Internals, Up: Internals
16.1 Integer Internals
======================
'mpz_t' variables represent integers using sign and magnitude, in space
dynamically allocated and reallocated. The fields are as follows.
'_mp_size'
The number of limbs, or the negative of that when representing a
negative integer. Zero is represented by '_mp_size' set to zero,
in which case the '_mp_d' data is unused.
'_mp_d'
A pointer to an array of limbs which is the magnitude. These are
stored "little endian" as per the 'mpn' functions, so '_mp_d[0]' is
the least significant limb and '_mp_d[ABS(_mp_size)-1]' is the most
significant. Whenever '_mp_size' is non-zero, the most significant
limb is non-zero.
Currently there's always at least one limb allocated, so for
instance 'mpz_set_ui' never needs to reallocate, and 'mpz_get_ui'
can fetch '_mp_d[0]' unconditionally (though its value is then only
wanted if '_mp_size' is non-zero).
'_mp_alloc'
'_mp_alloc' is the number of limbs currently allocated at '_mp_d',
and naturally '_mp_alloc >= ABS(_mp_size)'. When an 'mpz' routine
is about to (or might be about to) increase '_mp_size', it checks
'_mp_alloc' to see whether there's enough space, and reallocates if
not. 'MPZ_REALLOC' is generally used for this.
The various bitwise logical functions like 'mpz_and' behave as if
negative values were twos complement. But sign and magnitude is always
used internally, and necessary adjustments are made during the
calculations. Sometimes this isn't pretty, but sign and magnitude are
best for other routines.
Some internal temporary variables are setup with 'MPZ_TMP_INIT' and
these have '_mp_d' space obtained from 'TMP_ALLOC' rather than the
memory allocation functions. Care is taken to ensure that these are big
enough that no reallocation is necessary (since it would have
unpredictable consequences).
'_mp_size' and '_mp_alloc' are 'int', although 'mp_size_t' is usually
a 'long'. This is done to make the fields just 32 bits on some 64 bits
systems, thereby saving a few bytes of data space but still providing
plenty of range.

File: mpir.info, Node: Rational Internals, Next: Float Internals, Prev: Integer Internals, Up: Internals
16.2 Rational Internals
=======================
'mpq_t' variables represent rationals using an 'mpz_t' numerator and
denominator (*note Integer Internals::).
The canonical form adopted is denominator positive (and non-zero), no
common factors between numerator and denominator, and zero uniquely
represented as 0/1.
It's believed that casting out common factors at each stage of a
calculation is best in general. A GCD is an O(N^2) operation so it's
better to do a few small ones immediately than to delay and have to do a
big one later. Knowing the numerator and denominator have no common
factors can be used for example in 'mpq_mul' to make only two cross GCDs
necessary, not four.
This general approach to common factors is badly sub-optimal in the
presence of simple factorizations or little prospect for cancellation,
but MPIR has no way to know when this will occur. As per *note
Efficiency::, that's left to applications. The 'mpq_t' framework might
still suit, with 'mpq_numref' and 'mpq_denref' for direct access to the
numerator and denominator, or of course 'mpz_t' variables can be used
directly.

File: mpir.info, Node: Float Internals, Next: Raw Output Internals, Prev: Rational Internals, Up: Internals
16.3 Float Internals
====================
Efficient calculation is the primary aim of MPIR floats and the use of
whole limbs and simple rounding facilitates this.
'mpf_t' floats have a variable precision mantissa and a single
machine word signed exponent. The mantissa is represented using sign
and magnitude.
most least
significant significant
limb limb
_mp_d
|---- _mp_exp ---> |
_____ _____ _____ _____ _____
|_____|_____|_____|_____|_____|
. <------------ radix point
<-------- _mp_size --------->
The fields are as follows.
'_mp_size'
The number of limbs currently in use, or the negative of that when
representing a negative value. Zero is represented by '_mp_size'
and '_mp_exp' both set to zero, and in that case the '_mp_d' data
is unused. (In the future '_mp_exp' might be undefined when
representing zero.)
'_mp_prec'
The precision of the mantissa, in limbs. In any calculation the
aim is to produce '_mp_prec' limbs of result (the most significant
being non-zero).
'_mp_d'
A pointer to the array of limbs which is the absolute value of the
mantissa. These are stored "little endian" as per the 'mpn'
functions, so '_mp_d[0]' is the least significant limb and
'_mp_d[ABS(_mp_size)-1]' the most significant.
The most significant limb is always non-zero, but there are no
other restrictions on its value, in particular the highest 1 bit
can be anywhere within the limb.
'_mp_prec+1' limbs are allocated to '_mp_d', the extra limb being
for convenience (see below). There are no reallocations during a
calculation, only in a change of precision with 'mpf_set_prec'.
'_mp_exp'
The exponent, in limbs, determining the location of the implied
radix point. Zero means the radix point is just above the most
significant limb. Positive values mean a radix point offset
towards the lower limbs and hence a value >= 1, as for example in
the diagram above. Negative exponents mean a radix point further
above the highest limb.
Naturally the exponent can be any value, it doesn't have to fall
within the limbs as the diagram shows, it can be a long way above
or a long way below. Limbs other than those included in the
'{_mp_d,_mp_size}' data are treated as zero.
'_mp_size' and '_mp_prec' are 'int', although 'mp_size_t' is usually
a 'long'. This is done to make the fields just 32 bits on some 64 bits
systems, thereby saving a few bytes of data space but still providing
plenty of range.
The following various points should be noted.
Low Zeros
The least significant limbs '_mp_d[0]' etc can be zero, though such
low zeros can always be ignored. Routines likely to produce low
zeros check and avoid them to save time in subsequent calculations,
but for most routines they're quite unlikely and aren't checked.
Mantissa Size Range
The '_mp_size' count of limbs in use can be less than '_mp_prec' if
the value can be represented in less. This means low precision
values or small integers stored in a high precision 'mpf_t' can
still be operated on efficiently.
'_mp_size' can also be greater than '_mp_prec'. Firstly a value is
allowed to use all of the '_mp_prec+1' limbs available at '_mp_d',
and secondly when 'mpf_set_prec_raw' lowers '_mp_prec' it leaves
'_mp_size' unchanged and so the size can be arbitrarily bigger than
'_mp_prec'.
Rounding
All rounding is done on limb boundaries. Calculating '_mp_prec'
limbs with the high non-zero will ensure the application requested
minimum precision is obtained.
The use of simple "trunc" rounding towards zero is efficient, since
there's no need to examine extra limbs and increment or decrement.
Bit Shifts
Since the exponent is in limbs, there are no bit shifts in basic
operations like 'mpf_add' and 'mpf_mul'. When differing exponents
are encountered all that's needed is to adjust pointers to line up
the relevant limbs.
Of course 'mpf_mul_2exp' and 'mpf_div_2exp' will require bit
shifts, but the choice is between an exponent in limbs which
requires shifts there, or one in bits which requires them almost
everywhere else.
Use of '_mp_prec+1' Limbs
The extra limb on '_mp_d' ('_mp_prec+1' rather than just
'_mp_prec') helps when an 'mpf' routine might get a carry from its
operation. 'mpf_add' for instance will do an 'mpn_add' of
'_mp_prec' limbs. If there's no carry then that's the result, but
if there is a carry then it's stored in the extra limb of space and
'_mp_size' becomes '_mp_prec+1'.
Whenever '_mp_prec+1' limbs are held in a variable, the low limb is
not needed for the intended precision, only the '_mp_prec' high
limbs. But zeroing it out or moving the rest down is unnecessary.
Subsequent routines reading the value will simply take the high
limbs they need, and this will be '_mp_prec' if their target has
that same precision. This is no more than a pointer adjustment,
and must be checked anyway since the destination precision can be
different from the sources.
Copy functions like 'mpf_set' will retain a full '_mp_prec+1' limbs
if available. This ensures that a variable which has '_mp_size'
equal to '_mp_prec+1' will get its full exact value copied.
Strictly speaking this is unnecessary since only '_mp_prec' limbs
are needed for the application's requested precision, but it's
considered that an 'mpf_set' from one variable into another of the
same precision ought to produce an exact copy.
Application Precisions
'__GMPF_BITS_TO_PREC' converts an application requested precision
to an '_mp_prec'. The value in bits is rounded up to a whole limb
then an extra limb is added since the most significant limb of
'_mp_d' is only non-zero and therefore might contain only one bit.
'__GMPF_PREC_TO_BITS' does the reverse conversion, and removes the
extra limb from '_mp_prec' before converting to bits. The net
effect of reading back with 'mpf_get_prec' is simply the precision
rounded up to a multiple of 'mp_bits_per_limb'.
Note that the extra limb added here for the high only being
non-zero is in addition to the extra limb allocated to '_mp_d'.
For example with a 32-bit limb, an application request for 250 bits
will be rounded up to 8 limbs, then an extra added for the high
being only non-zero, giving an '_mp_prec' of 9. '_mp_d' then gets
10 limbs allocated. Reading back with 'mpf_get_prec' will take
'_mp_prec' subtract 1 limb and multiply by 32, giving 256 bits.
Strictly speaking, the fact the high limb has at least one bit
means that a float with, say, 3 limbs of 32-bits each will be
holding at least 65 bits, but for the purposes of 'mpf_t' it's
considered simply to be 64 bits, a nice multiple of the limb size.

File: mpir.info, Node: Raw Output Internals, Next: C++ Interface Internals, Prev: Float Internals, Up: Internals
16.4 Raw Output Internals
=========================
'mpz_out_raw' uses the following format.
+------+------------------------+
| size | data bytes |
+------+------------------------+
The size is 4 bytes written most significant byte first, being the
number of subsequent data bytes, or the twos complement negative of that
when a negative integer is represented. The data bytes are the absolute
value of the integer, written most significant byte first.
The most significant data byte is always non-zero, so the output is
the same on all systems, irrespective of limb size.
In GMP 1, leading zero bytes were written to pad the data bytes to a
multiple of the limb size. 'mpz_inp_raw' will still accept this, for
compatibility.
The use of "big endian" for both the size and data fields is
deliberate, it makes the data easy to read in a hex dump of a file.
Unfortunately it also means that the limb data must be reversed when
reading or writing, so neither a big endian nor little endian system can
just read and write '_mp_d'.

File: mpir.info, Node: C++ Interface Internals, Prev: Raw Output Internals, Up: Internals
16.5 C++ Interface Internals
============================
A system of expression templates is used to ensure something like
'a=b+c' turns into a simple call to 'mpz_add' etc. For 'mpf_class' the
scheme also ensures the precision of the final destination is used for
any temporaries within a statement like 'f=w*x+y*z'. These are
important features which a naive implementation cannot provide.
A simplified description of the scheme follows. The true scheme is
complicated by the fact that expressions have different return types.
For detailed information, refer to the source code.
To perform an operation, say, addition, we first define a "function
object" evaluating it,
struct __gmp_binary_plus
{
static void eval(mpf_t f, mpf_t g, mpf_t h) { mpf_add(f, g, h); }
};
And an "additive expression" object,
__gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >
operator+(const mpf_class &f, const mpf_class &g)
{
return __gmp_expr
<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >(f, g);
}
The seemingly redundant '__gmp_expr<__gmp_binary_expr<...>>' is used
to encapsulate any possible kind of expression into a single template
type. In fact even 'mpf_class' etc are 'typedef' specializations of
'__gmp_expr'.
Next we define assignment of '__gmp_expr' to 'mpf_class'.
template <class T>
mpf_class & mpf_class::operator=(const __gmp_expr<T> &expr)
{
expr.eval(this->get_mpf_t(), this->precision());
return *this;
}
template <class Op>
void __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, Op> >::eval
(mpf_t f, mp_bitcnt_t precision)
{
Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t());
}
where 'expr.val1' and 'expr.val2' are references to the expression's
operands (here 'expr' is the '__gmp_binary_expr' stored within the
'__gmp_expr').
This way, the expression is actually evaluated only at the time of
assignment, when the required precision (that of 'f') is known.
Furthermore the target 'mpf_t' is now available, thus we can call
'mpf_add' directly with 'f' as the output argument.
Compound expressions are handled by defining operators taking
subexpressions as their arguments, like this:
template <class T, class U>
__gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
operator+(const __gmp_expr<T> &expr1, const __gmp_expr<U> &expr2)
{
return __gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
(expr1, expr2);
}
And the corresponding specializations of '__gmp_expr::eval':
template <class T, class U, class Op>
void __gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, Op> >::eval
(mpf_t f, mp_bitcnt_t precision)
{
// declare two temporaries
mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision);
Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t());
}
The expression is thus recursively evaluated to any level of
complexity and all subexpressions are evaluated to the precision of 'f'.

File: mpir.info, Node: Contributors, Next: References, Prev: Internals, Up: Top
Appendix A Contributors
***********************
Torbjorn Granlund wrote the original GMP library and is still developing
and maintaining it. Several other individuals and organizations have
contributed to GMP in various ways. Here is a list in chronological
order:
Gunnar Sjoedin and Hans Riesel helped with mathematical problems in
early versions of the library.
Richard Stallman contributed to the interface design and revised the
first version of this manual.
Brian Beuning and Doug Lea helped with testing of early versions of
the library and made creative suggestions.
John Amanatides of York University in Canada contributed the function
'mpz_probab_prime_p'.
Paul Zimmermann of Inria sparked the development of GMP 2, with his
comparisons between bignum packages.
Ken Weber (Kent State University, Universidade Federal do Rio Grande
do Sul) contributed 'mpz_gcd', 'mpz_divexact', 'mpn_gcd', and
'mpn_bdivmod', partially supported by CNPq (Brazil) grant 301314194-2.
Per Bothner of Cygnus Support helped to set up GMP to use Cygnus'
configure. He has also made valuable suggestions and tested numerous
intermediary releases.
Joachim Hollman was involved in the design of the 'mpf' interface,
and in the 'mpz' design revisions for version 2.
Bennet Yee contributed the initial versions of 'mpz_jacobi' and
'mpz_legendre'.
Andreas Schwab contributed the files 'mpn/m68k/lshift.S' and
'mpn/m68k/rshift.S' (now in '.asm' form).
The development of floating point functions of GNU MP 2, were
supported in part by the ESPRIT-BRA (Basic Research Activities) 6846
project POSSO (POlynomial System SOlving).
GNU MP 2 was finished and released by SWOX AB, SWEDEN, in cooperation
with the IDA Center for Computing Sciences, USA.
Robert Harley of Inria, France and David Seal of ARM, England,
suggested clever improvements for population count.
Robert Harley also wrote highly optimized Karatsuba and 3-way Toom
multiplication functions for GMP 3. He also contributed the ARM
assembly code.
Torsten Ekedahl of the Mathematical department of Stockholm
University provided significant inspiration during several phases of the
GMP development. His mathematical expertise helped improve several
algorithms.
Paul Zimmermann wrote the Divide and Conquer division code, the REDC
code, the REDC-based mpz_powm code, the FFT multiply code, and the
Karatsuba square root code. He also rewrote the Toom3 code for GMP 4.2.
The ECMNET project Paul is organizing was a driving force behind many of
the optimizations in GMP 3.
Linus Nordberg wrote the new configure system based on autoconf and
implemented the new random functions.
Kent Boortz made the Mac OS 9 port.
Kevin Ryde worked on a number of things: optimized x86 code, m4 asm
macros, parameter tuning, speed measuring, the configure system,
function inlining, divisibility tests, bit scanning, Jacobi symbols,
Fibonacci and Lucas number functions, printf and scanf functions, perl
interface, demo expression parser, the algorithms chapter in the manual,
'gmpasm-mode.el', and various miscellaneous improvements elsewhere.
Steve Root helped write the optimized alpha 21264 assembly code.
Gerardo Ballabio wrote the 'gmpxx.h' C++ class interface and the C++
'istream' input routines.
GNU MP 4 was finished and released by Torbjorn Granlund and Kevin
Ryde. Torbjorn's work was partially funded by the IDA Center for
Computing Sciences, USA.
Jason Moxham rewrote 'mpz_fac_ui'.
Pedro Gimeno implemented the Mersenne Twister and made other random
number improvements.
(This list is chronological, not ordered after significance. If you
have contributed to GMP/MPIR but are not listed above, please tell
<http://groups.google.com/group/mpir-devel> about the omission!)
Thanks go to Hans Thorsen for donating an SGI system for the GMP test
system environment.
In 2008 GMP was forked and gave rise to the MPIR (Multiple Precision
Integers and Rationals) project. In 2010 version 2.0.0 of MPIR switched
to LGPL v3+ and much code from GMP was again incorporated into MPIR.
The MPIR project has largely been a collaboration of William Hart,
Brian Gladman and Jason Moxham. MPIR code not obtained from GMP and not
specifically mentioned elsewhere below is likely written by one of these
three.
William Hart did much of the early MPIR coding including build system
fixes. His contributions also include Toom 4 and 7 code and variants,
extended GCD based on Niels Mollers ngcd work, asymptotically fast
division code. He does much of the release management work.
Brian Gladman wrote and maintains MSVC project files. He has also
done much of the conversion of assembly code to yasm format. He rewrote
the benchmark program and developed MSVC ports of tune, speed, try and
the benchmark code. He helped with many aspects of the merging of GMP
code into MPIR after the switch to LGPL v3+.
Jason Moxham has contributed a great deal of x86 assembly code. He
has also contributed improved root code and mulhi and mullo routines and
implemented Peter Montgomery's single limb remainder algorithm. He has
also contributed a command line build system for Windows and numerous
build system fixes.
The following people have either contributed directly to the MPIR
project, made code available on their websites or contributed code to
the official GNU project which has been used in MPIR.
Pierrick Gaudry wrote some fast assembly support for AMD 64.
Jason Martin wrote some fast assembly patches for Core 2 and
converted them to intel format. He also did the initial merge of Niels
Moller's fast GCD patches. He wrote fast addmul functions for Itanium.
Gonzalo Tornaria helped patch config.guess and associated files to
distinguish modern processors. He also patched mpirbench.
Michael Abshoff helped resolve some build issues on various
platforms. He served for a while as release manager for the MPIR
project.
Mariah Lennox contributed patches to mpirbench and various build
failure reports. She has also reported gcc bugs found during MPIR
development.
Niels Moller wrote the fast ngcd code for computing integer GCD, the
quadratic Hensel division code and precomputed inverse code for
Euclidean division, along with fast jacobi symbols code. He also made
contributions to the Toom multiply code, especially helper functions to
simplify Toom evaluations.
Pierrick Gaudry provided initial AMD 64 assembly support and revised
the FFT code.
Paul Zimmermann provided an mpz implementation of Toom 4, wrote much
of the FFT code, wrote some of the rootrem code and contributed invert.c
for computing precomputed inverses.
Alexander Kruppa revised the FFT code.
Torbjorn Granlund revised the FFT code and wrote a lot of division
code, including the quadratic Euclidean division code, many parts of the
divide and conquer division code, both Hensel and Euclidean, and his
code was also reused for parts of the asymptotically fast division code.
He also helped write the root code and wrote much of the Itanium
assembly code and a couple of Core 2 assembly functions and part of the
basecase middle product assembly code for x86 64 bit. He also wrote the
improved string input and output code and made improvements to the GCD
and extended GCD code. He also contributed the nextprime code and
coauthored the bin_uiui code. Torbjorn is also responsible for numerous
other bits and pieces that have been used from the GNU project.
Marco Bodrato and Alberto Zanoni suggested the unbalanced multiply
strategy and found optimal Toom multiplication sequences.
Marco Bodrato wrote an mpz implementation of the Toom 7 code and
wrote most of the Toom 8.5 multiply and squaring code. He also helped
write the divide and conquer Euclidean division code. He also
contributed many improved number theoretical functions including
factorial, multi-factorial, primorial, n-choose-k.
Robert Gerbicz contributed fast factorial code.
Martin Boij made assorted contributions to the nextprime code.
David Harvey wrote fast middle product code and divide and conquer
approximate quotient code for both Euclidean and Hensel division and
contributed to the quadratic Hensel code.
T. R. Nicely wrote primality tests used in the benchmark code.
Jeff Gilchrist assisted with the porting of T. R. Nicely's primality
code to MPIR and helped with tuning.
Peter Shrimpton wrote the BPSW primality test used up to
GMP_LIMB_BITS.
Thanks to Microsoft for supporting Jason Moxham to work on a command
line build system for Windows and some assembly improvements for
Windows.
Thanks to the Free Software Foundation France for giving us access to
their build farm.
Thanks to William Stein for giving us access to his sage.math
machines for testing and for hosting the MPIR website, and for
supporting us in inumerably many other ways.
Minh Van Nguyen served as release manager for MPIR 2.1.0.
Case Vanhorsen helped with release testing.
David Cleaver filed a bug report.
Julien Puydt provided tuning values.
Leif Lionhardy provided tuning values.
Jean-Pierre Flori provided tuning values.

File: mpir.info, Node: References, Next: GNU Free Documentation License, Prev: Contributors, Up: Top
Appendix B References
*********************
B.1 Books
=========
* Jonathan M. Borwein and Peter B. Borwein, "Pi and the AGM: A Study
in Analytic Number Theory and Computational Complexity", Wiley,
1998.
* Henri Cohen, "A Course in Computational Algebraic Number Theory",
Graduate Texts in Mathematics number 138, Springer-Verlag, 1993.
<http://www.math.u-bordeaux.fr/~cohen/>
* Richard Crandall, Carl Pomerance, "Prime Numbers: A Computational
Perspective" 2nd edition, Springer, 2005.
* Donald E. Knuth, "The Art of Computer Programming", volume 2,
"Seminumerical Algorithms", 3rd edition, Addison-Wesley, 1998.
<http://www-cs-faculty.stanford.edu/~knuth/taocp.html>
* John D. Lipson, "Elements of Algebra and Algebraic Computing", The
Benjamin Cummings Publishing Company Inc, 1981.
* Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,
"Handbook of Applied Cryptography",
<http://www.cacr.math.uwaterloo.ca/hac/>
* Richard M. Stallman, "Using and Porting GCC", Free Software
Foundation, 1999, available online
<http://gcc.gnu.org/onlinedocs/>, and in the GCC package
<ftp://ftp.gnu.org/gnu/gcc/>
B.2 Papers
==========
* Dan Bernstein, "Detecting perfect powers in essentially linear
time", Math. Comp. (67) pp. 1253-1283, 1998.
* Yves Bertot, Nicolas Magaud and Paul Zimmermann, "A Proof of GMP
Square Root", Journal of Automated Reasoning, volume 29, 2002, pp.
225-252. Also available online as INRIA Research Report 4475, June
2001, <http://www.inria.fr/rrrt/rr-4475.html>
* Marco Bodrato, Alberto Zanoni, "Integer and Polynomial
Multiplication: Towards optimal Toom-Cook Matrices", ISAAC 2007
Proceedings, Ontario, Canada, July 29 - August 1, 2007, ACM Press.
Available online at <http://ln.bodrato.it/issac2007_pdf>
* Marco Bodrato, "High degree Toom'n'half for balanced and unbalanced
multiplication", E. Antelo, D. Hough and P. Ienne, editors,
Proceedings of the 20th IEEE Symposium on Computer Arithmetic,
IEEE, Tubingen, Germany, July 25-27, 2011, pp. 15-222. See
<http://bodrato.it/papers>
* Richard Brent and Paul Zimmermann, "Modern Computer Arithmetic",
version 0.4, November 2009,
<http://www.loria.fr/~zimmerma/mca/mca-0.4.pdf>
* Christoph Burnikel and Joachim Ziegler, "Fast Recursive Division",
Max-Planck-Institut fuer Informatik Research Report MPI-I-98-1-022,
<http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022>
* Agner Fog, "Software optimization resources", online at
<http://www.agner.org/optimize/>
* Pierrick Gaudry, Alexander Kruppa, Paul Zimmermann, "A GMP-based
implementation of Schoenhage-Strassen's large integer
multiplication algorithm", ISAAC 2007 Proceedings, Ontario, Canada,
July 29 - August 1, 2007, pp. 167-174, ACM Press. Full text
available at
<http://hal.inria.fr/docs/00/14/86/20/PDF/fft.final.pdf>
* Torbjorn Granlund and Peter L. Montgomery, "Division by Invariant
Integers using Multiplication", in Proceedings of the SIGPLAN
PLDI'94 Conference, June 1994. Also available
<ftp://ftp.cwi.nl/pub/pmontgom/divcnst.psa4.gz> (and .psl.gz).
* Niels Mo"ller and Torbjo"rn Granlund, "Improved division by
invariant integers", to appear.
* Torbjo"rn Granlund and Niels Mo"ller, "Division of integers large
and small", to appear.
* David Harvey, "The Karatsuba middle product for integers",
(preprint), 2009. Available at
<http://www.cims.nyu.edu/~harvey/mulmid/mulmid.pdf>
* Tudor Jebelean, "An algorithm for exact division", Journal of
Symbolic Computation, volume 15, 1993, pp. 169-180. Research
report version available
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz>
* Tudor Jebelean, "Exact Division with Karatsuba Complexity -
Extended Abstract", RISC-Linz technical report 96-31,
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz>
* Tudor Jebelean, "Practical Integer Division with Karatsuba
Complexity", ISSAC 97, pp. 339-341. Technical report available
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz>
* Tudor Jebelean, "A Generalization of the Binary GCD Algorithm",
ISSAC 93, pp. 111-116. Technical report version available
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz>
* Tudor Jebelean, "A Double-Digit Lehmer-Euclid Algorithm for Finding
the GCD of Long Integers", Journal of Symbolic Computation, volume
19, 1995, pp. 145-157. Technical report version also available
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz>
* Werner Krandick, Jeremy R. Johnson, "Efficient Multiprecision
Floating Point Multiplication with Exact Rounding", Technical
Report, RISC Linz, 1993, available at
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-76.ps.gz>
* Werner Krandick and Tudor Jebelean, "Bidirectional Exact Integer
Division", Journal of Symbolic Computation, volume 21, 1996, pp.
441-455. Early technical report version also available
<ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz>
* Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator", ACM Transactions on Modelling and Computer Simulation,
volume 8, January 1998, pp. 3-30. Available online
<http://www.math.keio.ac.jp/~nisimura/random/doc/mt.ps.gz> (or
.pdf)
* R. Moenck and A. Borodin, "Fast Modular Transforms via Division",
Proceedings of the 13th Annual IEEE Symposium on Switching and
Automata Theory, October 1972, pp. 90-96. Reprinted as "Fast
Modular Transforms", Journal of Computer and System Sciences,
volume 8, number 3, June 1974, pp. 366-386.
* Niels Mo"ller, "On Schoenhage's algorithm and subquadratic integer
GCD computation", Math. Comp. 2007. Available online at
<http://www.lysator.liu.se/~nisse/archive/S0025-5718-07-02017-0.pdf>
* Peter L. Montgomery, "Modular Multiplication Without Trial
Division", in Mathematics of Computation, volume 44, number 170,
April 1985.
* Thom Mulders, "On short multiplications and divisions", Appl.
Algebra Engrg. Comm. Comput. 11 (2000), no. 1, pp. 69-88.
Tech. report No. 276, Dept. of Comp. Sci., ETH Zurich, Nov
1997, available online at
<ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/276.pdf>
* Arnold Scho"nhage and Volker Strassen, "Schnelle Multiplikation
grosser Zahlen", Computing 7, 1971, pp. 281-292.
* A. Scho"nhage, A. F. W. Grotefeld and E. Vetter, "Fast Algorithms,
A Multitape Turing Machine Implementation" BI Wissenschafts-Verlag,
Mannheim, 1994.
* Kenneth Weber, "The accelerated integer GCD algorithm", ACM
Transactions on Mathematical Software, volume 21, number 1, March
1995, pp. 111-122.
* Paul Zimmermann, "Karatsuba Square Root", INRIA Research Report
3805, November 1999, <http://www.inria.fr/rrrt/rr-3805.html>
* Paul Zimmermann, "A Proof of GMP Fast Division and Square Root
Implementations",
<http://www.loria.fr/~zimmerma/papers/proof-div-sqrt.ps.gz>
* Dan Zuras, "On Squaring and Multiplying Large Integers", ARITH-11:
IEEE Symposium on Computer Arithmetic, 1993, pp. 260 to 271.
Reprinted as "More on Multiplying and Squaring Large Integers",
IEEE Transactions on Computers, volume 43, number 8, August 1994,
pp. 899-908.

File: mpir.info, Node: GNU Free Documentation License, Next: Concept Index, Prev: References, Up: Top
Appendix C GNU Free Documentation License
*****************************************
Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position
regarding them.
The "Invariant Sections" are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in the
notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it
is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.
The "publisher" means any person or entity that distributes copies
of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according
to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the
conditions in section 3.
You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of copies,
to give them a chance to provide you with an updated version of the
Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in
the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title
as a previous version if the original publisher of that
version gives permission.
B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document's
license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the
previous sentence.
J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work
that was published at least four years before the Document
itself, or if the original publisher of the version it refers
to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section
all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
"Endorsements" or to conflict in title with any Invariant
Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other
section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end of
the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the
combined work.
In the combination, you must combine any sections Entitled
"History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents
in all other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual
works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the
actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
<http://www.gnu.org/copyleft/>.
Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can
decide which future versions of this License can be used, that
proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.
11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server.
A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC
site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents
====================================================
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:
Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit
their use in free software.

File: mpir.info, Node: Concept Index, Next: Function Index, Prev: GNU Free Documentation License, Up: Top
Concept Index
*************
[index]
* Menu:
* '#include': Headers and Libraries.
(line 6)
* '--build': Build Options. (line 60)
* '--disable-fft': Build Options. (line 323)
* '--disable-shared': Build Options. (line 53)
* '--disable-static': Build Options. (line 53)
* '--enable-alloca': Build Options. (line 289)
* '--enable-assert': Build Options. (line 328)
* '--enable-cxx': Build Options. (line 241)
* '--enable-fat': Build Options. (line 163)
* '--enable-gmpcompat': Build Options. (line 45)
* '--enable-profiling': Build Options. (line 332)
* '--enable-profiling' <1>: Profiling. (line 6)
* '--exec-prefix': Build Options. (line 32)
* '--host': Build Options. (line 74)
* '--prefix': Build Options. (line 32)
* '--with-system-yasm': Build Options. (line 182)
* '--with-yasm': Build Options. (line 182)
* '-finstrument-functions': Profiling. (line 66)
* '2exp' functions: Efficiency. (line 43)
* 80x86: Notes for Particular Systems.
(line 87)
* ABI: Build Options. (line 171)
* ABI <1>: ABI and ISA. (line 6)
* About this manual: Introduction to MPIR.
(line 48)
* 'AC_CHECK_LIB': Autoconf. (line 11)
* AIX: ABI and ISA. (line 95)
* AIX <1>: ABI and ISA. (line 103)
* Algorithms: Algorithms. (line 6)
* 'alloca': Build Options. (line 289)
* Allocation of memory: Custom Allocation. (line 6)
* AMD64: ABI and ISA. (line 45)
* Application Binary Interface: ABI and ISA. (line 6)
* Arithmetic functions: Integer Arithmetic. (line 6)
* Arithmetic functions <1>: Rational Arithmetic. (line 6)
* Arithmetic functions <2>: Float Arithmetic. (line 6)
* ARM: Notes for Particular Systems.
(line 7)
* Assembler cache handling: Assembler Cache Handling.
(line 6)
* Assembler carry propagation: Assembler Carry Propagation.
(line 6)
* Assembler code organisation: Assembler Code Organisation.
(line 6)
* Assembler coding: Assembler Coding. (line 6)
* Assembler floating Point: Assembler Floating Point.
(line 6)
* Assembler loop unrolling: Assembler Loop Unrolling.
(line 6)
* Assembler SIMD: Assembler SIMD Instructions.
(line 6)
* Assembler software pipelining: Assembler Software Pipelining.
(line 6)
* Assembler writing guide: Assembler Writing Guide.
(line 6)
* Assertion checking: Build Options. (line 328)
* Assertion checking <1>: Debugging. (line 75)
* Assignment functions: Assigning Integers. (line 6)
* Assignment functions <1>: Simultaneous Integer Init & Assign.
(line 6)
* Assignment functions <2>: Initializing Rationals.
(line 6)
* Assignment functions <3>: Assigning Floats. (line 6)
* Assignment functions <4>: Simultaneous Float Init & Assign.
(line 6)
* Autoconf: Autoconf. (line 6)
* Basics: MPIR Basics. (line 6)
* Binomial coefficient algorithm: Binomial Coefficients Algorithm.
(line 6)
* Binomial coefficient functions: Number Theoretic Functions.
(line 173)
* Bit manipulation functions: Integer Logic and Bit Fiddling.
(line 6)
* Bit scanning functions: Integer Logic and Bit Fiddling.
(line 37)
* Bit shift left: Integer Arithmetic. (line 29)
* Bit shift right: Integer Division. (line 50)
* Bits per limb: Useful Macros and Constants.
(line 7)
* Bug reporting: Reporting Bugs. (line 6)
* Build directory: Build Options. (line 19)
* Build notes for binary packaging: Notes for Package Builds.
(line 6)
* Build notes for MSVC: Building with Microsoft Visual Studio.
(line 6)
* Build notes for particular systems: Notes for Particular Systems.
(line 6)
* Build options: Build Options. (line 6)
* Build problems known: Known Build Problems.
(line 6)
* Build system: Build Options. (line 60)
* Building MPIR: Installing MPIR. (line 6)
* Bus error: Debugging. (line 7)
* C compiler: Build Options. (line 193)
* C++ compiler: Build Options. (line 265)
* C++ interface: C++ Class Interface. (line 6)
* C++ interface internals: C++ Interface Internals.
(line 6)
* C++ 'istream' input: C++ Formatted Input. (line 6)
* C++ 'ostream' output: C++ Formatted Output.
(line 6)
* C++ support: Build Options. (line 241)
* 'CC': Build Options. (line 193)
* 'CC_FOR_BUILD': Build Options. (line 228)
* 'CFLAGS': Build Options. (line 193)
* Checker: Debugging. (line 111)
* 'checkergcc': Debugging. (line 118)
* Code organisation: Assembler Code Organisation.
(line 6)
* Comparison functions: Integer Comparisons. (line 6)
* Comparison functions <1>: Comparing Rationals. (line 6)
* Comparison functions <2>: Float Comparison. (line 6)
* Compatibility with older versions: Compatibility with older versions.
(line 6)
* Conditions for copying MPIR: Copying. (line 6)
* Configuring MPIR: Installing MPIR. (line 6)
* Congruence algorithm: Exact Remainder. (line 30)
* Congruence functions: Integer Division. (line 120)
* Constants: Useful Macros and Constants.
(line 6)
* Contributors: Contributors. (line 6)
* Conventions for parameters: Parameter Conventions.
(line 6)
* Conventions for variables: Variable Conventions.
(line 6)
* Conversion functions: Converting Integers. (line 6)
* Conversion functions <1>: Rational Conversions.
(line 6)
* Conversion functions <2>: Converting Floats. (line 6)
* Copying conditions: Copying. (line 6)
* 'CPPFLAGS': Build Options. (line 219)
* CPU types: Introduction to MPIR.
(line 24)
* CPU types <1>: Build Options. (line 115)
* Cross compiling: Build Options. (line 74)
* Custom allocation: Custom Allocation. (line 6)
* 'CXX': Build Options. (line 265)
* 'CXXFLAGS': Build Options. (line 265)
* Cygwin: Notes for Particular Systems.
(line 21)
* Debugging: Debugging. (line 6)
* Digits in an integer: Miscellaneous Integer Functions.
(line 23)
* Divisibility algorithm: Exact Remainder. (line 30)
* Divisibility functions: Integer Division. (line 109)
* Divisibility functions <1>: Integer Division. (line 120)
* Divisibility testing: Efficiency. (line 91)
* Division algorithms: Division Algorithms. (line 6)
* Division functions: Integer Division. (line 6)
* Division functions <1>: Rational Arithmetic. (line 22)
* Division functions <2>: Float Arithmetic. (line 27)
* DLLs: Notes for Particular Systems.
(line 34)
* DocBook: Build Options. (line 355)
* Documentation formats: Build Options. (line 348)
* Documentation license: GNU Free Documentation License.
(line 6)
* DVI: Build Options. (line 351)
* Efficiency: Efficiency. (line 6)
* Emacs: Emacs. (line 6)
* Exact division functions: Integer Division. (line 99)
* Exact remainder: Exact Remainder. (line 6)
* Exec prefix: Build Options. (line 32)
* Execution profiling: Build Options. (line 332)
* Execution profiling <1>: Profiling. (line 6)
* Exponentiation functions: Integer Exponentiation.
(line 6)
* Exponentiation functions <1>: Float Arithmetic. (line 34)
* Export: Integer Import and Export.
(line 45)
* Extended GCD: Number Theoretic Functions.
(line 99)
* Factor removal functions: Number Theoretic Functions.
(line 155)
* Factorial algorithm: Factorial Algorithm. (line 6)
* Factorial functions: Number Theoretic Functions.
(line 163)
* Fast Fourier Transform: FFT Multiplication. (line 6)
* Fat binary: Build Options. (line 163)
* FFT multiplication: Build Options. (line 323)
* FFT multiplication <1>: FFT Multiplication. (line 6)
* Fibonacci number algorithm: Fibonacci Numbers Algorithm.
(line 6)
* Fibonacci sequence functions: Number Theoretic Functions.
(line 180)
* Float arithmetic functions: Float Arithmetic. (line 6)
* Float assignment functions: Assigning Floats. (line 6)
* Float assignment functions <1>: Simultaneous Float Init & Assign.
(line 6)
* Float comparison functions: Float Comparison. (line 6)
* Float conversion functions: Converting Floats. (line 6)
* Float functions: Floating-point Functions.
(line 6)
* Float initialization functions: Initializing Floats. (line 6)
* Float initialization functions <1>: Simultaneous Float Init & Assign.
(line 6)
* Float input and output functions: I/O of Floats. (line 6)
* Float internals: Float Internals. (line 6)
* Float miscellaneous functions: Miscellaneous Float Functions.
(line 6)
* Float random number functions: Miscellaneous Float Functions.
(line 27)
* Float rounding functions: Miscellaneous Float Functions.
(line 9)
* Float sign tests: Float Comparison. (line 28)
* Floating point mode: Notes for Particular Systems.
(line 12)
* Floating-point functions: Floating-point Functions.
(line 6)
* Floating-point number: Nomenclature and Types.
(line 21)
* fnccheck: Profiling. (line 77)
* Formatted input: Formatted Input. (line 6)
* Formatted output: Formatted Output. (line 6)
* Free Documentation License: GNU Free Documentation License.
(line 6)
* 'frexp': Converting Integers. (line 57)
* 'frexp' <1>: Converting Floats. (line 23)
* Function classes: Function Classes. (line 6)
* FunctionCheck: Profiling. (line 77)
* GCC: Known Build Problems.
(line 9)
* GCC Checker: Debugging. (line 111)
* GCD algorithms: Greatest Common Divisor Algorithms.
(line 6)
* GCD extended: Number Theoretic Functions.
(line 99)
* GCD functions: Number Theoretic Functions.
(line 85)
* GDB: Debugging. (line 54)
* Generic C: Build Options. (line 152)
* GNU Debugger: Debugging. (line 54)
* GNU Free Documentation License: GNU Free Documentation License.
(line 6)
* 'gprof': Profiling. (line 41)
* Greatest common divisor algorithms: Greatest Common Divisor Algorithms.
(line 6)
* Greatest common divisor functions: Number Theoretic Functions.
(line 85)
* Hardware floating point mode: Notes for Particular Systems.
(line 12)
* Headers: Headers and Libraries.
(line 6)
* Heap problems: Debugging. (line 23)
* Home page: Introduction to MPIR.
(line 30)
* Host system: Build Options. (line 74)
* HP-UX: ABI and ISA. (line 69)
* I/O functions: I/O of Integers. (line 6)
* I/O functions <1>: I/O of Rationals. (line 6)
* I/O functions <2>: I/O of Floats. (line 6)
* i386: Notes for Particular Systems.
(line 87)
* IA-64: ABI and ISA. (line 69)
* Import: Integer Import and Export.
(line 11)
* In-place operations: Efficiency. (line 57)
* Include files: Headers and Libraries.
(line 6)
* 'info-lookup-symbol': Emacs. (line 6)
* Initialization functions: Initializing Integers.
(line 6)
* Initialization functions <1>: Simultaneous Integer Init & Assign.
(line 6)
* Initialization functions <2>: Initializing Rationals.
(line 6)
* Initialization functions <3>: Initializing Floats. (line 6)
* Initialization functions <4>: Simultaneous Float Init & Assign.
(line 6)
* Initialization functions <5>: Random State Initialization.
(line 6)
* Initializing and clearing: Efficiency. (line 21)
* Input functions: I/O of Integers. (line 6)
* Input functions <1>: I/O of Rationals. (line 6)
* Input functions <2>: I/O of Floats. (line 6)
* Input functions <3>: Formatted Input Functions.
(line 6)
* Install prefix: Build Options. (line 32)
* Installing MPIR: Installing MPIR. (line 6)
* Instruction Set Architecture: ABI and ISA. (line 6)
* 'instrument-functions': Profiling. (line 66)
* Integer: Nomenclature and Types.
(line 6)
* Integer arithmetic functions: Integer Arithmetic. (line 6)
* Integer assignment functions: Assigning Integers. (line 6)
* Integer assignment functions <1>: Simultaneous Integer Init & Assign.
(line 6)
* Integer bit manipulation functions: Integer Logic and Bit Fiddling.
(line 6)
* Integer comparison functions: Integer Comparisons. (line 6)
* Integer conversion functions: Converting Integers. (line 6)
* Integer division functions: Integer Division. (line 6)
* Integer exponentiation functions: Integer Exponentiation.
(line 6)
* Integer export: Integer Import and Export.
(line 45)
* Integer functions: Integer Functions. (line 6)
* Integer import: Integer Import and Export.
(line 11)
* Integer initialization functions: Initializing Integers.
(line 6)
* Integer initialization functions <1>: Simultaneous Integer Init & Assign.
(line 6)
* Integer input and output functions: I/O of Integers. (line 6)
* Integer internals: Integer Internals. (line 6)
* Integer logical functions: Integer Logic and Bit Fiddling.
(line 6)
* Integer miscellaneous functions: Miscellaneous Integer Functions.
(line 6)
* Integer random number functions: Integer Random Numbers.
(line 6)
* Integer root functions: Integer Roots. (line 6)
* Integer sign tests: Integer Comparisons. (line 28)
* Integer special functions: Integer Special Functions.
(line 6)
* Internals: Internals. (line 6)
* Introduction: Introduction to MPIR.
(line 6)
* Inverse modulo functions: Number Theoretic Functions.
(line 124)
* ISA: ABI and ISA. (line 6)
* 'istream' input: C++ Formatted Input. (line 6)
* Jacobi symbol algorithm: Jacobi Symbol. (line 6)
* Jacobi symbol functions: Number Theoretic Functions.
(line 130)
* Karatsuba multiplication: Karatsuba Multiplication.
(line 6)
* Karatsuba square root algorithm: Square Root Algorithm.
(line 6)
* Kronecker symbol functions: Number Theoretic Functions.
(line 142)
* Language bindings: Language Bindings. (line 6)
* LCM functions: Number Theoretic Functions.
(line 119)
* Least common multiple functions: Number Theoretic Functions.
(line 119)
* Legendre symbol functions: Number Theoretic Functions.
(line 133)
* 'libmpir': Headers and Libraries.
(line 22)
* 'libmpirxx': Headers and Libraries.
(line 28)
* Libraries: Headers and Libraries.
(line 22)
* Libtool: Headers and Libraries.
(line 34)
* Libtool versioning: Notes for Package Builds.
(line 9)
* License conditions: Copying. (line 6)
* Limb: Nomenclature and Types.
(line 31)
* Limb size: Useful Macros and Constants.
(line 7)
* Linear congruential algorithm: Random Number Algorithms.
(line 25)
* Linear congruential random numbers: Random State Initialization.
(line 19)
* Linear congruential random numbers <1>: Random State Initialization.
(line 33)
* Linking: Headers and Libraries.
(line 22)
* Logical functions: Integer Logic and Bit Fiddling.
(line 6)
* Low-level functions: Low-level Functions. (line 6)
* Lucas number algorithm: Lucas Numbers Algorithm.
(line 6)
* Lucas number functions: Number Theoretic Functions.
(line 190)
* Mailing lists: Introduction to MPIR.
(line 35)
* Malloc debugger: Debugging. (line 29)
* Malloc problems: Debugging. (line 23)
* Memory allocation: Custom Allocation. (line 6)
* Memory management: Memory Management. (line 6)
* Mersenne twister algorithm: Random Number Algorithms.
(line 17)
* Mersenne twister random numbers: Random State Initialization.
(line 13)
* MINGW: Notes for Particular Systems.
(line 21)
* Miscellaneous float functions: Miscellaneous Float Functions.
(line 6)
* Miscellaneous integer functions: Miscellaneous Integer Functions.
(line 6)
* MMX: Notes for Particular Systems.
(line 93)
* Modular inverse functions: Number Theoretic Functions.
(line 124)
* Most significant bit: Miscellaneous Integer Functions.
(line 34)
* MPIR version number: Useful Macros and Constants.
(line 12)
* MPIR version number <1>: Useful Macros and Constants.
(line 20)
* 'mpir.h': Headers and Libraries.
(line 6)
* 'mpirxx.h': C++ Interface General.
(line 8)
* 'MPN_PATH': Build Options. (line 336)
* MS Windows: Notes for Particular Systems.
(line 21)
* MS Windows <1>: Notes for Particular Systems.
(line 34)
* MS-DOS: Notes for Particular Systems.
(line 21)
* MSVC: Building with Microsoft Visual Studio.
(line 6)
* Multi-threading: Reentrancy. (line 6)
* Multiplication algorithms: Multiplication Algorithms.
(line 6)
* Nails: Low-level Functions. (line 513)
* Native compilation: Build Options. (line 60)
* Next candidate prime function: Number Theoretic Functions.
(line 72)
* Next prime function: Number Theoretic Functions.
(line 60)
* Nomenclature: Nomenclature and Types.
(line 6)
* Non-Unix systems: Build Options. (line 11)
* Nth root algorithm: Nth Root Algorithm. (line 6)
* Number sequences: Efficiency. (line 145)
* Number theoretic functions: Number Theoretic Functions.
(line 6)
* Numerator and denominator: Applying Integer Functions.
(line 6)
* 'obstack' output: Formatted Output Functions.
(line 79)
* Optimizing performance: Performance optimization.
(line 6)
* 'ostream' output: C++ Formatted Output.
(line 6)
* Other languages: Language Bindings. (line 6)
* Output functions: I/O of Integers. (line 6)
* Output functions <1>: I/O of Rationals. (line 6)
* Output functions <2>: I/O of Floats. (line 6)
* Output functions <3>: Formatted Output Functions.
(line 6)
* Packaged builds: Notes for Package Builds.
(line 6)
* Parameter conventions: Parameter Conventions.
(line 6)
* Particular systems: Notes for Particular Systems.
(line 6)
* Past GMP/MPIR versions: Compatibility with older versions.
(line 6)
* PDF: Build Options. (line 351)
* Perfect power algorithm: Perfect Power Algorithm.
(line 6)
* Perfect power functions: Integer Roots. (line 30)
* Perfect square algorithm: Perfect Square Algorithm.
(line 6)
* Perfect square functions: Integer Roots. (line 39)
* Postscript: Build Options. (line 351)
* Powering algorithms: Powering Algorithms. (line 6)
* Powering functions: Integer Exponentiation.
(line 6)
* Powering functions <1>: Float Arithmetic. (line 34)
* PowerPC: ABI and ISA. (line 94)
* Precision of floats: Floating-point Functions.
(line 6)
* Precision of hardware floating point: Notes for Particular Systems.
(line 12)
* Prefix: Build Options. (line 32)
* Prime testing algorithms: Prime Testing Algorithm.
(line 6)
* Prime testing functions: Number Theoretic Functions.
(line 8)
* Prime testing functions <1>: Number Theoretic Functions.
(line 26)
* Prime testing functions <2>: Number Theoretic Functions.
(line 41)
* Primorial functions: Number Theoretic Functions.
(line 168)
* 'printf' formatted output: Formatted Output. (line 6)
* Probable prime testing functions: Number Theoretic Functions.
(line 8)
* Probable prime testing functions <1>: Number Theoretic Functions.
(line 26)
* Probable prime testing functions <2>: Number Theoretic Functions.
(line 41)
* 'prof': Profiling. (line 24)
* Profiling: Profiling. (line 6)
* Radix conversion algorithms: Radix Conversion Algorithms.
(line 6)
* Random number algorithms: Random Number Algorithms.
(line 6)
* Random number functions: Integer Random Numbers.
(line 6)
* Random number functions <1>: Miscellaneous Float Functions.
(line 27)
* Random number functions <2>: Random Number Functions.
(line 6)
* Random number seeding: Random State Seeding.
(line 6)
* Random number state: Random State Initialization.
(line 6)
* Random state: Nomenclature and Types.
(line 45)
* Rational arithmetic: Efficiency. (line 111)
* Rational arithmetic functions: Rational Arithmetic. (line 6)
* Rational assignment functions: Initializing Rationals.
(line 6)
* Rational comparison functions: Comparing Rationals. (line 6)
* Rational conversion functions: Rational Conversions.
(line 6)
* Rational initialization functions: Initializing Rationals.
(line 6)
* Rational input and output functions: I/O of Rationals. (line 6)
* Rational internals: Rational Internals. (line 6)
* Rational number: Nomenclature and Types.
(line 16)
* Rational number functions: Rational Number Functions.
(line 6)
* Rational numerator and denominator: Applying Integer Functions.
(line 6)
* Rational sign tests: Comparing Rationals. (line 26)
* Raw output internals: Raw Output Internals.
(line 6)
* Reallocations: Efficiency. (line 30)
* Reentrancy: Reentrancy. (line 6)
* References: References. (line 5)
* Remove factor functions: Number Theoretic Functions.
(line 155)
* Reporting bugs: Reporting Bugs. (line 6)
* Root extraction algorithm: Nth Root Algorithm. (line 6)
* Root extraction algorithms: Root Extraction Algorithms.
(line 6)
* Root extraction functions: Integer Roots. (line 6)
* Root extraction functions <1>: Float Arithmetic. (line 31)
* Root testing functions: Integer Roots. (line 30)
* Root testing functions <1>: Integer Roots. (line 39)
* Rounding functions: Miscellaneous Float Functions.
(line 9)
* Scan bit functions: Integer Logic and Bit Fiddling.
(line 37)
* 'scanf' formatted input: Formatted Input. (line 6)
* Seeding random numbers: Random State Seeding.
(line 6)
* Segmentation violation: Debugging. (line 7)
* Shared library versioning: Notes for Package Builds.
(line 9)
* Sign tests: Integer Comparisons. (line 28)
* Sign tests <1>: Comparing Rationals. (line 26)
* Sign tests <2>: Float Comparison. (line 28)
* Size in digits: Miscellaneous Integer Functions.
(line 23)
* Small operands: Efficiency. (line 7)
* Solaris: ABI and ISA. (line 120)
* Solaris <1>: Notes for Particular Systems.
(line 83)
* Sparc: Notes for Particular Systems.
(line 50)
* Sparc <1>: Notes for Particular Systems.
(line 55)
* Sparc <2>: Notes for Particular Systems.
(line 67)
* Sparc V9: ABI and ISA. (line 120)
* Special integer functions: Integer Special Functions.
(line 6)
* Square root algorithm: Square Root Algorithm.
(line 6)
* SSE2: Notes for Particular Systems.
(line 93)
* Stack backtrace: Debugging. (line 46)
* Stack overflow: Build Options. (line 289)
* Stack overflow <1>: Debugging. (line 7)
* Static linking: Efficiency. (line 14)
* 'stdarg.h': Headers and Libraries.
(line 17)
* 'stdio.h': Headers and Libraries.
(line 11)
* Sun: ABI and ISA. (line 120)
* Systems: Notes for Particular Systems.
(line 6)
* Temporary memory: Build Options. (line 289)
* Texinfo: Build Options. (line 348)
* Text input/output: Efficiency. (line 151)
* Thread safety: Reentrancy. (line 6)
* Toom multiplication: Toom 3-Way Multiplication.
(line 6)
* Toom multiplication <1>: Toom 4-Way Multiplication.
(line 6)
* Toom multiplication <2>: Other Multiplication.
(line 6)
* Types: Nomenclature and Types.
(line 6)
* 'ui' and 'si' functions: Efficiency. (line 50)
* Unbalanced multiplication: Unbalanced Multiplication.
(line 6)
* Upward compatibility: Compatibility with older versions.
(line 6)
* Useful macros and constants: Useful Macros and Constants.
(line 6)
* User-defined precision: Floating-point Functions.
(line 6)
* Valgrind: Debugging. (line 126)
* Variable conventions: Variable Conventions.
(line 6)
* Version number: Useful Macros and Constants.
(line 12)
* Version number <1>: Useful Macros and Constants.
(line 20)
* Visual Studio: Building with Microsoft Visual Studio.
(line 6)
* Web page: Introduction to MPIR.
(line 30)
* Windows: Notes for Particular Systems.
(line 21)
* Windows <1>: Notes for Particular Systems.
(line 34)
* Windows <2>: MPIR on Windows x64. (line 6)
* x86: Notes for Particular Systems.
(line 87)
* x87: Notes for Particular Systems.
(line 12)
* XML: Build Options. (line 355)
* XOP: Known Build Problems.
(line 9)
* Yasm: Build Options. (line 182)

File: mpir.info, Node: Function Index, Prev: Concept Index, Up: Top
Function and Type Index
***********************
[index]
* Menu:
* _mpz_realloc: Integer Special Functions.
(line 53)
* __GMP_CC: Useful Macros and Constants.
(line 28)
* __GMP_CFLAGS: Useful Macros and Constants.
(line 29)
* __GNU_MP_VERSION: Useful Macros and Constants.
(line 9)
* __GNU_MP_VERSION_MINOR: Useful Macros and Constants.
(line 10)
* __GNU_MP_VERSION_PATCHLEVEL: Useful Macros and Constants.
(line 11)
* __MPIR_VERSION: Useful Macros and Constants.
(line 17)
* __MPIR_VERSION_MINOR: Useful Macros and Constants.
(line 18)
* __MPIR_VERSION_PATCHLEVEL: Useful Macros and Constants.
(line 19)
* abs: C++ Interface Integers.
(line 44)
* abs <1>: C++ Interface Rationals.
(line 46)
* abs <2>: C++ Interface Floats.
(line 72)
* ceil: C++ Interface Floats.
(line 73)
* cmp: C++ Interface Integers.
(line 45)
* cmp <1>: C++ Interface Integers.
(line 46)
* cmp <2>: C++ Interface Rationals.
(line 47)
* cmp <3>: C++ Interface Rationals.
(line 48)
* cmp <4>: C++ Interface Floats.
(line 74)
* cmp <5>: C++ Interface Floats.
(line 75)
* floor: C++ Interface Floats.
(line 85)
* gmp_asprintf: Formatted Output Functions.
(line 63)
* gmp_fprintf: Formatted Output Functions.
(line 28)
* gmp_fscanf: Formatted Input Functions.
(line 24)
* GMP_LIMB_BITS: Low-level Functions. (line 544)
* GMP_NAIL_BITS: Low-level Functions. (line 542)
* GMP_NAIL_MASK: Low-level Functions. (line 552)
* GMP_NUMB_BITS: Low-level Functions. (line 543)
* GMP_NUMB_MASK: Low-level Functions. (line 553)
* GMP_NUMB_MAX: Low-level Functions. (line 561)
* gmp_obstack_printf: Formatted Output Functions.
(line 75)
* gmp_obstack_vprintf: Formatted Output Functions.
(line 77)
* gmp_printf: Formatted Output Functions.
(line 23)
* gmp_randclass: C++ Interface Random Numbers.
(line 6)
* gmp_randclass::get_f: C++ Interface Random Numbers.
(line 38)
* gmp_randclass::get_f <1>: C++ Interface Random Numbers.
(line 39)
* gmp_randclass::get_z_bits: C++ Interface Random Numbers.
(line 31)
* gmp_randclass::get_z_bits <1>: C++ Interface Random Numbers.
(line 32)
* gmp_randclass::get_z_range: C++ Interface Random Numbers.
(line 35)
* gmp_randclass::gmp_randclass: C++ Interface Random Numbers.
(line 11)
* gmp_randclass::seed: C++ Interface Random Numbers.
(line 26)
* gmp_randclass::seed <1>: C++ Interface Random Numbers.
(line 27)
* gmp_randclear: Random State Initialization.
(line 46)
* gmp_randinit_default: Random State Initialization.
(line 6)
* gmp_randinit_lc_2exp: Random State Initialization.
(line 16)
* gmp_randinit_lc_2exp_size: Random State Initialization.
(line 31)
* gmp_randinit_mt: Random State Initialization.
(line 12)
* gmp_randinit_set: Random State Initialization.
(line 42)
* gmp_randseed: Random State Seeding.
(line 6)
* gmp_randseed_ui: Random State Seeding.
(line 7)
* 'gmp_randstate_t': Nomenclature and Types.
(line 45)
* gmp_scanf: Formatted Input Functions.
(line 20)
* gmp_snprintf: Formatted Output Functions.
(line 44)
* gmp_sprintf: Formatted Output Functions.
(line 33)
* gmp_sscanf: Formatted Input Functions.
(line 28)
* gmp_urandomb_ui: Random State Miscellaneous.
(line 6)
* gmp_urandomm_ui: Random State Miscellaneous.
(line 11)
* gmp_vasprintf: Formatted Output Functions.
(line 64)
* gmp_version: Useful Macros and Constants.
(line 25)
* gmp_vfprintf: Formatted Output Functions.
(line 29)
* gmp_vfscanf: Formatted Input Functions.
(line 25)
* gmp_vprintf: Formatted Output Functions.
(line 24)
* gmp_vscanf: Formatted Input Functions.
(line 21)
* gmp_vsnprintf: Formatted Output Functions.
(line 46)
* gmp_vsprintf: Formatted Output Functions.
(line 34)
* gmp_vsscanf: Formatted Input Functions.
(line 29)
* hypot: C++ Interface Floats.
(line 86)
* long: MPIR on Windows x64. (line 27)
* long <1>: MPIR on Windows x64. (line 29)
* mpf_abs: Float Arithmetic. (line 39)
* mpf_add: Float Arithmetic. (line 6)
* mpf_add_ui: Float Arithmetic. (line 7)
* mpf_ceil: Miscellaneous Float Functions.
(line 6)
* mpf_class: C++ Interface General.
(line 19)
* mpf_class::fits_sint_p: C++ Interface Floats.
(line 77)
* mpf_class::fits_slong_p: C++ Interface Floats.
(line 78)
* mpf_class::fits_sshort_p: C++ Interface Floats.
(line 79)
* mpf_class::fits_uint_p: C++ Interface Floats.
(line 81)
* mpf_class::fits_ulong_p: C++ Interface Floats.
(line 82)
* mpf_class::fits_ushort_p: C++ Interface Floats.
(line 83)
* mpf_class::get_d: C++ Interface Floats.
(line 88)
* mpf_class::get_mpf_t: C++ Interface General.
(line 65)
* mpf_class::get_prec: C++ Interface Floats.
(line 109)
* mpf_class::get_si: C++ Interface Floats.
(line 89)
* mpf_class::get_str: C++ Interface Floats.
(line 90)
* mpf_class::get_ui: C++ Interface Floats.
(line 92)
* mpf_class::mpf_class: C++ Interface Floats.
(line 11)
* mpf_class::mpf_class <1>: C++ Interface Floats.
(line 12)
* mpf_class::mpf_class <2>: C++ Interface Floats.
(line 31)
* mpf_class::mpf_class <3>: C++ Interface Floats.
(line 32)
* mpf_class::mpf_class <4>: C++ Interface Floats.
(line 34)
* mpf_class::mpf_class <5>: C++ Interface Floats.
(line 35)
* mpf_class::operator=: C++ Interface Floats.
(line 49)
* mpf_class::set_prec: C++ Interface Floats.
(line 110)
* mpf_class::set_prec_raw: C++ Interface Floats.
(line 111)
* mpf_class::set_str: C++ Interface Floats.
(line 94)
* mpf_class::set_str <1>: C++ Interface Floats.
(line 95)
* mpf_class::swap: C++ Interface Floats.
(line 98)
* mpf_clear: Initializing Floats. (line 36)
* mpf_clears: Initializing Floats. (line 40)
* mpf_cmp: Float Comparison. (line 6)
* mpf_cmp_d: Float Comparison. (line 7)
* mpf_cmp_si: Float Comparison. (line 9)
* mpf_cmp_ui: Float Comparison. (line 8)
* mpf_div: Float Arithmetic. (line 24)
* mpf_div_2exp: Float Arithmetic. (line 45)
* mpf_div_ui: Float Arithmetic. (line 26)
* mpf_eq: Float Comparison. (line 16)
* mpf_fits_sint_p: Miscellaneous Float Functions.
(line 19)
* mpf_fits_slong_p: Miscellaneous Float Functions.
(line 17)
* mpf_fits_sshort_p: Miscellaneous Float Functions.
(line 21)
* mpf_fits_uint_p: Miscellaneous Float Functions.
(line 18)
* mpf_fits_ulong_p: Miscellaneous Float Functions.
(line 16)
* mpf_fits_ushort_p: Miscellaneous Float Functions.
(line 20)
* mpf_floor: Miscellaneous Float Functions.
(line 7)
* mpf_get_d: Converting Floats. (line 6)
* mpf_get_default_prec: Initializing Floats. (line 11)
* mpf_get_d_2exp: Converting Floats. (line 15)
* mpf_get_prec: Initializing Floats. (line 61)
* mpf_get_si: Converting Floats. (line 26)
* mpf_get_str: Converting Floats. (line 35)
* mpf_get_ui: Converting Floats. (line 27)
* mpf_init: Initializing Floats. (line 18)
* mpf_init2: Initializing Floats. (line 25)
* mpf_inits: Initializing Floats. (line 30)
* mpf_init_set: Simultaneous Float Init & Assign.
(line 15)
* mpf_init_set_d: Simultaneous Float Init & Assign.
(line 18)
* mpf_init_set_si: Simultaneous Float Init & Assign.
(line 17)
* mpf_init_set_str: Simultaneous Float Init & Assign.
(line 24)
* mpf_init_set_ui: Simultaneous Float Init & Assign.
(line 16)
* mpf_inp_str: I/O of Floats. (line 35)
* mpf_integer_p: Miscellaneous Float Functions.
(line 13)
* mpf_mul: Float Arithmetic. (line 15)
* mpf_mul_2exp: Float Arithmetic. (line 42)
* mpf_mul_ui: Float Arithmetic. (line 16)
* mpf_neg: Float Arithmetic. (line 36)
* mpf_out_str: I/O of Floats. (line 15)
* mpf_pow_ui: Float Arithmetic. (line 33)
* mpf_random2: Miscellaneous Float Functions.
(line 47)
* mpf_reldiff: Float Comparison. (line 23)
* mpf_rrandomb: Miscellaneous Float Functions.
(line 34)
* mpf_set: Assigning Floats. (line 9)
* mpf_set_d: Assigning Floats. (line 12)
* mpf_set_default_prec: Initializing Floats. (line 6)
* mpf_set_prec: Initializing Floats. (line 64)
* mpf_set_prec_raw: Initializing Floats. (line 71)
* mpf_set_q: Assigning Floats. (line 14)
* mpf_set_si: Assigning Floats. (line 11)
* mpf_set_str: Assigning Floats. (line 17)
* mpf_set_ui: Assigning Floats. (line 10)
* mpf_set_z: Assigning Floats. (line 13)
* mpf_sgn: Float Comparison. (line 27)
* mpf_sqrt: Float Arithmetic. (line 29)
* mpf_sqrt_ui: Float Arithmetic. (line 30)
* mpf_sub: Float Arithmetic. (line 10)
* mpf_sub_ui: Float Arithmetic. (line 12)
* mpf_swap: Assigning Floats. (line 50)
* 'mpf_t': Nomenclature and Types.
(line 21)
* mpf_trunc: Miscellaneous Float Functions.
(line 8)
* mpf_ui_div: Float Arithmetic. (line 25)
* mpf_ui_sub: Float Arithmetic. (line 11)
* mpf_urandomb: Miscellaneous Float Functions.
(line 25)
* mpir_version: Useful Macros and Constants.
(line 34)
* mpn_add: Low-level Functions. (line 68)
* mpn_addmul_1: Low-level Functions. (line 129)
* mpn_add_1: Low-level Functions. (line 63)
* mpn_add_n: Low-level Functions. (line 53)
* mpn_andn_n: Low-level Functions. (line 468)
* mpn_and_n: Low-level Functions. (line 453)
* mpn_cmp: Low-level Functions. (line 278)
* mpn_com: Low-level Functions. (line 493)
* mpn_copyd: Low-level Functions. (line 502)
* mpn_copyi: Low-level Functions. (line 498)
* mpn_divexact_by3: Low-level Functions. (line 223)
* mpn_divexact_by3c: Low-level Functions. (line 225)
* mpn_divmod_1: Low-level Functions. (line 207)
* mpn_divrem: Low-level Functions. (line 180)
* mpn_divrem_1: Low-level Functions. (line 205)
* mpn_gcd: Low-level Functions. (line 283)
* mpn_gcdext: Low-level Functions. (line 299)
* mpn_gcd_1: Low-level Functions. (line 294)
* mpn_get_str: Low-level Functions. (line 342)
* mpn_hamdist: Low-level Functions. (line 443)
* mpn_iorn_n: Low-level Functions. (line 473)
* mpn_ior_n: Low-level Functions. (line 458)
* mpn_lshift: Low-level Functions. (line 254)
* mpn_mod_1: Low-level Functions. (line 249)
* mpn_mul: Low-level Functions. (line 151)
* mpn_mul_1: Low-level Functions. (line 114)
* mpn_mul_n: Low-level Functions. (line 102)
* mpn_nand_n: Low-level Functions. (line 478)
* mpn_neg: Low-level Functions. (line 97)
* mpn_nior_n: Low-level Functions. (line 483)
* mpn_perfect_square_p: Low-level Functions. (line 449)
* mpn_popcount: Low-level Functions. (line 439)
* mpn_random: Low-level Functions. (line 392)
* mpn_random2: Low-level Functions. (line 393)
* mpn_randomb: Low-level Functions. (line 421)
* mpn_rrandom: Low-level Functions. (line 429)
* mpn_rshift: Low-level Functions. (line 266)
* mpn_scan0: Low-level Functions. (line 376)
* mpn_scan1: Low-level Functions. (line 384)
* mpn_set_str: Low-level Functions. (line 357)
* mpn_sqr: Low-level Functions. (line 162)
* mpn_sqrtrem: Low-level Functions. (line 324)
* mpn_sub: Low-level Functions. (line 89)
* mpn_submul_1: Low-level Functions. (line 140)
* mpn_sub_1: Low-level Functions. (line 84)
* mpn_sub_n: Low-level Functions. (line 75)
* mpn_tdiv_qr: Low-level Functions. (line 170)
* mpn_urandomb: Low-level Functions. (line 405)
* mpn_urandomm: Low-level Functions. (line 413)
* mpn_xnor_n: Low-level Functions. (line 488)
* mpn_xor_n: Low-level Functions. (line 463)
* mpn_zero: Low-level Functions. (line 506)
* mpq_abs: Rational Arithmetic. (line 30)
* mpq_add: Rational Arithmetic. (line 6)
* mpq_canonicalize: Rational Number Functions.
(line 21)
* mpq_class: C++ Interface General.
(line 18)
* mpq_class::canonicalize: C++ Interface Rationals.
(line 40)
* mpq_class::get_d: C++ Interface Rationals.
(line 50)
* mpq_class::get_den: C++ Interface Rationals.
(line 65)
* mpq_class::get_den_mpz_t: C++ Interface Rationals.
(line 75)
* mpq_class::get_mpq_t: C++ Interface General.
(line 64)
* mpq_class::get_num: C++ Interface Rationals.
(line 64)
* mpq_class::get_num_mpz_t: C++ Interface Rationals.
(line 74)
* mpq_class::get_str: C++ Interface Rationals.
(line 51)
* mpq_class::mpq_class: C++ Interface Rationals.
(line 9)
* mpq_class::mpq_class <1>: C++ Interface Rationals.
(line 10)
* mpq_class::mpq_class <2>: C++ Interface Rationals.
(line 20)
* mpq_class::mpq_class <3>: C++ Interface Rationals.
(line 25)
* mpq_class::mpq_class <4>: C++ Interface Rationals.
(line 26)
* mpq_class::mpq_class <5>: C++ Interface Rationals.
(line 27)
* mpq_class::mpq_class <6>: C++ Interface Rationals.
(line 28)
* mpq_class::set_str: C++ Interface Rationals.
(line 53)
* mpq_class::set_str <1>: C++ Interface Rationals.
(line 54)
* mpq_class::swap: C++ Interface Rationals.
(line 56)
* mpq_clear: Initializing Rationals.
(line 15)
* mpq_clears: Initializing Rationals.
(line 19)
* mpq_cmp: Comparing Rationals. (line 6)
* mpq_cmp_si: Comparing Rationals. (line 15)
* mpq_cmp_ui: Comparing Rationals. (line 14)
* mpq_cmp_z: Comparing Rationals. (line 7)
* mpq_denref: Applying Integer Functions.
(line 16)
* mpq_div: Rational Arithmetic. (line 20)
* mpq_div_2exp: Rational Arithmetic. (line 24)
* mpq_equal: Comparing Rationals. (line 31)
* mpq_get_d: Rational Conversions.
(line 6)
* mpq_get_den: Applying Integer Functions.
(line 22)
* mpq_get_num: Applying Integer Functions.
(line 21)
* mpq_get_str: Rational Conversions.
(line 21)
* mpq_init: Initializing Rationals.
(line 6)
* mpq_inits: Initializing Rationals.
(line 11)
* mpq_inp_str: I/O of Rationals. (line 22)
* mpq_inv: Rational Arithmetic. (line 33)
* mpq_mul: Rational Arithmetic. (line 13)
* mpq_mul_2exp: Rational Arithmetic. (line 17)
* mpq_neg: Rational Arithmetic. (line 27)
* mpq_numref: Applying Integer Functions.
(line 15)
* mpq_out_str: I/O of Rationals. (line 14)
* mpq_set: Initializing Rationals.
(line 23)
* mpq_set_d: Rational Conversions.
(line 16)
* mpq_set_den: Applying Integer Functions.
(line 24)
* mpq_set_f: Rational Conversions.
(line 17)
* mpq_set_num: Applying Integer Functions.
(line 23)
* mpq_set_si: Initializing Rationals.
(line 28)
* mpq_set_str: Initializing Rationals.
(line 33)
* mpq_set_ui: Initializing Rationals.
(line 27)
* mpq_set_z: Initializing Rationals.
(line 24)
* mpq_sgn: Comparing Rationals. (line 25)
* mpq_sub: Rational Arithmetic. (line 9)
* mpq_swap: Initializing Rationals.
(line 52)
* 'mpq_t': Nomenclature and Types.
(line 16)
* mpz_2fac_ui: Number Theoretic Functions.
(line 160)
* mpz_abs: Integer Arithmetic. (line 35)
* mpz_add: Integer Arithmetic. (line 6)
* mpz_addmul: Integer Arithmetic. (line 20)
* mpz_addmul_ui: Integer Arithmetic. (line 21)
* mpz_add_ui: Integer Arithmetic. (line 7)
* mpz_and: Integer Logic and Bit Fiddling.
(line 10)
* mpz_array_init: Integer Special Functions.
(line 9)
* mpz_bin_ui: Number Theoretic Functions.
(line 171)
* mpz_bin_uiui: Number Theoretic Functions.
(line 172)
* mpz_cdiv_q: Integer Division. (line 12)
* mpz_cdiv_qr: Integer Division. (line 14)
* mpz_cdiv_qr_ui: Integer Division. (line 18)
* mpz_cdiv_q_2exp: Integer Division. (line 22)
* mpz_cdiv_q_ui: Integer Division. (line 16)
* mpz_cdiv_r: Integer Division. (line 13)
* mpz_cdiv_r_2exp: Integer Division. (line 23)
* mpz_cdiv_r_ui: Integer Division. (line 17)
* mpz_cdiv_ui: Integer Division. (line 20)
* mpz_class: C++ Interface General.
(line 17)
* mpz_class::fits_sint_p: C++ Interface Integers.
(line 48)
* mpz_class::fits_slong_p: C++ Interface Integers.
(line 49)
* mpz_class::fits_sshort_p: C++ Interface Integers.
(line 50)
* mpz_class::fits_uint_p: C++ Interface Integers.
(line 52)
* mpz_class::fits_ulong_p: C++ Interface Integers.
(line 53)
* mpz_class::fits_ushort_p: C++ Interface Integers.
(line 54)
* mpz_class::get_d: C++ Interface Integers.
(line 56)
* mpz_class::get_mpz_t: C++ Interface General.
(line 63)
* mpz_class::get_si: C++ Interface Integers.
(line 57)
* mpz_class::get_str: C++ Interface Integers.
(line 58)
* mpz_class::get_ui: C++ Interface Integers.
(line 59)
* mpz_class::mpz_class: C++ Interface Integers.
(line 6)
* mpz_class::mpz_class <1>: C++ Interface Integers.
(line 12)
* mpz_class::mpz_class <2>: C++ Interface Integers.
(line 17)
* mpz_class::mpz_class <3>: C++ Interface Integers.
(line 18)
* mpz_class::mpz_class <4>: C++ Interface Integers.
(line 19)
* mpz_class::mpz_class <5>: C++ Interface Integers.
(line 20)
* mpz_class::set_str: C++ Interface Integers.
(line 61)
* mpz_class::set_str <1>: C++ Interface Integers.
(line 62)
* mpz_class::swap: C++ Interface Integers.
(line 65)
* mpz_clear: Initializing Integers.
(line 40)
* mpz_clears: Initializing Integers.
(line 44)
* mpz_clrbit: Integer Logic and Bit Fiddling.
(line 52)
* mpz_cmp: Integer Comparisons. (line 6)
* mpz_cmpabs: Integer Comparisons. (line 17)
* mpz_cmpabs_d: Integer Comparisons. (line 18)
* mpz_cmpabs_ui: Integer Comparisons. (line 19)
* mpz_cmp_d: Integer Comparisons. (line 7)
* mpz_cmp_si: Integer Comparisons. (line 8)
* mpz_cmp_ui: Integer Comparisons. (line 9)
* mpz_com: Integer Logic and Bit Fiddling.
(line 19)
* mpz_combit: Integer Logic and Bit Fiddling.
(line 55)
* mpz_congruent_2exp_p: Integer Division. (line 119)
* mpz_congruent_p: Integer Division. (line 117)
* mpz_congruent_ui_p: Integer Division. (line 118)
* mpz_divexact: Integer Division. (line 97)
* mpz_divexact_ui: Integer Division. (line 98)
* mpz_divisible_2exp_p: Integer Division. (line 108)
* mpz_divisible_p: Integer Division. (line 106)
* mpz_divisible_ui_p: Integer Division. (line 107)
* mpz_even_p: Miscellaneous Integer Functions.
(line 17)
* mpz_export: Integer Import and Export.
(line 43)
* mpz_fac_ui: Number Theoretic Functions.
(line 159)
* mpz_fdiv_q: Integer Division. (line 25)
* mpz_fdiv_qr: Integer Division. (line 27)
* mpz_fdiv_qr_ui: Integer Division. (line 31)
* mpz_fdiv_q_2exp: Integer Division. (line 35)
* mpz_fdiv_q_ui: Integer Division. (line 29)
* mpz_fdiv_r: Integer Division. (line 26)
* mpz_fdiv_r_2exp: Integer Division. (line 36)
* mpz_fdiv_r_ui: Integer Division. (line 30)
* mpz_fdiv_ui: Integer Division. (line 33)
* mpz_fib2_ui: Number Theoretic Functions.
(line 179)
* mpz_fib_ui: Number Theoretic Functions.
(line 178)
* mpz_fits_sint_p: Miscellaneous Integer Functions.
(line 9)
* mpz_fits_slong_p: Miscellaneous Integer Functions.
(line 7)
* mpz_fits_sshort_p: Miscellaneous Integer Functions.
(line 11)
* mpz_fits_uint_p: Miscellaneous Integer Functions.
(line 8)
* mpz_fits_ulong_p: Miscellaneous Integer Functions.
(line 6)
* mpz_fits_ushort_p: Miscellaneous Integer Functions.
(line 10)
* mpz_gcd: Number Theoretic Functions.
(line 84)
* mpz_gcdext: Number Theoretic Functions.
(line 97)
* mpz_gcd_ui: Number Theoretic Functions.
(line 88)
* mpz_getlimbn: Integer Special Functions.
(line 62)
* mpz_get_d: Converting Integers. (line 41)
* mpz_get_d_2exp: Converting Integers. (line 49)
* mpz_get_si: MPIR on Windows x64. (line 50)
* mpz_get_si <1>: Converting Integers. (line 17)
* mpz_get_str: Converting Integers. (line 60)
* mpz_get_sx: Converting Integers. (line 33)
* mpz_get_ui: MPIR on Windows x64. (line 48)
* mpz_get_ui <1>: Converting Integers. (line 10)
* mpz_get_ux: Converting Integers. (line 25)
* mpz_hamdist: Integer Logic and Bit Fiddling.
(line 28)
* mpz_import: Integer Import and Export.
(line 9)
* mpz_init: Initializing Integers.
(line 25)
* mpz_init2: Initializing Integers.
(line 32)
* mpz_inits: Initializing Integers.
(line 28)
* mpz_init_set: Simultaneous Integer Init & Assign.
(line 26)
* mpz_init_set_d: Simultaneous Integer Init & Assign.
(line 31)
* mpz_init_set_si: Simultaneous Integer Init & Assign.
(line 28)
* mpz_init_set_str: Simultaneous Integer Init & Assign.
(line 36)
* mpz_init_set_sx: Simultaneous Integer Init & Assign.
(line 30)
* mpz_init_set_ui: Simultaneous Integer Init & Assign.
(line 27)
* mpz_init_set_ux: Simultaneous Integer Init & Assign.
(line 29)
* mpz_inp_raw: I/O of Integers. (line 58)
* mpz_inp_str: I/O of Integers. (line 27)
* mpz_invert: Number Theoretic Functions.
(line 123)
* mpz_ior: Integer Logic and Bit Fiddling.
(line 13)
* mpz_jacobi: Number Theoretic Functions.
(line 129)
* mpz_kronecker: Number Theoretic Functions.
(line 137)
* mpz_kronecker_si: Number Theoretic Functions.
(line 138)
* mpz_kronecker_ui: Number Theoretic Functions.
(line 139)
* mpz_lcm: Number Theoretic Functions.
(line 117)
* mpz_lcm_ui: Number Theoretic Functions.
(line 118)
* mpz_legendre: Number Theoretic Functions.
(line 132)
* mpz_likely_prime_p: Number Theoretic Functions.
(line 24)
* mpz_lucnum2_ui: Number Theoretic Functions.
(line 189)
* mpz_lucnum_ui: Number Theoretic Functions.
(line 188)
* mpz_mfac_uiui: Number Theoretic Functions.
(line 161)
* mpz_mod: Integer Division. (line 88)
* mpz_mod_ui: Integer Division. (line 89)
* mpz_mul: Integer Arithmetic. (line 15)
* mpz_mul_2exp: Integer Arithmetic. (line 28)
* mpz_mul_si: Integer Arithmetic. (line 16)
* mpz_mul_ui: Integer Arithmetic. (line 17)
* mpz_neg: Integer Arithmetic. (line 32)
* mpz_nextprime: Number Theoretic Functions.
(line 59)
* mpz_next_prime_candidate: Number Theoretic Functions.
(line 70)
* mpz_nthroot: Integer Roots. (line 11)
* mpz_odd_p: Miscellaneous Integer Functions.
(line 16)
* mpz_out_raw: I/O of Integers. (line 42)
* mpz_out_str: I/O of Integers. (line 15)
* mpz_perfect_power_p: Integer Roots. (line 29)
* mpz_perfect_square_p: Integer Roots. (line 38)
* mpz_popcount: Integer Logic and Bit Fiddling.
(line 22)
* mpz_powm: Integer Exponentiation.
(line 6)
* mpz_powm_ui: Integer Exponentiation.
(line 8)
* mpz_pow_ui: Integer Exponentiation.
(line 17)
* mpz_primorial_ui: Number Theoretic Functions.
(line 167)
* mpz_probable_prime_p: Number Theoretic Functions.
(line 6)
* mpz_probab_prime_p: Number Theoretic Functions.
(line 40)
* mpz_realloc2: Initializing Integers.
(line 48)
* mpz_remove: Number Theoretic Functions.
(line 154)
* mpz_root: Integer Roots. (line 6)
* mpz_rootrem: Integer Roots. (line 14)
* mpz_rrandomb: Integer Random Numbers.
(line 29)
* mpz_scan0: Integer Logic and Bit Fiddling.
(line 35)
* mpz_scan1: Integer Logic and Bit Fiddling.
(line 36)
* mpz_set: Assigning Integers. (line 9)
* mpz_setbit: Integer Logic and Bit Fiddling.
(line 49)
* mpz_set_d: Assigning Integers. (line 14)
* mpz_set_f: Assigning Integers. (line 16)
* mpz_set_q: Assigning Integers. (line 15)
* mpz_set_si: MPIR on Windows x64. (line 21)
* mpz_set_si <1>: MPIR on Windows x64. (line 46)
* mpz_set_si <2>: Assigning Integers. (line 11)
* mpz_set_str: Assigning Integers. (line 24)
* mpz_set_sx: Assigning Integers. (line 13)
* mpz_set_ui: MPIR on Windows x64. (line 19)
* mpz_set_ui <1>: MPIR on Windows x64. (line 44)
* mpz_set_ui <2>: Assigning Integers. (line 10)
* mpz_set_ux: Assigning Integers. (line 12)
* mpz_sgn: Integer Comparisons. (line 27)
* mpz_size: Integer Special Functions.
(line 70)
* mpz_sizeinbase: Miscellaneous Integer Functions.
(line 22)
* mpz_si_kronecker: Number Theoretic Functions.
(line 140)
* mpz_sqrt: Integer Roots. (line 19)
* mpz_sqrtrem: Integer Roots. (line 22)
* mpz_sub: Integer Arithmetic. (line 10)
* mpz_submul: Integer Arithmetic. (line 24)
* mpz_submul_ui: Integer Arithmetic. (line 25)
* mpz_sub_ui: Integer Arithmetic. (line 11)
* mpz_swap: Assigning Integers. (line 40)
* 'mpz_t': Nomenclature and Types.
(line 6)
* mpz_tdiv_q: Integer Division. (line 38)
* mpz_tdiv_qr: Integer Division. (line 40)
* mpz_tdiv_qr_ui: Integer Division. (line 44)
* mpz_tdiv_q_2exp: Integer Division. (line 48)
* mpz_tdiv_q_ui: Integer Division. (line 42)
* mpz_tdiv_r: Integer Division. (line 39)
* mpz_tdiv_r_2exp: Integer Division. (line 49)
* mpz_tdiv_r_ui: Integer Division. (line 43)
* mpz_tdiv_ui: Integer Division. (line 46)
* mpz_tstbit: Integer Logic and Bit Fiddling.
(line 58)
* mpz_ui_kronecker: Number Theoretic Functions.
(line 141)
* mpz_ui_pow_ui: Integer Exponentiation.
(line 18)
* mpz_ui_sub: Integer Arithmetic. (line 12)
* mpz_urandomb: Integer Random Numbers.
(line 12)
* mpz_urandomm: Integer Random Numbers.
(line 21)
* mpz_xor: Integer Logic and Bit Fiddling.
(line 16)
* 'mp_bitcnt_t': Nomenclature and Types.
(line 41)
* mp_bits_per_limb: Useful Macros and Constants.
(line 7)
* 'mp_exp_t': Nomenclature and Types.
(line 27)
* mp_get_memory_functions: Custom Allocation. (line 94)
* 'mp_limb_t': Nomenclature and Types.
(line 31)
* mp_set_memory_functions: Custom Allocation. (line 14)
* 'mp_size_t': Nomenclature and Types.
(line 37)
* operator"": C++ Interface Integers.
(line 27)
* operator"" <1>: C++ Interface Rationals.
(line 35)
* operator"" <2>: C++ Interface Floats.
(line 45)
* operator%: C++ Interface Integers.
(line 32)
* operator/: C++ Interface Integers.
(line 31)
* operator<<: C++ Formatted Output.
(line 10)
* operator<< <1>: C++ Formatted Output.
(line 19)
* operator<< <2>: C++ Formatted Output.
(line 32)
* operator>>: C++ Formatted Input. (line 10)
* operator>> <1>: C++ Formatted Input. (line 13)
* operator>> <2>: C++ Formatted Input. (line 24)
* operator>> <3>: C++ Interface Rationals.
(line 84)
* sgn: C++ Interface Integers.
(line 63)
* sgn <1>: C++ Interface Rationals.
(line 55)
* sgn <2>: C++ Interface Floats.
(line 96)
* sqrt: C++ Interface Integers.
(line 64)
* sqrt <1>: C++ Interface Floats.
(line 97)
* swap: C++ Interface Integers.
(line 66)
* swap <1>: C++ Interface Rationals.
(line 57)
* swap <2>: C++ Interface Floats.
(line 99)
* trunc: C++ Interface Floats.
(line 100)