189 lines
5.5 KiB
C
189 lines
5.5 KiB
C
/* mpn_divexact_by3c exact division by 3.
|
|
|
|
Copyright 2009 Jason Moxham
|
|
|
|
This file is part of the MPIR Library.
|
|
|
|
The MPIR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or (at
|
|
your option) any later version.
|
|
|
|
The MPIR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the MPIR Library; see the file COPYING.LIB. If not, write
|
|
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
mp_limb_t mpn_divexact_by3c(mp_ptr qp,mp_srcptr xp,mp_size_t n,mp_limb_t ci)
|
|
{mp_size_t j;mp_limb_t c,m,acc,ax,dx;
|
|
|
|
ASSERT(n>0);
|
|
ASSERT_MPN(xp,n);
|
|
ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
m=0;m=~m;m=m/3;// m=(B-1)/3
|
|
acc=ci*m;
|
|
for(j=0;j<=n-1;j++)
|
|
{umul_ppmm(dx,ax,xp[j],m);
|
|
SUBC_LIMB(c,acc,acc,ax);
|
|
qp[j]=acc;
|
|
acc-=dx+c;}
|
|
// return next quotient*-3
|
|
return acc*-3;} // so (xp,n) = (qp,n)*3 -ret*B^n and 0 <= ret < 3
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
#define ADD ADDC_LIMB
|
|
#define SUB SUBC_LIMB
|
|
|
|
#define ADC(co,w,x,y,ci) do{mp_limb_t c1,c2,t;ADD(c1,t,x,y);ADD(c2,w,t,ci);co=c1|c2;}while(0)
|
|
#define SBB(co,w,x,y,ci) do{mp_limb_t c1,c2,t;SUB(c1,t,x,y);SUB(c2,w,t,ci);co=c1|c2;}while(0)
|
|
|
|
// basic divexact
|
|
mp_limb_t divexact_basic(mp_ptr qp,mp_ptr xp,mp_size_t n,mp_limb_t d)
|
|
{int j;mp_limb_t c,h,q,dummy,h1,t,m;
|
|
|
|
ASSERT(n>0);ASSERT(d!=0);ASSERT_MPN(xp,n);ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
ASSERT(d%2==1);modlimb_invert(m,d);
|
|
c=0;h=0;t=0;
|
|
for(j=0;j<=n-1;j++)
|
|
{h1=xp[j];
|
|
t=h+c;if(t>h1){h1=h1-t;c=1;}else{h1=h1-t;c=0;}// set borrow to c ; sbb t,h1 ; set c to borrow
|
|
q=h1*m;
|
|
qp[j]=q;
|
|
umul_ppmm(h,dummy,q,d);
|
|
ASSERT(dummy==h1);}
|
|
// ie returns next quotient*-d
|
|
return h+c;} // so (xp,n) = (qp,n)*d -ret*B^n and 0 <= ret < d
|
|
|
|
/*
|
|
A divexact by 3 can be obtained via X * ((B-1)/3) / (B-1)
|
|
The advantage of this is that the multiplications are taken out of the dependant chain.
|
|
The exact division by B-1 can be done like mpn_divexact_byff and can be thought of as a
|
|
multi-limb subtraction but with an accumulator instead of a destination.
|
|
Combining the multiplication and exact division together we get the function below which
|
|
is the usual mpn_submul_1 but with an accumulator instead of a destination.
|
|
*/
|
|
|
|
|
|
mp_limb_t divexact_submul(mp_ptr qp,mp_ptr xp,mp_size_t n)
|
|
{int j;mp_limb_t c,m,t1,t2,t3,acc,ax,dx,t;
|
|
|
|
ASSERT(n>0);ASSERT_MPN(xp,n);ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
m=0;m=~m;m=m/3;// m=(B-1)/3
|
|
c=0;t1=t2=t3=acc=0;
|
|
umul_ppmm(dx,ax,xp[0],m);
|
|
SUB(c,acc,0,t1);
|
|
ADC(c,t2,0,ax,c);
|
|
ADC(c,t3,0,dx,c);
|
|
ASSERT(c==0);
|
|
t1=t2;t2=t3;
|
|
for(j=1;j<=n-1;j++)
|
|
{
|
|
t3=0;
|
|
umul_ppmm(dx,ax,xp[j],m);
|
|
SUB(c,acc,acc,t1);
|
|
qp[j-1]=acc;
|
|
ADC(c,t2,t2,ax,c);
|
|
ADC(c,t3,t3,dx,c);
|
|
ASSERT(c==0);
|
|
t1=t2;t2=t3;
|
|
}
|
|
SUB(c,acc,acc,t1);
|
|
qp[n-1]=acc;
|
|
ADC(c,t2,t2,0,c);
|
|
t=(t2-acc)*3;
|
|
// return next quotient*-3
|
|
return t;} // so (xp,n) = (qp,n)*3 -ret*B^n and 0 <= ret < 3
|
|
|
|
|
|
/*
|
|
Looking at the above submul type function we can see that for each quotient limb we
|
|
subtract the high part of one mul and the low part of the next mul from the accumulator.
|
|
*/
|
|
|
|
mp_limb_t divexact3_direct(mp_ptr qp,mp_ptr xp,mp_size_t n)
|
|
{int j;mp_limb_t c,m,acc,ax,dx;
|
|
|
|
ASSERT(n>0);ASSERT_MPN(xp,n);ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
m=0;m=~m;m=m/3;// m=(B-1)/3
|
|
c=0;t1=t2=t3=acc=0;
|
|
for(j=0;j<=n-1;j++)
|
|
{
|
|
umul_ppmm(dx,ax,xp[j],m);
|
|
SBB(c,acc,acc,ax,c);
|
|
qp[j]=acc;
|
|
SBB(c,acc,acc,dx,c);
|
|
}
|
|
SBB(c,acc,acc,0,c);
|
|
// return next quotient*-3
|
|
return acc*-3;} // so (xp,n) = (qp,n)*3 -ret*B^n and 0 <= ret < 3
|
|
|
|
/*
|
|
Using supernatural powers we discover that the second carry is always zero
|
|
, ie like below , leading to the used algorithm
|
|
|
|
*/
|
|
|
|
mp_limb_t divexact3_byluck(mp_ptr qp,mp_ptr xp,mp_size_t n)
|
|
{int j;mp_limb_t c,m,acc,ax,dx;
|
|
|
|
ASSERT(n>0);ASSERT_MPN(xp,n);ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
m=0;m=~m;m=m/3;// m=(B-1)/3
|
|
c=0;acc=0;
|
|
for(j=0;j<=n-1;j++)
|
|
{
|
|
umul_ppmm(dx,ax,xp[j],m); // line 1
|
|
SUB(c,acc,acc,ax); // line 2
|
|
qp[j]=acc; // line 3
|
|
SBB(c,acc,acc,dx,c); // line 4
|
|
if(c!=0){printf("c not zero\n");abort();}
|
|
}
|
|
// return next quotient*-3
|
|
return acc*-3;} // so (xp,n) = (qp,n)*3 -ret*B^n and 0 <= ret < 3
|
|
|
|
/*
|
|
Not wanting to rely on the above comments , a proof below
|
|
|
|
*/
|
|
#endif
|
|
|
|
/*
|
|
|
|
Consider one iteration
|
|
|
|
let m=(B-1)/3
|
|
|
|
at line 1 acc=m*some_ret
|
|
|
|
write xp[j]=3*p+d with 0 < d <= 3 ie division but with remainder+1 and p<(B-1)/3=m
|
|
|
|
dx:ax = xp[j]*m = (3p+d)*(B-1)/3 = p(B-1)+d*(B-1)/3 = pB+(d(B-1)/3-p) so dx=p and ax=d(B-1)/3-p (*)
|
|
|
|
at line 2 we have two cases if (1) ax>acc or (2) ax<=acc
|
|
and we want to show that the carry at line 4 is zero , ie dx+c<=acc
|
|
so we get
|
|
case (1) show that dx+1<=acc-ax+B ie ax+dx <= B-1+acc
|
|
case (2) show that dx+0<=acc-ax ie ax+dx <= acc
|
|
|
|
from (*) ax+dx=d(B-1)/3 = d*m <= 3(B-1)/3=B-1
|
|
|
|
so case (1) is OK
|
|
|
|
case (2) says ax<=acc=m*r for some r : 0 <= r < 3
|
|
as ax+dx=m*d so r<=d
|
|
and as dx=p<m so d<r+1 therefore d=r so ax+dx=mr=acc<=acc
|
|
so case is OK
|
|
*/
|