mpir/tune/common.c
2008-04-17 21:03:07 +00:00

2029 lines
52 KiB
C

/* Shared speed subroutines.
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define __GMP_NO_ATTRIBUTE_CONST_PURE
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h> /* for qsort */
#include <string.h>
#include <unistd.h>
#if 0
#include <sys/ioctl.h>
#endif
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "tests.h"
#include "speed.h"
int speed_option_addrs = 0;
int speed_option_verbose = 0;
/* Provide __clz_tab even if it's not required, for the benefit of new code
being tested with many.pl. */
#ifndef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#include "mp_clz_tab.c"
#undef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#endif
void
pentium_wbinvd(void)
{
#if 0
{
static int fd = -2;
if (fd == -2)
{
fd = open ("/dev/wbinvd", O_RDWR);
if (fd == -1)
perror ("open /dev/wbinvd");
}
if (fd != -1)
ioctl (fd, 0, 0);
}
#endif
#if 0
#define WBINVDSIZE 1024*1024*2
{
static char *p = NULL;
int i, sum;
if (p == NULL)
p = malloc (WBINVDSIZE);
#if 0
for (i = 0; i < WBINVDSIZE; i++)
p[i] = i & 0xFF;
#endif
sum = 0;
for (i = 0; i < WBINVDSIZE; i++)
sum += p[i];
mpn_cache_fill_dummy (sum);
}
#endif
}
int
double_cmp_ptr (const double *p, const double *q)
{
if (*p > *q) return 1;
if (*p < *q) return -1;
return 0;
}
/* Measure the speed of a given routine.
The routine is run with enough repetitions to make it take at least
speed_precision * speed_unittime. This aims to minimize the effects of a
limited accuracy time base and the overhead of the measuring itself.
Measurements are made looking for 4 results within TOLERANCE of each
other (or 3 for routines taking longer than 2 seconds). This aims to get
an accurate reading even if some runs are bloated by interrupts or task
switches or whatever.
The given (*fun)() is expected to run its function "s->reps" many times
and return the total elapsed time measured using speed_starttime() and
speed_endtime(). If the function doesn't support the given s->size or
s->r, -1.0 should be returned. See the various base routines below. */
double
speed_measure (double (*fun) _PROTO ((struct speed_params *s)),
struct speed_params *s)
{
#define TOLERANCE 1.005 /* 0.5% */
const int max_zeros = 10;
struct speed_params s_dummy;
int i, j, e;
double t[30];
double t_unsorted[30];
double reps_d;
int zeros = 0;
/* Use dummy parameters if caller doesn't provide any. Only a few special
"fun"s will cope with this, speed_noop() is one. */
if (s == NULL)
{
memset (&s_dummy, '\0', sizeof (s_dummy));
s = &s_dummy;
}
s->reps = 1;
s->time_divisor = 1.0;
for (i = 0; i < numberof (t); i++)
{
for (;;)
{
s->src_num = 0;
s->dst_num = 0;
t[i] = (*fun) (s);
if (speed_option_verbose >= 3)
gmp_printf("size=%ld reps=%u r=%Md attempt=%d %.9f\n",
(long) s->size, s->reps, s->r, i, t[i]);
if (t[i] == 0.0)
{
zeros++;
if (zeros > max_zeros)
{
fprintf (stderr, "Fatal error: too many (%d) failed measurements (0.0)\n", zeros);
abort ();
}
continue;
}
if (t[i] == -1.0)
return -1.0;
if (t[i] >= speed_unittime * speed_precision)
break;
/* go to a value of reps to make t[i] >= precision */
reps_d = ceil (1.1 * s->reps
* speed_unittime * speed_precision
/ MAX (t[i], speed_unittime));
if (reps_d > 2e9 || reps_d < 1.0)
{
fprintf (stderr, "Fatal error: new reps bad: %.2f\n", reps_d);
fprintf (stderr, " (old reps %u, unittime %.4g, precision %d, t[i] %.4g)\n",
s->reps, speed_unittime, speed_precision, t[i]);
abort ();
}
s->reps = (unsigned) reps_d;
}
t[i] /= s->reps;
t_unsorted[i] = t[i];
if (speed_precision == 0)
return t[i];
/* require 3 values within TOLERANCE when >= 2 secs, 4 when below */
if (t[0] >= 2.0)
e = 3;
else
e = 4;
/* Look for e many t[]'s within TOLERANCE of each other to consider a
valid measurement. Return smallest among them. */
if (i >= e)
{
qsort (t, i+1, sizeof(t[0]), (qsort_function_t) double_cmp_ptr);
for (j = e-1; j < i; j++)
if (t[j] <= t[j-e+1] * TOLERANCE)
return t[j-e+1] / s->time_divisor;
}
}
fprintf (stderr, "speed_measure() could not get %d results within %.1f%%\n",
e, (TOLERANCE-1.0)*100.0);
fprintf (stderr, " unsorted sorted\n");
fprintf (stderr, " %.12f %.12f is about 0.5%%\n",
t_unsorted[0]*(TOLERANCE-1.0), t[0]*(TOLERANCE-1.0));
for (i = 0; i < numberof (t); i++)
fprintf (stderr, " %.09f %.09f\n", t_unsorted[i], t[i]);
return -1.0;
}
/* Read all of ptr,size to get it into the CPU memory cache.
A call to mpn_cache_fill_dummy() is used to make sure the compiler
doesn't optimize away the whole loop. Using "volatile mp_limb_t sum"
would work too, but the function call means we don't rely on every
compiler actually implementing volatile properly.
mpn_cache_fill_dummy() is in a separate source file to stop gcc thinking
it can inline it. */
void
mpn_cache_fill (mp_srcptr ptr, mp_size_t size)
{
mp_limb_t sum = 0;
mp_size_t i;
for (i = 0; i < size; i++)
sum += ptr[i];
mpn_cache_fill_dummy(sum);
}
void
mpn_cache_fill_write (mp_ptr ptr, mp_size_t size)
{
mpn_cache_fill (ptr, size);
#if 0
mpn_random (ptr, size);
#endif
#if 0
mp_size_t i;
for (i = 0; i < size; i++)
ptr[i] = i;
#endif
}
void
speed_operand_src (struct speed_params *s, mp_ptr ptr, mp_size_t size)
{
if (s->src_num >= numberof (s->src))
{
fprintf (stderr, "speed_operand_src: no room left in s->src[]\n");
abort ();
}
s->src[s->src_num].ptr = ptr;
s->src[s->src_num].size = size;
s->src_num++;
}
void
speed_operand_dst (struct speed_params *s, mp_ptr ptr, mp_size_t size)
{
if (s->dst_num >= numberof (s->dst))
{
fprintf (stderr, "speed_operand_dst: no room left in s->dst[]\n");
abort ();
}
s->dst[s->dst_num].ptr = ptr;
s->dst[s->dst_num].size = size;
s->dst_num++;
}
void
speed_cache_fill (struct speed_params *s)
{
static struct speed_params prev;
int i;
/* FIXME: need a better way to get the format string for a pointer */
if (speed_option_addrs)
{
int different;
different = (s->dst_num != prev.dst_num || s->src_num != prev.src_num);
for (i = 0; i < s->dst_num; i++)
different |= (s->dst[i].ptr != prev.dst[i].ptr);
for (i = 0; i < s->src_num; i++)
different |= (s->src[i].ptr != prev.src[i].ptr);
if (different)
{
if (s->dst_num != 0)
{
printf ("dst");
for (i = 0; i < s->dst_num; i++)
printf (" %08lX", (unsigned long) s->dst[i].ptr);
printf (" ");
}
if (s->src_num != 0)
{
printf ("src");
for (i = 0; i < s->src_num; i++)
printf (" %08lX", (unsigned long) s->src[i].ptr);
printf (" ");
}
printf (" (cf sp approx %08lX)\n", (unsigned long) &different);
}
memcpy (&prev, s, sizeof(prev));
}
switch (s->cache) {
case 0:
for (i = 0; i < s->dst_num; i++)
mpn_cache_fill_write (s->dst[i].ptr, s->dst[i].size);
for (i = 0; i < s->src_num; i++)
mpn_cache_fill (s->src[i].ptr, s->src[i].size);
break;
case 1:
pentium_wbinvd();
break;
}
}
/* Miscellanous options accepted by tune and speed programs under -o. */
void
speed_option_set (const char *s)
{
int n;
if (strcmp (s, "addrs") == 0)
{
speed_option_addrs = 1;
}
else if (strcmp (s, "verbose") == 0)
{
speed_option_verbose++;
}
else if (sscanf (s, "verbose=%d", &n) == 1)
{
speed_option_verbose = n;
}
else
{
printf ("Unrecognised -o option: %s\n", s);
exit (1);
}
}
/* The following are basic speed running routines for various gmp functions.
Many are very similar and use speed.h macros.
Each routine allocates it's own destination space for the result of the
function, because only it can know what the function needs.
speed_starttime() and speed_endtime() are put tight around the code to be
measured. Any setups are done outside the timed portion.
Each routine is responsible for its own cache priming.
speed_cache_fill() is a good way to do this, see examples in speed.h.
One cache priming possibility, for CPUs with write-allocate cache, and
functions that don't take too long, is to do one dummy call before timing
so as to cache everything that gets used. But speed_measure() runs a
routine at least twice and will take the smaller time, so this might not
be necessary.
Data alignment will be important, for source, destination and temporary
workspace. A routine can align its destination and workspace. Programs
using the routines will ensure s->xp and s->yp are aligned. Aligning
onto a CACHE_LINE_SIZE boundary is suggested. s->align_wp and
s->align_wp2 should be respected where it makes sense to do so.
SPEED_TMP_ALLOC_LIMBS is a good way to do this.
A loop of the following form can be expected to turn into good assembler
code on most CPUs, thereby minimizing overhead in the measurement. It
can always be assumed s->reps >= 1.
i = s->reps
do
foo();
while (--i != 0);
Additional parameters might be added to "struct speed_params" in the
future. Routines should ignore anything they don't use.
s->size can be used creatively, and s->xp and s->yp can be ignored. For
example, speed_mpz_fac_ui() uses s->size as n for the factorial. s->r is
just a user-supplied parameter. speed_mpn_lshift() uses it as a shift,
speed_mpn_mul_1() uses it as a multiplier. */
/* MPN_COPY etc can be macros, so the _CALL forms are necessary */
double
speed_MPN_COPY (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (MPN_COPY);
}
double
speed_MPN_COPY_INCR (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (MPN_COPY_INCR);
}
double
speed_MPN_COPY_DECR (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (MPN_COPY_DECR);
}
#if HAVE_NATIVE_mpn_copyi
double
speed_mpn_copyi (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (mpn_copyi);
}
#endif
#if HAVE_NATIVE_mpn_copyd
double
speed_mpn_copyd (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (mpn_copyd);
}
#endif
double
speed_memcpy (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY_BYTES (memcpy);
}
double
speed_mpn_com_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (mpn_com_n);
}
double
speed_mpn_addmul_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1 (mpn_addmul_1);
}
double
speed_mpn_submul_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1 (mpn_submul_1);
}
#if HAVE_NATIVE_mpn_addmul_2
double
speed_mpn_addmul_2 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_2 (mpn_addmul_2);
}
#endif
#if HAVE_NATIVE_mpn_addmul_3
double
speed_mpn_addmul_3 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_3 (mpn_addmul_3);
}
#endif
#if HAVE_NATIVE_mpn_addmul_4
double
speed_mpn_addmul_4 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_4 (mpn_addmul_4);
}
#endif
#if HAVE_NATIVE_mpn_addmul_5
double
speed_mpn_addmul_5 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_5 (mpn_addmul_5);
}
#endif
#if HAVE_NATIVE_mpn_addmul_6
double
speed_mpn_addmul_6 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_6 (mpn_addmul_6);
}
#endif
#if HAVE_NATIVE_mpn_addmul_7
double
speed_mpn_addmul_7 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_7 (mpn_addmul_7);
}
#endif
#if HAVE_NATIVE_mpn_addmul_8
double
speed_mpn_addmul_8 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_8 (mpn_addmul_8);
}
#endif
double
speed_mpn_mul_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1 (mpn_mul_1);
}
double
speed_mpn_mul_1_inplace (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1_INPLACE (mpn_mul_1);
}
#if HAVE_NATIVE_mpn_mul_2
double
speed_mpn_mul_2 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_2 (mpn_mul_2);
}
#endif
double
speed_mpn_lshift (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1 (mpn_lshift);
}
double
speed_mpn_rshift (struct speed_params *s)
{
SPEED_ROUTINE_MPN_UNARY_1 (mpn_rshift);
}
/* The carry-in variants (if available) are good for measuring because they
won't skip a division if high<divisor. Alternately, use -1 as a divisor
with the plain _1 forms. */
double
speed_mpn_divrem_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1);
}
double
speed_mpn_divrem_1f (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1);
}
#if HAVE_NATIVE_mpn_divrem_1c
double
speed_mpn_divrem_1c (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1C (mpn_divrem_1c);
}
double
speed_mpn_divrem_1cf (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1CF (mpn_divrem_1c);
}
#endif
double
speed_mpn_divrem_1_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_div);
}
double
speed_mpn_divrem_1f_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_div);
}
double
speed_mpn_divrem_1_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_inv);
}
double
speed_mpn_divrem_1f_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_inv);
}
double
speed_mpn_mod_1_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_div);
}
double
speed_mpn_mod_1_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_inv);
}
double
speed_mpn_preinv_divrem_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_PREINV_DIVREM_1 (mpn_preinv_divrem_1);
}
double
speed_mpn_preinv_divrem_1f (struct speed_params *s)
{
SPEED_ROUTINE_MPN_PREINV_DIVREM_1F (mpn_preinv_divrem_1);
}
#if GMP_NUMB_BITS % 4 == 0
double
speed_mpn_mod_34lsub1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MOD_34LSUB1 (mpn_mod_34lsub1);
}
#endif
double
speed_mpn_divrem_2 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2);
}
double
speed_mpn_divrem_2_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_div);
}
double
speed_mpn_divrem_2_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_inv);
}
double
speed_mpn_mod_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1);
}
#if HAVE_NATIVE_mpn_mod_1c
double
speed_mpn_mod_1c (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MOD_1C (mpn_mod_1c);
}
#endif
double
speed_mpn_preinv_mod_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_PREINV_MOD_1 (mpn_preinv_mod_1);
}
double
speed_mpn_divexact_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DIVEXACT_1 (mpn_divexact_1);
}
double
speed_mpn_divexact_by3 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_COPY (mpn_divexact_by3);
}
#if HAVE_NATIVE_mpn_modexact_1_odd
double
speed_mpn_modexact_1_odd (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MODEXACT_1_ODD (mpn_modexact_1_odd);
}
#endif
double
speed_mpn_modexact_1c_odd (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MODEXACT_1C_ODD (mpn_modexact_1c_odd);
}
double
speed_mpn_dc_tdiv_qr (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DC_TDIV_QR (mpn_tdiv_qr);
}
double
speed_mpn_dc_divrem_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DC_DIVREM_N (mpn_dc_divrem_n);
}
double
speed_mpn_dc_divrem_sb (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn);
}
double
speed_mpn_dc_divrem_sb_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn_div);
}
double
speed_mpn_dc_divrem_sb_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn_inv);
}
double
speed_mpn_sb_divrem_m3 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn);
}
double
speed_mpn_sb_divrem_m3_div (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn_div);
}
double
speed_mpn_sb_divrem_m3_inv (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn_inv);
}
double
speed_mpz_mod (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_MOD (mpz_mod);
}
double
speed_redc (struct speed_params *s)
{
SPEED_ROUTINE_REDC (redc);
}
double
speed_mpn_popcount (struct speed_params *s)
{
SPEED_ROUTINE_MPN_POPCOUNT (mpn_popcount);
}
double
speed_mpn_hamdist (struct speed_params *s)
{
SPEED_ROUTINE_MPN_HAMDIST (mpn_hamdist);
}
double
speed_mpn_add_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_add_n);
}
double
speed_mpn_sub_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_sub_n);
}
#if HAVE_NATIVE_mpn_addsub_n
double
speed_mpn_addsub_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_ADDSUB_N_CALL (mpn_addsub_n (ap, sp, s->xp, s->yp, s->size));
}
#endif
#if HAVE_NATIVE_mpn_addlsh1_n
double
speed_mpn_addlsh1_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_addlsh1_n);
}
#endif
#if HAVE_NATIVE_mpn_sublsh1_n
double
speed_mpn_sublsh1_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_sublsh1_n);
}
#endif
#if HAVE_NATIVE_mpn_rsh1add_n
double
speed_mpn_rsh1add_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_rsh1add_n);
}
#endif
#if HAVE_NATIVE_mpn_rsh1sub_n
double
speed_mpn_rsh1sub_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N (mpn_rsh1sub_n);
}
#endif
/* mpn_and_n etc can be macros and so have to be handled with
SPEED_ROUTINE_MPN_BINARY_N_CALL forms */
double
speed_mpn_and_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_and_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_andn_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_andn_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_nand_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nand_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_ior_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_ior_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_iorn_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_iorn_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_nior_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nior_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_xor_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xor_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_xnor_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xnor_n (wp, s->xp, s->yp, s->size));
}
double
speed_mpn_mul_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MUL_N (mpn_mul_n);
}
double
speed_mpn_sqr_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SQR (mpn_sqr_n);
}
double
speed_mpn_mul_n_sqr (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SQR_CALL (mpn_mul_n (wp, s->xp, s->xp, s->size));
}
double
speed_mpn_mul_basecase (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MUL_BASECASE(mpn_mul_basecase);
}
double
speed_mpn_sqr_basecase (struct speed_params *s)
{
/* FIXME: size restrictions on some versions of sqr_basecase */
SPEED_ROUTINE_MPN_SQR (mpn_sqr_basecase);
}
#if HAVE_NATIVE_mpn_sqr_diagonal
double
speed_mpn_sqr_diagonal (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SQR (mpn_sqr_diagonal);
}
#endif
double
speed_mpn_kara_mul_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_KARA_MUL_N (mpn_kara_mul_n);
}
double
speed_mpn_kara_sqr_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_KARA_SQR_N (mpn_kara_sqr_n);
}
double
speed_mpn_toom3_mul_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_TOOM3_MUL_N (mpn_toom3_mul_n);
}
double
speed_mpn_toom3_sqr_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_TOOM3_SQR_N (mpn_toom3_sqr_n);
}
double
speed_mpn_mul_fft_full (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MUL_N_CALL
(mpn_mul_fft_full (wp, s->xp, s->size, s->yp, s->size));
}
double
speed_mpn_mul_fft_full_sqr (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SQR_CALL
(mpn_mul_fft_full (wp, s->xp, s->size, s->xp, s->size));
}
/* These are mod 2^N+1 multiplies and squares. If s->r is supplied it's
used as k, otherwise the best k for the size is used. If s->size isn't a
multiple of 2^k it's rounded up to make the effective operation size. */
#define SPEED_ROUTINE_MPN_MUL_FFT_CALL(call, sqr) \
{ \
mp_ptr wp; \
mp_size_t pl; \
int k; \
unsigned i; \
double t; \
TMP_DECL; \
\
SPEED_RESTRICT_COND (s->size >= 1); \
\
if (s->r != 0) \
k = s->r; \
else \
k = mpn_fft_best_k (s->size, sqr); \
\
TMP_MARK; \
pl = mpn_fft_next_size (s->size, k); \
SPEED_TMP_ALLOC_LIMBS (wp, pl+1, s->align_wp); \
\
speed_operand_src (s, s->xp, s->size); \
if (!sqr) \
speed_operand_src (s, s->yp, s->size); \
speed_operand_dst (s, wp, pl+1); \
speed_cache_fill (s); \
\
speed_starttime (); \
i = s->reps; \
do \
call; \
while (--i != 0); \
t = speed_endtime (); \
\
TMP_FREE; \
return t; \
}
double
speed_mpn_mul_fft (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MUL_FFT_CALL
(mpn_mul_fft (wp, pl, s->xp, s->size, s->yp, s->size, k), 0);
}
double
speed_mpn_mul_fft_sqr (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MUL_FFT_CALL
(mpn_mul_fft (wp, pl, s->xp, s->size, s->xp, s->size, k), 1);
}
double
speed_mpn_mullow_n (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MULLOW_N (mpn_mullow_n);
}
double
speed_mpn_mullow_basecase (struct speed_params *s)
{
SPEED_ROUTINE_MPN_MULLOW_BASECASE (mpn_mullow_basecase);
}
double
speed_mpn_gcd (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCD (mpn_gcd);
}
double
speed_mpn_gcd_binary (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCD (mpn_gcd_binary);
}
#if HAVE_NATIVE_mpn_gcd_finda
double
speed_mpn_gcd_finda (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCD_FINDA (mpn_gcd_finda);
}
#endif
double
speed_mpn_gcdext (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext);
}
#if 0
double
speed_mpn_gcdext_lehmer (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT (__gmpn_gcdext_lehmer);
}
#endif
double
speed_mpn_gcdext_single (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_single);
}
double
speed_mpn_gcdext_double (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_double);
}
double
speed_mpn_gcdext_one_single (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_single);
}
double
speed_mpn_gcdext_one_double (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_double);
}
double
speed_mpn_gcd_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCD_1 (mpn_gcd_1);
}
double
speed_mpn_gcd_1N (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GCD_1N (mpn_gcd_1);
}
double
speed_mpz_jacobi (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_JACOBI (mpz_jacobi);
}
double
speed_mpn_jacobi_base (struct speed_params *s)
{
SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base);
}
double
speed_mpn_jacobi_base_1 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_1);
}
double
speed_mpn_jacobi_base_2 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_2);
}
double
speed_mpn_jacobi_base_3 (struct speed_params *s)
{
SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_3);
}
double
speed_mpn_sqrtrem (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SQRTREM (mpn_sqrtrem);
}
double
speed_mpn_rootrem (struct speed_params *s)
{
SPEED_ROUTINE_MPN_ROOTREM (mpn_rootrem);
}
double
speed_mpz_fac_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_FAC_UI (mpz_fac_ui);
}
double
speed_mpn_fib2_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPN_FIB2_UI (mpn_fib2_ui);
}
double
speed_mpz_fib_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_FIB_UI (mpz_fib_ui);
}
double
speed_mpz_fib2_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_FIB2_UI (mpz_fib2_ui);
}
double
speed_mpz_lucnum_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_LUCNUM_UI (mpz_lucnum_ui);
}
double
speed_mpz_lucnum2_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_LUCNUM2_UI (mpz_lucnum2_ui);
}
double
speed_mpz_powm (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_POWM (mpz_powm);
}
double
speed_mpz_powm_mod (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_POWM (mpz_powm_mod);
}
double
speed_mpz_powm_redc (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_POWM (mpz_powm_redc);
}
double
speed_mpz_powm_ui (struct speed_params *s)
{
SPEED_ROUTINE_MPZ_POWM_UI (mpz_powm_ui);
}
double
speed_modlimb_invert (struct speed_params *s)
{
SPEED_ROUTINE_MODLIMB_INVERT (modlimb_invert);
}
double
speed_noop (struct speed_params *s)
{
unsigned i;
speed_starttime ();
i = s->reps;
do
noop ();
while (--i != 0);
return speed_endtime ();
}
double
speed_noop_wxs (struct speed_params *s)
{
mp_ptr wp;
unsigned i;
double t;
TMP_DECL;
TMP_MARK;
wp = TMP_ALLOC_LIMBS (1);
speed_starttime ();
i = s->reps;
do
noop_wxs (wp, s->xp, s->size);
while (--i != 0);
t = speed_endtime ();
TMP_FREE;
return t;
}
double
speed_noop_wxys (struct speed_params *s)
{
mp_ptr wp;
unsigned i;
double t;
TMP_DECL;
TMP_MARK;
wp = TMP_ALLOC_LIMBS (1);
speed_starttime ();
i = s->reps;
do
noop_wxys (wp, s->xp, s->yp, s->size);
while (--i != 0);
t = speed_endtime ();
TMP_FREE;
return t;
}
#define SPEED_ROUTINE_ALLOC_FREE(variables, calls) \
{ \
unsigned i; \
variables; \
\
speed_starttime (); \
i = s->reps; \
do \
{ \
calls; \
} \
while (--i != 0); \
return speed_endtime (); \
}
/* Compare these to see how much malloc/free costs and then how much
__gmp_default_allocate/free and mpz_init/clear add. mpz_init/clear or
mpq_init/clear will be doing a 1 limb allocate, so use that as the size
when including them in comparisons. */
double
speed_malloc_free (struct speed_params *s)
{
size_t bytes = s->size * BYTES_PER_MP_LIMB;
SPEED_ROUTINE_ALLOC_FREE (void *p,
p = malloc (bytes);
free (p));
}
double
speed_malloc_realloc_free (struct speed_params *s)
{
size_t bytes = s->size * BYTES_PER_MP_LIMB;
SPEED_ROUTINE_ALLOC_FREE (void *p,
p = malloc (BYTES_PER_MP_LIMB);
p = realloc (p, bytes);
free (p));
}
double
speed_gmp_allocate_free (struct speed_params *s)
{
size_t bytes = s->size * BYTES_PER_MP_LIMB;
SPEED_ROUTINE_ALLOC_FREE (void *p,
p = (*__gmp_allocate_func) (bytes);
(*__gmp_free_func) (p, bytes));
}
double
speed_gmp_allocate_reallocate_free (struct speed_params *s)
{
size_t bytes = s->size * BYTES_PER_MP_LIMB;
SPEED_ROUTINE_ALLOC_FREE
(void *p,
p = (*__gmp_allocate_func) (BYTES_PER_MP_LIMB);
p = (*__gmp_reallocate_func) (p, bytes, BYTES_PER_MP_LIMB);
(*__gmp_free_func) (p, bytes));
}
double
speed_mpz_init_clear (struct speed_params *s)
{
SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
mpz_init (z);
mpz_clear (z));
}
double
speed_mpz_init_realloc_clear (struct speed_params *s)
{
SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
mpz_init (z);
_mpz_realloc (z, s->size);
mpz_clear (z));
}
double
speed_mpq_init_clear (struct speed_params *s)
{
SPEED_ROUTINE_ALLOC_FREE (mpq_t q,
mpq_init (q);
mpq_clear (q));
}
double
speed_mpf_init_clear (struct speed_params *s)
{
SPEED_ROUTINE_ALLOC_FREE (mpf_t f,
mpf_init (f);
mpf_clear (f));
}
/* Compare this to mpn_add_n to see how much overhead mpz_add adds. Note
that repeatedly calling mpz_add with the same data gives branch predition
in it an advantage. */
double
speed_mpz_add (struct speed_params *s)
{
mpz_t w, x, y;
unsigned i;
double t;
mpz_init (w);
mpz_init (x);
mpz_init (y);
mpz_set_n (x, s->xp, s->size);
mpz_set_n (y, s->yp, s->size);
mpz_add (w, x, y);
speed_starttime ();
i = s->reps;
do
{
mpz_add (w, x, y);
}
while (--i != 0);
t = speed_endtime ();
mpz_clear (w);
mpz_clear (x);
mpz_clear (y);
return t;
}
/* If r==0, calculate (size,size/2),
otherwise calculate (size,r). */
double
speed_mpz_bin_uiui (struct speed_params *s)
{
mpz_t w;
unsigned long k;
unsigned i;
double t;
mpz_init (w);
if (s->r != 0)
k = s->r;
else
k = s->size/2;
speed_starttime ();
i = s->reps;
do
{
mpz_bin_uiui (w, s->size, k);
}
while (--i != 0);
t = speed_endtime ();
mpz_clear (w);
return t;
}
/* The multiplies are successively dependent so the latency is measured, not
the issue rate. There's only 10 per loop so the code doesn't get too big
since umul_ppmm is several instructions on some cpus.
Putting the arguments as "h,l,l,h" gets slightly better code from gcc
2.95.2 on x86, it puts only one mov between each mul, not two. That mov
though will probably show up as a bogus extra cycle though.
The measuring function macros are into three parts to avoid overflowing
preprocessor expansion space if umul_ppmm is big.
Limitations:
Don't blindly use this to set UMUL_TIME in gmp-mparam.h, check the code
generated first, especially on CPUs with low latency multipliers.
The default umul_ppmm doing h*l will be getting increasing numbers of
high zero bits in the calculation. CPUs with data-dependent multipliers
will want to use umul_ppmm.1 to get some randomization into the
calculation. The extra xors and fetches will be a slowdown of course. */
#define SPEED_MACRO_UMUL_PPMM_A \
{ \
mp_limb_t h, l; \
unsigned i; \
double t; \
\
s->time_divisor = 10; \
\
h = s->xp[0]; \
l = s->yp[0]; \
\
if (s->r == 1) \
{ \
speed_starttime (); \
i = s->reps; \
do \
{
#define SPEED_MACRO_UMUL_PPMM_B \
} \
while (--i != 0); \
t = speed_endtime (); \
} \
else \
{ \
speed_starttime (); \
i = s->reps; \
do \
{
#define SPEED_MACRO_UMUL_PPMM_C \
} \
while (--i != 0); \
t = speed_endtime (); \
} \
\
/* stop the compiler optimizing away the whole calculation! */ \
noop_1 (h); \
noop_1 (l); \
\
return t; \
}
double
speed_umul_ppmm (struct speed_params *s)
{
SPEED_MACRO_UMUL_PPMM_A;
{
umul_ppmm (h, l, l, h); h ^= s->xp_block[0]; l ^= s->yp_block[0];
umul_ppmm (h, l, l, h); h ^= s->xp_block[1]; l ^= s->yp_block[1];
umul_ppmm (h, l, l, h); h ^= s->xp_block[2]; l ^= s->yp_block[2];
umul_ppmm (h, l, l, h); h ^= s->xp_block[3]; l ^= s->yp_block[3];
umul_ppmm (h, l, l, h); h ^= s->xp_block[4]; l ^= s->yp_block[4];
umul_ppmm (h, l, l, h); h ^= s->xp_block[5]; l ^= s->yp_block[5];
umul_ppmm (h, l, l, h); h ^= s->xp_block[6]; l ^= s->yp_block[6];
umul_ppmm (h, l, l, h); h ^= s->xp_block[7]; l ^= s->yp_block[7];
umul_ppmm (h, l, l, h); h ^= s->xp_block[8]; l ^= s->yp_block[8];
umul_ppmm (h, l, l, h); h ^= s->xp_block[9]; l ^= s->yp_block[9];
}
SPEED_MACRO_UMUL_PPMM_B;
{
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
umul_ppmm (h, l, l, h);
}
SPEED_MACRO_UMUL_PPMM_C;
}
#if HAVE_NATIVE_mpn_umul_ppmm
double
speed_mpn_umul_ppmm (struct speed_params *s)
{
SPEED_MACRO_UMUL_PPMM_A;
{
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[0]; l ^= s->yp_block[0];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[1]; l ^= s->yp_block[1];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[2]; l ^= s->yp_block[2];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[3]; l ^= s->yp_block[3];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[4]; l ^= s->yp_block[4];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[5]; l ^= s->yp_block[5];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[6]; l ^= s->yp_block[6];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[7]; l ^= s->yp_block[7];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[8]; l ^= s->yp_block[8];
h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[9]; l ^= s->yp_block[9];
}
SPEED_MACRO_UMUL_PPMM_B;
{
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
h = mpn_umul_ppmm (&l, h, l);
}
SPEED_MACRO_UMUL_PPMM_C;
}
#endif
#if HAVE_NATIVE_mpn_umul_ppmm_r
double
speed_mpn_umul_ppmm_r (struct speed_params *s)
{
SPEED_MACRO_UMUL_PPMM_A;
{
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[0]; l ^= s->yp_block[0];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[1]; l ^= s->yp_block[1];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[2]; l ^= s->yp_block[2];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[3]; l ^= s->yp_block[3];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[4]; l ^= s->yp_block[4];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[5]; l ^= s->yp_block[5];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[6]; l ^= s->yp_block[6];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[7]; l ^= s->yp_block[7];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[8]; l ^= s->yp_block[8];
h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[9]; l ^= s->yp_block[9];
}
SPEED_MACRO_UMUL_PPMM_B;
{
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
h = mpn_umul_ppmm_r (h, l, &l);
}
SPEED_MACRO_UMUL_PPMM_C;
}
#endif
/* The divisions are successively dependent so latency is measured, not
issue rate. There's only 10 per loop so the code doesn't get too big,
especially for udiv_qrnnd_preinv and preinv2norm, which are several
instructions each.
Note that it's only the division which is measured here, there's no data
fetching and no shifting if the divisor gets normalized.
In speed_udiv_qrnnd with gcc 2.95.2 on x86 the parameters "q,r,r,q,d"
generate x86 div instructions with nothing in between.
The measuring function macros are in two parts to avoid overflowing
preprocessor expansion space if udiv_qrnnd etc are big.
Limitations:
Don't blindly use this to set UDIV_TIME in gmp-mparam.h, check the code
generated first.
CPUs with data-dependent divisions may want more attention paid to the
randomness of the data used. Probably the measurement wanted is over
uniformly distributed numbers, but what's here might not be giving that. */
#define SPEED_ROUTINE_UDIV_QRNND_A(normalize) \
{ \
double t; \
unsigned i; \
mp_limb_t q, r, d; \
mp_limb_t dinv; \
\
s->time_divisor = 10; \
\
/* divisor from "r" parameter, or a default */ \
d = s->r; \
if (d == 0) \
d = __mp_bases[10].big_base; \
\
if (normalize) \
{ \
unsigned norm; \
count_leading_zeros (norm, d); \
d <<= norm; \
invert_limb (dinv, d); \
} \
\
q = s->xp[0]; \
r = s->yp[0] % d; \
\
speed_starttime (); \
i = s->reps; \
do \
{
#define SPEED_ROUTINE_UDIV_QRNND_B \
} \
while (--i != 0); \
t = speed_endtime (); \
\
/* stop the compiler optimizing away the whole calculation! */ \
noop_1 (q); \
noop_1 (r); \
\
return t; \
}
double
speed_udiv_qrnnd (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (UDIV_NEEDS_NORMALIZATION);
{
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
udiv_qrnnd (q, r, r, q, d);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
double
speed_udiv_qrnnd_preinv1 (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (1);
{
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv1 (q, r, r, q, d, dinv);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
double
speed_udiv_qrnnd_preinv2 (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (1);
{
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
udiv_qrnnd_preinv2 (q, r, r, q, d, dinv);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
double
speed_udiv_qrnnd_c (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (1);
{
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
__udiv_qrnnd_c (q, r, r, q, d);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
#if HAVE_NATIVE_mpn_udiv_qrnnd
double
speed_mpn_udiv_qrnnd (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (1);
{
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
q = mpn_udiv_qrnnd (&r, r, q, d);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
#endif
#if HAVE_NATIVE_mpn_udiv_qrnnd_r
double
speed_mpn_udiv_qrnnd_r (struct speed_params *s)
{
SPEED_ROUTINE_UDIV_QRNND_A (1);
{
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
q = mpn_udiv_qrnnd_r (r, q, d, &r);
}
SPEED_ROUTINE_UDIV_QRNND_B;
}
#endif
double
speed_invert_limb (struct speed_params *s)
{
SPEED_ROUTINE_INVERT_LIMB_CALL (invert_limb (dinv, d));
}
/* xp[0] might not be particularly random, but should give an indication how
"/" runs. Same for speed_operator_mod below. */
double
speed_operator_div (struct speed_params *s)
{
double t;
unsigned i;
mp_limb_t x, q, d;
s->time_divisor = 10;
/* divisor from "r" parameter, or a default */
d = s->r;
if (d == 0)
d = __mp_bases[10].big_base;
x = s->xp[0];
q = 0;
speed_starttime ();
i = s->reps;
do
{
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
q ^= x; q /= d;
}
while (--i != 0);
t = speed_endtime ();
/* stop the compiler optimizing away the whole calculation! */
noop_1 (q);
return t;
}
double
speed_operator_mod (struct speed_params *s)
{
double t;
unsigned i;
mp_limb_t x, r, d;
s->time_divisor = 10;
/* divisor from "r" parameter, or a default */
d = s->r;
if (d == 0)
d = __mp_bases[10].big_base;
x = s->xp[0];
r = 0;
speed_starttime ();
i = s->reps;
do
{
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
r ^= x; r %= d;
}
while (--i != 0);
t = speed_endtime ();
/* stop the compiler optimizing away the whole calculation! */
noop_1 (r);
return t;
}
/* r==0 measures on data with the values uniformly distributed. This will
be typical for count_trailing_zeros in a GCD etc.
r==1 measures on data with the resultant count uniformly distributed
between 0 and BITS_PER_MP_LIMB-1. This is probably sensible for
count_leading_zeros on the high limbs of divisors. */
int
speed_routine_count_zeros_setup (struct speed_params *s,
mp_ptr xp, int leading, int zero)
{
int i, c;
mp_limb_t n;
if (s->r == 0)
{
/* Make uniformly distributed data. If zero isn't allowed then change
it to 1 for leading, or 0x800..00 for trailing. */
MPN_COPY (xp, s->xp_block, SPEED_BLOCK_SIZE);
if (! zero)
for (i = 0; i < SPEED_BLOCK_SIZE; i++)
if (xp[i] == 0)
xp[i] = leading ? 1 : GMP_LIMB_HIGHBIT;
}
else if (s->r == 1)
{
/* Make counts uniformly distributed. A randomly chosen bit is set, and
for leading the rest above it are cleared, or for trailing then the
rest below. */
for (i = 0; i < SPEED_BLOCK_SIZE; i++)
{
mp_limb_t set = CNST_LIMB(1) << (s->yp_block[i] % BITS_PER_MP_LIMB);
mp_limb_t keep_below = set-1;
mp_limb_t keep_above = MP_LIMB_T_MAX ^ keep_below;
mp_limb_t keep = (leading ? keep_below : keep_above);
xp[i] = (s->xp_block[i] & keep) | set;
}
}
else
{
return 0;
}
/* Account for the effect of n^=c. */
c = 0;
for (i = 0; i < SPEED_BLOCK_SIZE; i++)
{
n = xp[i];
xp[i] ^= c;
if (leading)
count_leading_zeros (c, n);
else
count_trailing_zeros (c, n);
}
return 1;
}
double
speed_count_leading_zeros (struct speed_params *s)
{
#ifdef COUNT_LEADING_ZEROS_0
#define COUNT_LEADING_ZEROS_0_ALLOWED 1
#else
#define COUNT_LEADING_ZEROS_0_ALLOWED 0
#endif
SPEED_ROUTINE_COUNT_ZEROS_A (1, COUNT_LEADING_ZEROS_0_ALLOWED);
count_leading_zeros (c, n);
SPEED_ROUTINE_COUNT_ZEROS_B ();
}
double
speed_count_trailing_zeros (struct speed_params *s)
{
SPEED_ROUTINE_COUNT_ZEROS_A (0, 0);
count_trailing_zeros (c, n);
SPEED_ROUTINE_COUNT_ZEROS_B ();
}
double
speed_mpn_get_str (struct speed_params *s)
{
SPEED_ROUTINE_MPN_GET_STR (mpn_get_str);
}
double
speed_mpn_set_str (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SET_STR (mpn_set_str);
}
double
speed_mpn_set_str_basecase (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SET_STR (mpn_set_str_basecase);
}
double
speed_mpn_set_str_subquad (struct speed_params *s)
{
SPEED_ROUTINE_MPN_SET_STR (mpn_set_str_subquad);
}
double
speed_MPN_ZERO (struct speed_params *s)
{
SPEED_ROUTINE_MPN_ZERO_CALL (MPN_ZERO (wp, s->size));
}
int
speed_randinit (struct speed_params *s, gmp_randstate_ptr rstate)
{
if (s->r == 0)
gmp_randinit_default (rstate);
else if (s->r == 1)
gmp_randinit_mt (rstate);
else
{
return gmp_randinit_lc_2exp_size (rstate, s->r);
}
return 1;
}
double
speed_gmp_randseed (struct speed_params *s)
{
gmp_randstate_t rstate;
unsigned i;
double t;
mpz_t x;
SPEED_RESTRICT_COND (s->size >= 1);
SPEED_RESTRICT_COND (speed_randinit (s, rstate));
/* s->size bits of seed */
mpz_init_set_n (x, s->xp, s->size);
mpz_fdiv_r_2exp (x, x, (unsigned long) s->size);
/* cache priming */
gmp_randseed (rstate, x);
speed_starttime ();
i = s->reps;
do
gmp_randseed (rstate, x);
while (--i != 0);
t = speed_endtime ();
gmp_randclear (rstate);
mpz_clear (x);
return t;
}
double
speed_gmp_randseed_ui (struct speed_params *s)
{
gmp_randstate_t rstate;
unsigned i, j;
double t;
SPEED_RESTRICT_COND (speed_randinit (s, rstate));
/* cache priming */
gmp_randseed_ui (rstate, 123L);
speed_starttime ();
i = s->reps;
j = 0;
do
{
gmp_randseed_ui (rstate, (unsigned long) s->xp_block[j]);
j++;
if (j >= SPEED_BLOCK_SIZE)
j = 0;
}
while (--i != 0);
t = speed_endtime ();
gmp_randclear (rstate);
return t;
}
double
speed_mpz_urandomb (struct speed_params *s)
{
gmp_randstate_t rstate;
mpz_t z;
unsigned i;
double t;
SPEED_RESTRICT_COND (s->size >= 0);
SPEED_RESTRICT_COND (speed_randinit (s, rstate));
mpz_init (z);
/* cache priming */
mpz_urandomb (z, rstate, (unsigned long) s->size);
mpz_urandomb (z, rstate, (unsigned long) s->size);
speed_starttime ();
i = s->reps;
do
mpz_urandomb (z, rstate, (unsigned long) s->size);
while (--i != 0);
t = speed_endtime ();
mpz_clear (z);
gmp_randclear (rstate);
return t;
}