mpir/mpz/fac_ui.c

553 lines
16 KiB
C

/* mpz_fac_ui(result, n) -- Set RESULT to N!.
Copyright 1991, 1993, 1994, 1995, 2000, 2001, 2002, 2003 Free Software
Foundation, Inc.
Copyright 2009 Robert Gerbicz
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
/* These constants are generated by gen-fac_ui.c */
#if GMP_NUMB_BITS == 32
/* This table is 0!,1!,2!,3!,...,n! where n! has <= GMP_NUMB_BITS bits */
#define ONE_LIMB_FACTORIAL_TABLE CNST_LIMB(0x1),CNST_LIMB(0x1),CNST_LIMB(0x2),CNST_LIMB(0x6),CNST_LIMB(0x18),CNST_LIMB(0x78),CNST_LIMB(0x2d0),CNST_LIMB(0x13b0),CNST_LIMB(0x9d80),CNST_LIMB(0x58980),CNST_LIMB(0x375f00),CNST_LIMB(0x2611500),CNST_LIMB(0x1c8cfc00)
/* is 2^(GMP_LIMB_BITS+1)/exp(1) */
#define FAC2OVERE CNST_LIMB(0xbc5c254b)
/* FACMULn is largest odd x such that x*(x+2)*...*(x+2(n-1))<=2^GMP_NUMB_BITS-1 */
#define FACMUL2 CNST_LIMB(0xffff)
#define FACMUL3 CNST_LIMB(0x657)
#define FACMUL4 CNST_LIMB(0xfd)
#endif /* 32 bits */
#if GMP_NUMB_BITS == 64
/* This table is 0!,1!,2!,3!,...,n! where n! has <= GMP_NUMB_BITS bits */
#define ONE_LIMB_FACTORIAL_TABLE CNST_LIMB(0x1),CNST_LIMB(0x1),CNST_LIMB(0x2),CNST_LIMB(0x6),CNST_LIMB(0x18),CNST_LIMB(0x78),CNST_LIMB(0x2d0),CNST_LIMB(0x13b0),CNST_LIMB(0x9d80),CNST_LIMB(0x58980),CNST_LIMB(0x375f00),CNST_LIMB(0x2611500),CNST_LIMB(0x1c8cfc00),CNST_LIMB(0x17328cc00),CNST_LIMB(0x144c3b2800),CNST_LIMB(0x13077775800),CNST_LIMB(0x130777758000),CNST_LIMB(0x1437eeecd8000),CNST_LIMB(0x16beecca730000),CNST_LIMB(0x1b02b9306890000),CNST_LIMB(0x21c3677c82b40000)
/* is 2^(GMP_LIMB_BITS+1)/exp(1) */
#define FAC2OVERE CNST_LIMB(0xbc5c254b96be9524)
/* FACMULn is largest odd x such that x*(x+2)*...*(x+2(n-1))<=2^GMP_NUMB_BITS-1 */
#define FACMUL2 CNST_LIMB(0xffffffff)
#define FACMUL3 CNST_LIMB(0x285143)
#define FACMUL4 CNST_LIMB(0xfffd)
#endif /* 64 bits */
static void odd_product _PROTO ((mpir_ui low, mpir_ui high, mpz_t * st));
static void ap_product_small _PROTO ((mpz_t ret, mp_limb_t start, mp_limb_t step, mpir_ui count, mpir_ui nm));
static void binary_splitting _PROTO ((mpz_ptr result, mpir_ui *a, mpir_ui L));
static void large_mpz_fac_ui _PROTO ((mpz_ptr result, mpir_ui n));
static mpir_ui ulsqrt _PROTO ((mpir_ui n));
/* must be >=2 */
#define APCONST 5
/* for single non-zero limb */
#define MPZ_SET_1_NZ(z,n) \
do { \
mpz_ptr __z = (z); \
ASSERT ((n) != 0); \
PTR(__z)[0] = (n); \
SIZ(__z) = 1; \
} while (0)
/* for src>0 and n>0 */
#define MPZ_MUL_1_POS(dst,src,n) \
do { \
mpz_ptr __dst = (dst); \
mpz_srcptr __src = (src); \
mp_size_t __size = SIZ(__src); \
mp_ptr __dst_p; \
mp_limb_t __c; \
\
ASSERT (__size > 0); \
ASSERT ((n) != 0); \
\
MPZ_REALLOC (__dst, __size+1); \
__dst_p = PTR(__dst); \
\
__c = mpn_mul_1 (__dst_p, PTR(__src), __size, n); \
__dst_p[__size] = __c; \
SIZ(__dst) = __size + (__c != 0); \
} while (0)
#if BITS_PER_UI == BITS_PER_MP_LIMB
#define BSWAP_UI(x,y) BSWAP_LIMB(x,y)
#endif
/* We used to have a case here for limb==2*long, doing a BSWAP_LIMB followed
by a shift down to get the high part. But it provoked incorrect code
from "HP aC++/ANSI C B3910B A.05.52 [Sep 05 2003]" in ILP32 mode. This
case would have been nice for gcc ia64 where BSWAP_LIMB is a mux1, but we
can get that directly muxing a 4-byte ulong if it matters enough. */
#if ! defined (BSWAP_UI)
#define BSWAP_UI(dst, src) \
do { \
mpir_ui __bswapl_src = (src); \
mpir_ui __bswapl_dst = 0; \
int __i; \
for (__i = 0; __i < sizeof(mpir_ui); __i++) \
{ \
__bswapl_dst = (__bswapl_dst << 8) | (__bswapl_src & 0xFF); \
__bswapl_src >>= 8; \
} \
(dst) = __bswapl_dst; \
} while (0)
#endif
/* x is bit reverse of y */
/* Note the divides below are all exact */
#define BITREV_UI(x,y) \
do { \
mpir_ui __dst; \
BSWAP_UI(__dst,y); \
__dst = ((__dst>>4)&(GMP_UI_MAX/17)) | ((__dst<<4)&((GMP_UI_MAX/17)*16)); \
__dst = ((__dst>>2)&(GMP_UI_MAX/5) ) | ((__dst<<2)&((GMP_UI_MAX/5)*4) ); \
__dst = ((__dst>>1)&(GMP_UI_MAX/3) ) | ((__dst<<1)&((GMP_UI_MAX/3)*2) ); \
(x) = __dst; \
} while(0)
/* above could be improved if cpu has a nibble/bit swap/muxing instruction */
/* above code is serialized, possible to write as a big parallel expression */
void
mpz_fac_ui (mpz_ptr x, mpir_ui n)
{
mpir_ui z, stt;
int i, j;
mpz_t t1, st[8 * sizeof (mpir_ui) + 1 - APCONST];
mp_limb_t d[4];
static const mp_limb_t table[] = { ONE_LIMB_FACTORIAL_TABLE };
if (n < numberof (table))
{
MPZ_SET_1_NZ (x, table[n]);
return;
}
/* NOTE : MUST have n>=3 here */
ASSERT (n >= 3);
/* for estimating the alloc sizes the calculation of these formula's is not
exact and also the formulas are only approximations, also we ignore
the few "side" calculations, correct allocation seems to speed up the
small sizes better, having very little effect on the large sizes */
/* estimate space for stack entries see below
number of bits for n! is
(1+log_2(2*pi)/2)-n*log_2(exp(1))+(n+1/2)*log_2(n)=
2.325748065-n*1.442695041+(n+0.5)*log_2(n) */
umul_ppmm (d[1], d[0], (mp_limb_t) n, (mp_limb_t) FAC2OVERE);
/* d[1] is 2n/e, d[0] ignored */
count_leading_zeros (z, d[1]);
z = GMP_LIMB_BITS - z - 1; /* z=floor(log_2(2n/e)) */
umul_ppmm (d[1], d[0], (mp_limb_t) n, (mp_limb_t) z);
/* d=n*floor(log_2(2n/e)) */
d[0] = (d[0] >> 2) | (d[1] << (GMP_LIMB_BITS - 2));
d[1] >>= 2;
/* d=n*floor(log_2(2n/e))/4 */
z = d[0] + 1; /* have to ignore any overflow */
/* so z is the number of bits wanted for st[0] */
if (n <= ((mpir_ui) 1) << (APCONST))
{
mpz_realloc2 (x, 4 * z);
ap_product_small (x, CNST_LIMB(2), CNST_LIMB(1), n - 1, 4L);
return;
}
if (n <= ((mpir_ui) 1) << (APCONST + 1))
{ /* use n!=odd(1,n)*(n/2)!*2^(n/2) */
mpz_init2 (t1, 2 * z);
mpz_realloc2 (x, 4 * z);
ap_product_small (x, CNST_LIMB(2), CNST_LIMB(1), n / 2 - 1, 4L);
ap_product_small (t1, CNST_LIMB(3), CNST_LIMB(2), (n - 1) / 2, 4L);
mpz_mul (x, x, t1);
mpz_clear (t1);
mpz_mul_2exp (x, x, n / 2);
return;
}
if (n <= ((mpir_ui) 1) << (APCONST + 2))
{
/* use n!=C_2(1,n/2)^2*C_2(n/2,n)*(n/4)!*2^(n/2+n/4) all int divs
so need (BITS_IN_N-APCONST+1)=(APCONST+3-APCONST+1)=4 stack entries */
mpz_init2 (t1, 2 * z);
mpz_realloc2 (x, 4 * z);
for (i = 0; i < 4; i++)
{
mpz_init2 (st[i], z);
z >>= 1;
}
odd_product (1, n / 2, st);
mpz_set (x, st[0]);
odd_product (n / 2, n, st);
mpz_mul (x, x, x);
ASSERT (n / 4 <= FACMUL4 + 6);
ap_product_small (t1, CNST_LIMB(2), CNST_LIMB(1), n / 4 - 1, 4L);
/* must have 2^APCONST odd numbers max */
mpz_mul (t1, t1, st[0]);
for (i = 0; i < 4; i++)
mpz_clear (st[i]);
mpz_mul (x, x, t1);
mpz_clear (t1);
mpz_mul_2exp (x, x, n / 2 + n / 4);
return;
}
if (ABOVE_THRESHOLD(n,FAC_UI_THRESHOLD)){large_mpz_fac_ui(x,n);return;}
count_leading_zeros (stt, (mp_limb_t) n);
stt = GMP_LIMB_BITS - stt + 1 - APCONST;
for (i = 0; i < (signed long) stt; i++)
{
mpz_init2 (st[i], z);
z >>= 1;
}
count_leading_zeros (z, (mp_limb_t) (n / 3));
/* find z st 2^z>n/3 range for z is 1 <= z <= 8 * sizeof(mpir_ui)-1 */
z = GMP_LIMB_BITS - z;
/*
n! = 2^e * PRODUCT_{i=0}^{i=z-1} C_2( n/2^{i+1}, n/2^i )^{i+1}
where 2^e || n! 3.2^z>n C_2(a,b)=PRODUCT of odd z such that a<z<=b
*/
mpz_init_set_ui (t1, 1);
for (j = 8 * sizeof (mpir_ui) / 2; j != 0; j >>= 1)
{
MPZ_SET_1_NZ (x, 1);
for (i = 8 * sizeof (mpir_ui) - j; i >= j; i -= 2 * j)
if ((mpir_si) z >= i)
{
odd_product (n >> i, n >> (i - 1), st);
/* largest odd product when j=i=1 then we have
odd_product(n/2,n,st) which is approx (2n/e)^(n/4)
so log_base2(largest oddproduct)=n*log_base2(2n/e)/4
number of bits is n*log_base2(2n/e)/4+1 */
if (i != j)
mpz_pow_ui (st[0], st[0], i / j);
mpz_mul (x, x, st[0]);
}
if ((mpir_si) z >= j && j != 1)
{
mpz_mul (t1, t1, x);
mpz_mul (t1, t1, t1);
}
}
for (i = 0; i < (mpir_si) stt; i++)
mpz_clear (st[i]);
mpz_mul (x, x, t1);
mpz_clear (t1);
popc_limb (i, (mp_limb_t) n);
mpz_mul_2exp (x, x, n - i);
return;
}
/* start,step are mp_limb_t although they will fit in mpir_ui */
static void
ap_product_small (mpz_t ret, mp_limb_t start, mp_limb_t step,
mpir_ui count, mpir_ui nm)
{
mpir_ui a;
mp_limb_t b;
ASSERT (count <= (((mpir_ui) 1) << APCONST));
/* count can never be zero ? check this and remove test below */
if (count == 0)
{
MPZ_SET_1_NZ (ret, 1);
return;
}
if (count == 1)
{
MPZ_SET_1_NZ (ret, start);
return;
}
switch (nm)
{
case 1:
MPZ_SET_1_NZ (ret, start);
b = start + step;
for (a = 0; a < count - 1; b += step, a++)
MPZ_MUL_1_POS (ret, ret, b);
return;
case 2:
MPZ_SET_1_NZ (ret, start * (start + step));
if (count == 2)
return;
for (b = start + 2 * step, a = count / 2 - 1; a != 0;
a--, b += 2 * step)
MPZ_MUL_1_POS (ret, ret, b * (b + step));
if (count % 2 == 1)
MPZ_MUL_1_POS (ret, ret, b);
return;
case 3:
if (count == 2)
{
MPZ_SET_1_NZ (ret, start * (start + step));
return;
}
MPZ_SET_1_NZ (ret, start * (start + step) * (start + 2 * step));
if (count == 3)
return;
for (b = start + 3 * step, a = count / 3 - 1; a != 0;
a--, b += 3 * step)
MPZ_MUL_1_POS (ret, ret, b * (b + step) * (b + 2 * step));
if (count % 3 == 2)
b = b * (b + step);
if (count % 3 != 0)
MPZ_MUL_1_POS (ret, ret, b);
return;
default: /* ie nm=4 */
if (count == 2)
{
MPZ_SET_1_NZ (ret, start * (start + step));
return;
}
if (count == 3)
{
MPZ_SET_1_NZ (ret, start * (start + step) * (start + 2 * step));
return;
}
MPZ_SET_1_NZ (ret,
start * (start + step) * (start + 2 * step) * (start +
3 * step));
if (count == 4)
return;
for (b = start + 4 * step, a = count / 4 - 1; a != 0;
a--, b += 4 * step)
MPZ_MUL_1_POS (ret, ret,
b * (b + step) * (b + 2 * step) * (b + 3 * step));
if (count % 4 == 2)
b = b * (b + step);
if (count % 4 == 3)
b = b * (b + step) * (b + 2 * step);
if (count % 4 != 0)
MPZ_MUL_1_POS (ret, ret, b);
return;
}
}
/* return value in st[0]
odd_product(l,h)=sqrt((h/e)^h/(l/e)^l) using Stirling approx and e=exp(1)
so st[0] needs enough bits for above, st[1] needs half these bits and
st[2] needs 1/4 of these bits etc */
static void
odd_product (mpir_ui low, mpir_ui high, mpz_t * st)
{
mpir_ui stc = 1, stn = 0, n, y, mask, a, nm = 1;
mpir_si z;
low++;
if (low % 2 == 0)
low++;
if (high == 0)
high = 1;
if (high % 2 == 0)
high--;
/* must have high>=low ? check this and remove test below */
if (high < low)
{
MPZ_SET_1_NZ (st[0], 1);
return;
}
if (high == low)
{
MPZ_SET_1_NZ (st[0], low);
return;
}
if (high <= FACMUL2 + 2)
{
nm = 2;
if (high <= FACMUL3 + 4)
{
nm = 3;
if (high <= FACMUL4 + 6)
nm = 4;
}
}
high = (high - low) / 2 + 1; /* high is now count,high<=2^(BITS_PER_UI-1) */
if (high <= (((mpir_ui) 1) << APCONST))
{
ap_product_small (st[0], (mp_limb_t) low, CNST_LIMB(2), high, nm);
return;
}
count_leading_zeros (n, (mp_limb_t) high);
/* assumes clz above is LIMB based not NUMB based */
n = GMP_LIMB_BITS - n - APCONST;
mask = (((mpir_ui) 1) << n);
a = mask << 1;
mask--;
/* have 2^(BITS_IN_N-APCONST) iterations so need
(BITS_IN_N-APCONST+1) stack entries */
for (z = mask; z >= 0; z--)
{
BITREV_UI (y, z);
y >>= (BITS_PER_UI - n);
ap_product_small (st[stn],
(mp_limb_t) (low + 2 * ((~y) & mask)), (mp_limb_t) a,
(high + y) >> n, nm);
ASSERT (((high + y) >> n) <= (((mpir_ui) 1) << APCONST));
stn++;
y = stc++;
while ((y & 1) == 0)
{
mpz_mul (st[stn - 2], st[stn - 2], st[stn - 1]);
stn--;
y >>= 1;
}
}
ASSERT (stn == 1);
return;
}
// Computation of n factorial by computing the prime factoriation of n!,
// using iterated squaring and multiplication by a "small" number idea and binary splitting
// written by Robert Gerbicz the algorithm is due to Schoenhage. See Peter
// Luschny's website for many factorial implementations, including one of
// this algorithm. See page 226 in: "Fast Algorithms, A Multitape Turing
// Machine Implementation" by A. Schonhage, A. F. W. Grotefeld and E. Vetter,
// BI Wissenschafts-Verlag, Mannheim, 1994.
static void binary_splitting (mpz_ptr result,mpir_ui *a, mpir_ui L) {
// mulptiplication by binary splitting
mpir_ui i,L0,L1;
mpz_t temp;
if(L==0) {
mpz_set_ui (result, 1);
return;
}
if(L<=3) {
mpz_set_ui(result,a[0]);
for(i=1;i<L;i++)
mpz_mul_ui(result,result,a[i]);
return;
}
L0=L/2;
L1=L-L0;
binary_splitting(result,a,L1);
mpz_init(temp);
binary_splitting(temp,a+L1,L0);
mpz_mul(result,result,temp);
mpz_clear(temp);
return;
}
static mpir_ui ulsqrt(mpir_ui n)
{mpir_ui x,y;
x=y=n;
do{x=y;
y=(n/x+x)/2;
}while(y<x);
return x;}
static void large_mpz_fac_ui(mpz_ptr result, mpir_ui n) {
mpir_ui Bit[32],e,N,g,p2,*S,*exponent,*isprime,*primes,count,i,p,primepi,sq,n2=(n-1)>>1,n64=(n>>6)+1,memalloc;
int h,expo;
mpz_t temp;
mpz_init(temp);
isprime=__GMP_ALLOCATE_FUNC_TYPE(n64,mpir_ui);
ASSERT(n>=2);// cant handle n<2
Bit[0]=1;
for(i=1;i<32;i++) Bit[i]=Bit[i-1]<<1; // Bit[i]=2^i
// determine all odd primes up to n by sieve
for(i=0;i<n64;i++) isprime[i]=0xffffffff;
sq=ulsqrt(n)+1;
for(p=3;p<=sq;p+=2) {
if(isprime[p>>6]&Bit[(p>>1)&31]) {
for(i=(p*p-1)>>1;i<=n2;i+=p) isprime[i>>5]&=~Bit[i&31];
}
}
primepi=0;
for(i=0;i<=n2;i++)
primepi+=((isprime[i>>5]&Bit[i&31])>0);
memalloc=primepi;
primes=__GMP_ALLOCATE_FUNC_TYPE(memalloc,mpir_ui);
S=__GMP_ALLOCATE_FUNC_TYPE(memalloc,mpir_ui);
exponent=__GMP_ALLOCATE_FUNC_TYPE(memalloc,mpir_ui);
primepi=0;
// 1 is not prime and hasn't cancelled, so start from 1*2+1=3
for(i=1;i<=n2;i++)
if((isprime[i>>5]&Bit[i&31])>0) {
p=2*i+1;
N=n;
e=0;
while(N) N/=p,e+=N;
primes[primepi]=p; // store prime
exponent[primepi]=e; // exponent of p in the factorization of n!
primepi++;
}
__GMP_FREE_FUNC_TYPE(isprime,n64,mpir_ui);
mpz_set_ui(result,1);
expo=0,p2=1;
N=n;
while(N) N>>=1,p2<<=1,expo++;
for(h=expo;h>=0;h--) {
// collect all primes for which in the factorization of n! the primes[g]'s exponent's h-th bit is 1
count=0;
// note that exponent[] is a decreasing array
for(g=0;(g<primepi)&&(exponent[g]>=p2);g++)
if(((exponent[g]>>h)&1)==1) {
S[count]=primes[g];
count++;
}
binary_splitting(temp,S,count); // build the product by binary splitting
mpz_pow_ui(result,result,2); // squaring
mpz_mul(result,result,temp); // multiplcation by a not so large number
p2>>=1;
}
N=n;
e=0;
while(N) N>>=1,e+=N;
mpz_mul_2exp(result,result,e); // shift the number to finally get n!
__GMP_FREE_FUNC_TYPE(S,memalloc,mpir_ui);
__GMP_FREE_FUNC_TYPE(primes,memalloc,mpir_ui);
__GMP_FREE_FUNC_TYPE(exponent,memalloc,mpir_ui);
mpz_clear(temp);
return;
}