Building MPIR with Microsoft Visual Studio 2008
===============================================
A Note On Licensing
===================
The GMP files used in this distribution have been derived from
the GMP 4.2.1 distribution and are all licensed under Gnu LGPL
v2.1 license terms.
Other files in this distribution that have been created by me
for use in building MPIR with Microsoft Visual Studio 2008
are provided under the same license terms.
Using the Assembler Based Build Projects
========================================
If you wish to use the assembler files you will need the YASM
x86/x64 assembler (r1438 or later) for Windows which can be
obtained from:
http://www.tortall.net/projects/yasm/
This assembler should be placed in the bin directory used by
VC++, which, for Visual Stduio 2008, is typically:
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin
It should be named yasm.exe. You will also need to move the
yasm.rules file from this distribution into the directory
where Visual Studio 2008 expects to find it, which is
typically:
C:\Program Files (x86)\Microsoft Visual Studio 9.0
\VC\VCProjectDefaults
Alternatively you can configure the path for rules files in
the VC++ configuration dialogue.
You will need to install Python if you wish to use the scripts
that automate the MPIR and MPFR tests. Otherwise these have to
be compiled and run manually.
Compiling MPIR with the Visual Studio C/C++
===========================================
These VC++ build projects are primarily designed to work with
Microsoft Visual Studio 2008 Professional. They also work with
Microsoft Visual C++ 2008 Express SP1 or later.
Building with Visual Studio 2005
================================
The Python program vc98_swap.py will convert VC9 build projects
into those needed for Visual Studio 2005 (VC8). It will also
convert files that have been converted in this way back
into their original form. It does this conversion by
looking for *.vcproj files in the current working directory
and its sub-directories and changing the following line in
each of them:
Version="9.00"
to:
Version="8.00"
or vice versa.
Because it acts recursively on all sub-directories of this
directory it is important not to run it at a directory level
in which not all projects are to be converted.
Building with Visual Studio Express
===================================
Visual C++ 2008 Express Edition SP1 or newer is required to build
MPIR. Since the Express Edition cannot build 64bit binaries,
there there will be four errors when the mpir.sln solution is
loaded. Click on "OK" and the solution will continue to load.
All of the 32bit projects will be available. The four unavailable
64-bit projects should then be deleted to prevent future loading
errors. Highlight the projects marked (unavailable) and press the
Delete key.
If you do not have the 2008 Express SP1 or newer release, it can
be downloaded free from Microsoft:
http://www.microsoft.com/express/download/
Building MPIR
=============
The MPIR build is started by opening the Visual Studio C/C++
solution file 'mpir.sln' in the build.vc9 directory.
The 64-bit build projects won't be available with VC++ Express.
If you wish to use the Intel compiler, you need to convert the
build files by right clicking on the MPIR top level solution and
then selecting the conversion option. Before building for the
first time with the Intel compiler after such a conversion, it is
advisable to clean all the build projects and to delete any files
in the build.vc9\Win32 and build.vc9\x64 sub-directories.
MPIR is built by using the appropriate build projects.
Select the desired DLL or static library and then set the desired
configuration:
win32 or x64
release or debug
To build the MPIR dynamic link libraries (DLLs) choose one (or more)
of:
dll_mpir_amd64 - MPIR DLL using AMD Athlon assembler (x64)
dll_mpir_core2 - MPIR DLL using Intel Core2 assembler (x64)
dll_mpir_gc - MPIR DLL using generic C (win32 & x64)
dll_mpir_p0 - MPIR DLL using Pentium assembler (win32)
dll_mpir_p3 - MPIR DLL using Pentium III assembler (win32)
dll_mpir_p4 - MPIR DLL using Pentium IV assembler (win32)
To build MPIR static libraries choose one (or more) of:
lib_mpir_amd64 - MPIR library using AMD Athlon assembler (x64)
lib_mpir_core2 - MPIR library Intel Core2 assembler (x64)
lib_mpir_gc - MPIR library using generic C (win32 & x64)
lib_mpir_p0 - MPIR library using Pentium assembler (win32)
lib_mpir_p3 - MPIR library using Pentium III assembler (win32
lib_mpir_p4 - MPIR library using Pentium IV assembler (win32)
Before any of these libraries is built the appropriate MPIR
configuration file is automatically copied into config.h. After a
static library is built its config.h file is copied into the output
directory; the library and its associated files are then copied to
the 'lib' sub-directory within the VC++ solution folder (build.vc9).
Simlarly when a DLL is built, the resulting DLL, its export libraries
and its debug symbol file are copied to the files mpir.dll, mpir.exp,
mpir.lib and mpir.pdb within the 'dll' sub-directory.
This means that the 'dll' and 'lib' sub-directories respectively
contain the last MPIR DLLs and static libraries built. These are
then the libraries used to build software that requires MPIR or GMP.
If you use the mpir-tests, the speed, the tune or the try programs
it is very important to do so immediately after the MPIR library
in question is built because these projects link to the last
library built.
The MPIR DLL projects include the C++ files. If you want the relevent
files excluded from the DLL(s) you build, go to the 'cpp' subdirectory
of their build project in the IDE and exclude all the files in this
subdirectory from the build process.
All the DLLs and static libraries are multi-threaded and are
linked to the multi-threaded Microsoft run-time libraries (DLLs are
linked to DLL run time libraries and static libraries are linked to
run time static libraries).
Within the 'dll' and 'lib' sub-directories used for output the
structure is:
DLL or LIB
Win32
Release
Debug
x64
Release
Debug
in order to enable the appropriate library for the desired target
platform to be easily located. The individual project sub-
directories also contain the libraries once they have been built
(the 'dll' and 'lib' directories are just used to hold the latest
built versions for linking the tests that are described later).
Building for the AMD K10
========================
The standard AMD64 build is for the K8 architecture. If you wish
to use the K10 assembler you will need to change the AMD64 build
projects by including the four K10 assembler files in
Source Files\mpn\Assembler\K10
and removing lshift.asm and rshift.asm in
Source Files\mpn\Assembler\
And in config.amd64 change:
#if 0 /* for AMD K10 processor */
to:
#if 1 /* for AMD K10 processor */
C++ Interface
=============
After a MPIR library has been built, other libraries can be built.
These always use the last MPIR library (of the same type, static or
DLL) that has been built. To build the MPIR C+ library wrapper use:
lib_mpir_cpp - MPIR C++ wrapper static library (win32 & x64)
The Tests
=========
There is a separate solution for the MPIR tests: mpir-tests.sln. In
Visual Studio 2008 these are in build.vc9 folder. These tests should
be run immediately after the DLL or static library to be tested has
been built. Before running the tests it is necessary to build the
add-test-lib project (note that the Win32/x64 and Debug/Release
configuration built must match the intended test configuration).
The MPIR tests are all configured using the property file:
test-config.vsprops
located in the mpir-tests sub-directory. These cover the C and the
C++ tests for win32 and 64 builds in both release and debug
configurations. All these property files use an IDE macro named
$(BinDir) that determines whether the tests are applied to the the
static LIB or the DLL versions versions of the libraries. The
default is:
$(BinDir) = $(SolutionDir)lib
for linking the tests to the static libraries but this can be
changed to
$(BinDir) = $(SolutionDir)dll
to link the test to the DLL libraries. A second macro $(LIBS)
is also needed to set the libaries to be used:
$(BinDir)$(PlatformName)\$(ConfigurationName)\mpir.lib
for testing the DLL and
$(BinDir)$(PlatformName)\$(ConfigurationName)\mpir.lib
$(BinDir)$(PlatformName)\$(ConfigurationName)\mpirxx.lib
for testing the static libraries (enter these with a ' ' between
them when setting up the macro).
Note, however, tha the DLL tests are not useful at the moment
because they use internal features of MPIR that are not exported
by the DLLs. Hence they fail to link in almost all cases.
There is also another macro, $(TestDir), that specifies where
the executable test files are placed but changing this will
prevent the test scripts (see later) from being used.
Test Automation
===============
After they have been built the tests cn be run using the
Python script run-tests.py in the build.vc9\mpir-tests
directory. To see the test output the python script
should be run in a command window from within these
sub-directories:
cmd>mpir-tests.py
and the output can be directed to a file:
cmd>mpir-tests.py >out.txt
When an MPIR library is built the file 'last_build.txt' is
written to the buid.vc9 subdirectory giving details of the
build configuration. These details are then used to run the
MPIR tests and this means that these tests need to be run
immediately after the library to be tested has been built.
It is possible to test a different library by editing
'last_build.txt' but this will only work if the files in the
$(BinDir) are correct. In order to avoid errors, it is
advisable before testing to do a clean build of the library
under test (to do a completely clean build, the files in
the build.vc9\Win32 and build.vc9\x64 directories should be
deleted.
Two Tests Fail
==============
The tests for cxx/locale and misc/locale fail to link
because the test defines a symbol - localeconv - that is
in the Microsoft runtime libraries. This is not significant
for MPIR numeric operations.
Using MPIR
==========
Applications that use MPIR include the mpir.h header file to provide
the prototypes for the functions that MPIR provides. Hence when a
MPIR distribution is being used it is important to ensure that any
MPIR header file used matches that for the version of MPIR in use.
1. Using the Static Libraries
=============================
To build a MPIR C or C++ based application using the the static
libraries all that needs to be done is to add the MPIR and/or the
MPIR C++ static libraries to the application build process.
It is, of course, important to ensure that any libraries that are
used have been built for the target platform.
2. Using the DLL Export Libraries
=================================
The DLLs built by VC++ use the _cdecl calling convention in
which exported symbols have their C names prefixed with an
extra '_' character. Some applications expect the _stdcall
convention to be used in which there is an underscore prefix
and a suffix of '@n' where n is the number of bytes used for
the function arguments on the stack. Such applications will
need to be modified to work with the MPIR DLLs provided here.
The alternative of attempting to build MPIR using the _stdcall
convention is not recommended (and won't work with the
assembler based builds anyway). This is further complicated
if the builds for x64 are used since the conventions here are
different again.
There are two ways of linking to a DLL. The first way is to
use one or more of the DLL export libraries built as described
earlier (note that these are not the same as static libraries
although they are used in a similar way when an application
is built).
3. Using the DLL Export Library
===============================
If you intend to use the DLL export libraries in an application
you need to:
a. ensure that the application can locate the MPIR DLLs in
question when it is run. This involves putting the
DLL(s) on a recognised directory path.
b. define __GMP_LIBGMP_DLL when the application is built
in order to ensure that MPIR's DLL export symbols are
properly recognised as such so that they can be
accessed via the MPIR import library
c. link the application to the gmp.lib library that is
provided with the DLL you intend to use (this is
produced when the DLL is built)
4. Using DLL Dynamic loading
============================
The second way of linking to a DLL is to use dynamic
loading. This is more complex and will not be discussed
here. The VC++ documentation describes how to use DLLs in
this way.
5. Using MPIR functions that use FILE's as Input or Output
==========================================================
In Windows the different C runtime libraries each have
their own stream input/output tables, which means that
FILE* pointers cannot be passed from one to another. In
consequence, if an application that is built with one
library attempts to pass FILE parameters to a DLL that
is built with another, the FILE parameters will not be
recognised and the program will fail.
It is hence important to build a MPIR application using
the same run time library as that used to build any
DLL that is used - in this case the appropriate version
9 library.
If this is not possible, Jim White has made a DLL
available that will map all stream Input/Output
functions in a way that ensures that they use the
correct runtime library.
6. MPIR Applications that Require _stdcall Functions
====================================================
Some applications, for example Visual Basic 6, require
that DLL based functions provide a _stdcall interface,
whereas the VC++ default for DLLs is _cdecl.
To overcome this Jim White intends to make a wrapper
DLL available for MPIR that provides a _stdcall interface
to the normal _cdecl MPIR DLLs.
ACKNOWLEDGEMENTS
================
My thanks to:
1. The GMP team for their work on GMP and the MPFR team
for their work on MPFR
3. Patrick Pelissier, Vincent Lef<65>vre and Paul Zimmermann
for helping to resolve VC++ issues in MPFR.
4. Jeff Gilcrist for his help in testing, debugging and
improving the readme giving the VC++ build instructions
Brian Gladman, June 2009