210 lines
5.1 KiB
C
210 lines
5.1 KiB
C
/* mpn_gcdext -- Extended Greatest Common Divisor.
|
|
|
|
Copyright 1996, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009 Free Software
|
|
Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
|
|
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
/* Temporary storage: 3*(n+1) for u. n+1 for the matrix-vector
|
|
multiplications (if hgcd2 succeeds). If hgcd fails, n+1 limbs are
|
|
needed for the division, with most n for the quotient, and n+1 for
|
|
the product q u0. In all, 4n + 3. */
|
|
|
|
mp_size_t
|
|
mpn_gcdext_lehmer_n (mp_ptr gp, mp_ptr up, mp_size_t *usize,
|
|
mp_ptr ap, mp_ptr bp, mp_size_t n,
|
|
mp_ptr tp)
|
|
{
|
|
mp_size_t ualloc = n + 1;
|
|
|
|
/* Keeps track of the second row of the reduction matrix
|
|
*
|
|
* M = (v0, v1 ; u0, u1)
|
|
*
|
|
* which correspond to the first column of the inverse
|
|
*
|
|
* M^{-1} = (u1, -v1; -u0, v0)
|
|
*/
|
|
|
|
mp_size_t un;
|
|
mp_ptr u0;
|
|
mp_ptr u1;
|
|
mp_ptr u2;
|
|
|
|
MPN_ZERO (tp, 3*ualloc);
|
|
u0 = tp; tp += ualloc;
|
|
u1 = tp; tp += ualloc;
|
|
u2 = tp; tp += ualloc;
|
|
|
|
u1[0] = 1; un = 1;
|
|
|
|
/* FIXME: Handle n == 2 differently, after the loop? */
|
|
while (n >= 2)
|
|
{
|
|
struct hgcd_matrix1 M;
|
|
mp_limb_t ah, al, bh, bl;
|
|
mp_limb_t mask;
|
|
|
|
mask = ap[n-1] | bp[n-1];
|
|
ASSERT (mask > 0);
|
|
|
|
if (mask & GMP_NUMB_HIGHBIT)
|
|
{
|
|
ah = ap[n-1]; al = ap[n-2];
|
|
bh = bp[n-1]; bl = bp[n-2];
|
|
}
|
|
else if (n == 2)
|
|
{
|
|
/* We use the full inputs without truncation, so we can
|
|
safely shift left. */
|
|
int shift;
|
|
|
|
count_leading_zeros (shift, mask);
|
|
ah = MPN_EXTRACT_NUMB (shift, ap[1], ap[0]);
|
|
al = ap[0] << shift;
|
|
bh = MPN_EXTRACT_NUMB (shift, bp[1], bp[0]);
|
|
bl = bp[0] << shift;
|
|
}
|
|
else
|
|
{
|
|
int shift;
|
|
|
|
count_leading_zeros (shift, mask);
|
|
ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);
|
|
al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);
|
|
bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);
|
|
bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);
|
|
}
|
|
|
|
/* Try an mpn_nhgcd2 step */
|
|
if (mpn_hgcd2 (ah, al, bh, bl, &M))
|
|
{
|
|
n = mpn_hgcd_mul_matrix1_inverse_vector (&M, tp, ap, bp, n);
|
|
MP_PTR_SWAP (ap, tp);
|
|
un = mpn_hgcd_mul_matrix1_vector(&M, u2, u0, u1, un);
|
|
MP_PTR_SWAP (u0, u2);
|
|
}
|
|
else
|
|
{
|
|
/* mpn_hgcd2 has failed. Then either one of a or b is very
|
|
small, or the difference is very small. Perform one
|
|
subtraction followed by one division. */
|
|
mp_size_t gn;
|
|
mp_size_t updated_un = un;
|
|
|
|
/* Temporary storage n for the quotient and ualloc for the
|
|
new cofactor. */
|
|
n = mpn_gcdext_subdiv_step (gp, &gn, up, usize, ap, bp, n,
|
|
u0, u1, &updated_un, tp, u2);
|
|
if (n == 0)
|
|
return gn;
|
|
|
|
un = updated_un;
|
|
}
|
|
}
|
|
ASSERT_ALWAYS (ap[0] > 0);
|
|
ASSERT_ALWAYS (bp[0] > 0);
|
|
|
|
if (ap[0] == bp[0])
|
|
{
|
|
int c;
|
|
|
|
/* Which cofactor to return now? Candidates are +u1 and -u0,
|
|
depending on which of a and b was most recently reduced,
|
|
which we don't keep track of. So compare and get the smallest
|
|
one. */
|
|
|
|
gp[0] = ap[0];
|
|
|
|
MPN_CMP (c, u0, u1, un);
|
|
ASSERT (c != 0 || (un == 1 && u0[0] == 1 && u1[0] == 1));
|
|
if (c < 0)
|
|
{
|
|
MPN_NORMALIZE (u0, un);
|
|
MPN_COPY (up, u0, un);
|
|
*usize = -un;
|
|
}
|
|
else
|
|
{
|
|
MPN_NORMALIZE_NOT_ZERO (u1, un);
|
|
MPN_COPY (up, u1, un);
|
|
*usize = un;
|
|
}
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
mp_limb_t uh, vh;
|
|
mp_limb_signed_t u;
|
|
mp_limb_signed_t v;
|
|
int negate;
|
|
|
|
gp[0] = mpn_gcdext_1 (&u, &v, ap[0], bp[0]);
|
|
|
|
/* Set up = u u1 - v u0. Keep track of size, un grows by one or
|
|
two limbs. */
|
|
|
|
if (u == 0)
|
|
{
|
|
ASSERT (v == 1);
|
|
MPN_NORMALIZE (u0, un);
|
|
MPN_COPY (up, u0, un);
|
|
*usize = -un;
|
|
return 1;
|
|
}
|
|
else if (v == 0)
|
|
{
|
|
ASSERT (u == 1);
|
|
MPN_NORMALIZE (u1, un);
|
|
MPN_COPY (up, u1, un);
|
|
*usize = un;
|
|
return 1;
|
|
}
|
|
else if (u > 0)
|
|
{
|
|
negate = 0;
|
|
ASSERT (v < 0);
|
|
v = -v;
|
|
}
|
|
else
|
|
{
|
|
negate = 1;
|
|
ASSERT (v > 0);
|
|
u = -u;
|
|
}
|
|
|
|
uh = mpn_mul_1 (up, u1, un, u);
|
|
vh = mpn_addmul_1 (up, u0, un, v);
|
|
|
|
if ( (uh | vh) > 0)
|
|
{
|
|
uh += vh;
|
|
up[un++] = uh;
|
|
if (uh < vh)
|
|
up[un++] = 1;
|
|
}
|
|
|
|
MPN_NORMALIZE_NOT_ZERO (up, un);
|
|
|
|
*usize = negate ? -un : un;
|
|
return 1;
|
|
}
|
|
}
|