mpir/mpn/x86/k6/sqr_basecase.asm
2008-04-17 21:03:07 +00:00

672 lines
14 KiB
NASM

dnl AMD K6 mpn_sqr_basecase -- square an mpn number.
dnl Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
dnl
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or
dnl modify it under the terms of the GNU Lesser General Public License as
dnl published by the Free Software Foundation; either version 2.1 of the
dnl License, or (at your option) any later version.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful,
dnl but WITHOUT ANY WARRANTY; without even the implied warranty of
dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
dnl Lesser General Public License for more details.
dnl
dnl You should have received a copy of the GNU Lesser General Public
dnl License along with the GNU MP Library; see the file COPYING.LIB. If
dnl not, write to the Free Software Foundation, Inc., 51 Franklin Street,
dnl Fifth Floor, Boston, MA 02110-1301, USA.
include(`../config.m4')
C K6: approx 4.7 cycles per cross product, or 9.2 cycles per triangular
C product (measured on the speed difference between 17 and 33 limbs,
C which is roughly the Karatsuba recursing range).
dnl SQR_KARATSUBA_THRESHOLD_MAX is the maximum SQR_KARATSUBA_THRESHOLD this
dnl code supports. This value is used only by the tune program to know
dnl what it can go up to. (An attempt to compile with a bigger value will
dnl trigger some m4_assert()s in the code, making the build fail.)
dnl
dnl The value is determined by requiring the displacements in the unrolled
dnl addmul to fit in single bytes. This means a maximum UNROLL_COUNT of
dnl 63, giving a maximum SQR_KARATSUBA_THRESHOLD of 66.
deflit(SQR_KARATSUBA_THRESHOLD_MAX, 66)
dnl Allow a value from the tune program to override config.m4.
ifdef(`SQR_KARATSUBA_THRESHOLD_OVERRIDE',
`define(`SQR_KARATSUBA_THRESHOLD',SQR_KARATSUBA_THRESHOLD_OVERRIDE)')
dnl UNROLL_COUNT is the number of code chunks in the unrolled addmul. The
dnl number required is determined by SQR_KARATSUBA_THRESHOLD, since
dnl mpn_sqr_basecase only needs to handle sizes < SQR_KARATSUBA_THRESHOLD.
dnl
dnl The first addmul is the biggest, and this takes the second least
dnl significant limb and multiplies it by the third least significant and
dnl up. Hence for a maximum operand size of SQR_KARATSUBA_THRESHOLD-1
dnl limbs, UNROLL_COUNT needs to be SQR_KARATSUBA_THRESHOLD-3.
m4_config_gmp_mparam(`SQR_KARATSUBA_THRESHOLD')
deflit(UNROLL_COUNT, eval(SQR_KARATSUBA_THRESHOLD-3))
C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size);
C
C The algorithm is essentially the same as mpn/generic/sqr_basecase.c, but a
C lot of function call overheads are avoided, especially when the given size
C is small.
C
C The code size might look a bit excessive, but not all of it is executed
C and so won't fill up the code cache. The 1x1, 2x2 and 3x3 special cases
C clearly apply only to those sizes; mid sizes like 10x10 only need part of
C the unrolled addmul; and big sizes like 35x35 that do need all of it will
C at least be getting value for money, because 35x35 spends something like
C 5780 cycles here.
C
C Different values of UNROLL_COUNT give slightly different speeds, between
C 9.0 and 9.2 c/tri-prod measured on the difference between 17 and 33 limbs.
C This isn't a big difference, but it's presumably some alignment effect
C which if understood could give a simple speedup.
defframe(PARAM_SIZE,12)
defframe(PARAM_SRC, 8)
defframe(PARAM_DST, 4)
TEXT
ALIGN(32)
PROLOGUE(mpn_sqr_basecase)
deflit(`FRAME',0)
movl PARAM_SIZE, %ecx
movl PARAM_SRC, %eax
cmpl $2, %ecx
je L(two_limbs)
movl PARAM_DST, %edx
ja L(three_or_more)
C -----------------------------------------------------------------------------
C one limb only
C eax src
C ebx
C ecx size
C edx dst
movl (%eax), %eax
movl %edx, %ecx
mull %eax
movl %eax, (%ecx)
movl %edx, 4(%ecx)
ret
C -----------------------------------------------------------------------------
ALIGN(16)
L(two_limbs):
C eax src
C ebx
C ecx size
C edx dst
pushl %ebx
movl %eax, %ebx C src
deflit(`FRAME',4)
movl (%ebx), %eax
movl PARAM_DST, %ecx
mull %eax C src[0]^2
movl %eax, (%ecx)
movl 4(%ebx), %eax
movl %edx, 4(%ecx)
mull %eax C src[1]^2
movl %eax, 8(%ecx)
movl (%ebx), %eax
movl %edx, 12(%ecx)
movl 4(%ebx), %edx
mull %edx C src[0]*src[1]
addl %eax, 4(%ecx)
adcl %edx, 8(%ecx)
adcl $0, 12(%ecx)
popl %ebx
addl %eax, 4(%ecx)
adcl %edx, 8(%ecx)
adcl $0, 12(%ecx)
ret
C -----------------------------------------------------------------------------
L(three_or_more):
deflit(`FRAME',0)
cmpl $4, %ecx
jae L(four_or_more)
C -----------------------------------------------------------------------------
C three limbs
C eax src
C ecx size
C edx dst
pushl %ebx
movl %eax, %ebx C src
movl (%ebx), %eax
movl %edx, %ecx C dst
mull %eax C src[0] ^ 2
movl %eax, (%ecx)
movl 4(%ebx), %eax
movl %edx, 4(%ecx)
pushl %esi
mull %eax C src[1] ^ 2
movl %eax, 8(%ecx)
movl 8(%ebx), %eax
movl %edx, 12(%ecx)
pushl %edi
mull %eax C src[2] ^ 2
movl %eax, 16(%ecx)
movl (%ebx), %eax
movl %edx, 20(%ecx)
movl 4(%ebx), %edx
mull %edx C src[0] * src[1]
movl %eax, %esi
movl (%ebx), %eax
movl %edx, %edi
movl 8(%ebx), %edx
pushl %ebp
xorl %ebp, %ebp
mull %edx C src[0] * src[2]
addl %eax, %edi
movl 4(%ebx), %eax
adcl %edx, %ebp
movl 8(%ebx), %edx
mull %edx C src[1] * src[2]
addl %eax, %ebp
adcl $0, %edx
C eax will be dst[5]
C ebx
C ecx dst
C edx dst[4]
C esi dst[1]
C edi dst[2]
C ebp dst[3]
xorl %eax, %eax
addl %esi, %esi
adcl %edi, %edi
adcl %ebp, %ebp
adcl %edx, %edx
adcl $0, %eax
addl %esi, 4(%ecx)
adcl %edi, 8(%ecx)
adcl %ebp, 12(%ecx)
popl %ebp
popl %edi
adcl %edx, 16(%ecx)
popl %esi
popl %ebx
adcl %eax, 20(%ecx)
ASSERT(nc)
ret
C -----------------------------------------------------------------------------
defframe(SAVE_EBX, -4)
defframe(SAVE_ESI, -8)
defframe(SAVE_EDI, -12)
defframe(SAVE_EBP, -16)
defframe(VAR_COUNTER,-20)
defframe(VAR_JMP, -24)
deflit(STACK_SPACE, 24)
ALIGN(16)
L(four_or_more):
C eax src
C ebx
C ecx size
C edx dst
C esi
C edi
C ebp
C First multiply src[0]*src[1..size-1] and store at dst[1..size].
C
C A test was done calling mpn_mul_1 here to get the benefit of its unrolled
C loop, but this was only a tiny speedup; at 35 limbs it took 24 cycles off
C a 5780 cycle operation, which is not surprising since the loop here is 8
C c/l and mpn_mul_1 is 6.25 c/l.
subl $STACK_SPACE, %esp deflit(`FRAME',STACK_SPACE)
movl %edi, SAVE_EDI
leal 4(%edx), %edi
movl %ebx, SAVE_EBX
leal 4(%eax), %ebx
movl %esi, SAVE_ESI
xorl %esi, %esi
movl %ebp, SAVE_EBP
C eax
C ebx src+4
C ecx size
C edx
C esi
C edi dst+4
C ebp
movl (%eax), %ebp C multiplier
leal -1(%ecx), %ecx C size-1, and pad to a 16 byte boundary
ALIGN(16)
L(mul_1):
C eax scratch
C ebx src ptr
C ecx counter
C edx scratch
C esi carry
C edi dst ptr
C ebp multiplier
movl (%ebx), %eax
addl $4, %ebx
mull %ebp
addl %esi, %eax
movl $0, %esi
adcl %edx, %esi
movl %eax, (%edi)
addl $4, %edi
loop L(mul_1)
C Addmul src[n]*src[n+1..size-1] at dst[2*n-1...], for each n=1..size-2.
C
C The last two addmuls, which are the bottom right corner of the product
C triangle, are left to the end. These are src[size-3]*src[size-2,size-1]
C and src[size-2]*src[size-1]. If size is 4 then it's only these corner
C cases that need to be done.
C
C The unrolled code is the same as mpn_addmul_1(), see that routine for some
C comments.
C
C VAR_COUNTER is the outer loop, running from -(size-4) to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled code, stepped by one code
C chunk each outer loop.
C
C K6 doesn't do any branch prediction on indirect jumps, which is good
C actually because it's a different target each time. The unrolled addmul
C is about 3 cycles/limb faster than a simple loop, so the 6 cycle cost of
C the indirect jump is quickly recovered.
dnl This value is also implicitly encoded in a shift and add.
dnl
deflit(CODE_BYTES_PER_LIMB, 15)
dnl With the unmodified &src[size] and &dst[size] pointers, the
dnl displacements in the unrolled code fit in a byte for UNROLL_COUNT
dnl values up to 31. Above that an offset must be added to them.
dnl
deflit(OFFSET,
ifelse(eval(UNROLL_COUNT>31),1,
eval((UNROLL_COUNT-31)*4),
0))
C eax
C ebx &src[size]
C ecx
C edx
C esi carry
C edi &dst[size]
C ebp
movl PARAM_SIZE, %ecx
movl %esi, (%edi)
subl $4, %ecx
jz L(corner)
movl %ecx, %edx
ifelse(OFFSET,0,,
` subl $OFFSET, %ebx')
shll $4, %ecx
ifelse(OFFSET,0,,
` subl $OFFSET, %edi')
negl %ecx
ifdef(`PIC',`
call L(pic_calc)
L(here):
',`
leal L(unroll_inner_end)-eval(2*CODE_BYTES_PER_LIMB)(%ecx,%edx), %ecx
')
negl %edx
C The calculated jump mustn't be before the start of the available
C code. This is the limitation UNROLL_COUNT puts on the src operand
C size, but checked here using the jump address directly.
C
ASSERT(ae,`
movl_text_address( L(unroll_inner_start), %eax)
cmpl %eax, %ecx
')
C -----------------------------------------------------------------------------
ALIGN(16)
L(unroll_outer_top):
C eax
C ebx &src[size], constant
C ecx VAR_JMP
C edx VAR_COUNTER, limbs, negative
C esi high limb to store
C edi dst ptr, high of last addmul
C ebp
movl -12+OFFSET(%ebx,%edx,4), %ebp C multiplier
movl %edx, VAR_COUNTER
movl -8+OFFSET(%ebx,%edx,4), %eax C first limb of multiplicand
mull %ebp
testb $1, %cl
movl %edx, %esi C high carry
movl %ecx, %edx C jump
movl %eax, %ecx C low carry
leal CODE_BYTES_PER_LIMB(%edx), %edx
movl %edx, VAR_JMP
leal 4(%edi), %edi
C A branch-free version of this using some xors was found to be a
C touch slower than just a conditional jump, despite the jump
C switching between taken and not taken on every loop.
ifelse(eval(UNROLL_COUNT%2),0,
jz,jnz) L(unroll_noswap)
movl %esi, %eax C high,low carry other way around
movl %ecx, %esi
movl %eax, %ecx
L(unroll_noswap):
jmp *%edx
C Must be on an even address here so the low bit of the jump address
C will indicate which way around ecx/esi should start.
C
C An attempt was made at padding here to get the end of the unrolled
C code to come out on a good alignment, to save padding before
C L(corner). This worked, but turned out to run slower than just an
C ALIGN(2). The reason for this is not clear, it might be related
C to the different speeds on different UNROLL_COUNTs noted above.
ALIGN(2)
L(unroll_inner_start):
C eax scratch
C ebx src
C ecx carry low
C edx scratch
C esi carry high
C edi dst
C ebp multiplier
C
C 15 code bytes each limb
C ecx/esi swapped on each chunk
forloop(`i', UNROLL_COUNT, 1, `
deflit(`disp_src', eval(-i*4 + OFFSET))
deflit(`disp_dst', eval(disp_src - 4))
m4_assert(`disp_src>=-128 && disp_src<128')
m4_assert(`disp_dst>=-128 && disp_dst<128')
ifelse(eval(i%2),0,`
Zdisp( movl, disp_src,(%ebx), %eax)
mull %ebp
Zdisp( addl, %esi, disp_dst,(%edi))
adcl %eax, %ecx
movl %edx, %esi
jadcl0( %esi)
',`
dnl this one comes out last
Zdisp( movl, disp_src,(%ebx), %eax)
mull %ebp
Zdisp( addl, %ecx, disp_dst,(%edi))
adcl %eax, %esi
movl %edx, %ecx
jadcl0( %ecx)
')
')
L(unroll_inner_end):
addl %esi, -4+OFFSET(%edi)
movl VAR_COUNTER, %edx
jadcl0( %ecx)
movl %ecx, m4_empty_if_zero(OFFSET)(%edi)
movl VAR_JMP, %ecx
incl %edx
jnz L(unroll_outer_top)
ifelse(OFFSET,0,,`
addl $OFFSET, %ebx
addl $OFFSET, %edi
')
C -----------------------------------------------------------------------------
ALIGN(16)
L(corner):
C ebx &src[size]
C edi &dst[2*size-5]
movl -12(%ebx), %ebp
movl -8(%ebx), %eax
movl %eax, %ecx
mull %ebp
addl %eax, -4(%edi)
adcl $0, %edx
movl -4(%ebx), %eax
movl %edx, %esi
movl %eax, %ebx
mull %ebp
addl %esi, %eax
adcl $0, %edx
addl %eax, (%edi)
adcl $0, %edx
movl %edx, %esi
movl %ebx, %eax
mull %ecx
addl %esi, %eax
movl %eax, 4(%edi)
adcl $0, %edx
movl %edx, 8(%edi)
C -----------------------------------------------------------------------------
C Left shift of dst[1..2*size-2], the bit shifted out becomes dst[2*size-1].
C The loop measures about 6 cycles/iteration, though it looks like it should
C decode in 5.
L(lshift_start):
movl PARAM_SIZE, %ecx
movl PARAM_DST, %edi
subl $1, %ecx C size-1 and clear carry
movl PARAM_SRC, %ebx
movl %ecx, %edx
xorl %eax, %eax C ready for adcl
ALIGN(16)
L(lshift):
C eax
C ebx src (for later use)
C ecx counter, decrementing
C edx size-1 (for later use)
C esi
C edi dst, incrementing
C ebp
rcll 4(%edi)
rcll 8(%edi)
leal 8(%edi), %edi
loop L(lshift)
adcl %eax, %eax
movl %eax, 4(%edi) C dst most significant limb
movl (%ebx), %eax C src[0]
leal 4(%ebx,%edx,4), %ebx C &src[size]
subl %edx, %ecx C -(size-1)
C -----------------------------------------------------------------------------
C Now add in the squares on the diagonal, src[0]^2, src[1]^2, ...,
C src[size-1]^2. dst[0] hasn't yet been set at all yet, and just gets the
C low limb of src[0]^2.
mull %eax
movl %eax, (%edi,%ecx,8) C dst[0]
ALIGN(16)
L(diag):
C eax scratch
C ebx &src[size]
C ecx counter, negative
C edx carry
C esi scratch
C edi dst[2*size-2]
C ebp
movl (%ebx,%ecx,4), %eax
movl %edx, %esi
mull %eax
addl %esi, 4(%edi,%ecx,8)
adcl %eax, 8(%edi,%ecx,8)
adcl $0, %edx
incl %ecx
jnz L(diag)
movl SAVE_EBX, %ebx
movl SAVE_ESI, %esi
addl %edx, 4(%edi) C dst most significant limb
movl SAVE_EDI, %edi
movl SAVE_EBP, %ebp
addl $FRAME, %esp
ret
C -----------------------------------------------------------------------------
ifdef(`PIC',`
L(pic_calc):
C See mpn/x86/README about old gas bugs
addl (%esp), %ecx
addl $L(unroll_inner_end)-L(here)-eval(2*CODE_BYTES_PER_LIMB), %ecx
addl %edx, %ecx
ret_internal
')
EPILOGUE()