70fc2bb3a0
mpir_fermat_to_mpz, random_fermat => mpir_random_fermat. Moved fft protos to gmp-impl.h.
335 lines
9.8 KiB
C
335 lines
9.8 KiB
C
/*
|
|
|
|
Copyright 2009, 2011 William Hart. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are
|
|
permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice, this list of
|
|
conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
of conditions and the following disclaimer in the documentation and/or other materials
|
|
provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY William Hart ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL William Hart OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
The views and conclusions contained in the software and documentation are those of the
|
|
authors and should not be interpreted as representing official policies, either expressed
|
|
or implied, of William Hart.
|
|
|
|
*/
|
|
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
|
|
void mpir_fft_butterfly_twiddle(mp_ptr u, mp_ptr v,
|
|
mp_ptr s, mp_ptr t, mp_size_t limbs, mp_bitcnt_t b1, mp_bitcnt_t b2)
|
|
{
|
|
mp_limb_t nw = limbs*GMP_LIMB_BITS;
|
|
mp_size_t x, y;
|
|
int negate1 = 0;
|
|
int negate2 = 0;
|
|
|
|
if (b1 >= nw)
|
|
{
|
|
negate2 = 1;
|
|
b1 -= nw;
|
|
}
|
|
x = b1/GMP_LIMB_BITS;
|
|
b1 = b1%GMP_LIMB_BITS;
|
|
|
|
if (b2 >= nw)
|
|
{
|
|
negate1 = 1;
|
|
b2 -= nw;
|
|
}
|
|
y = b2/GMP_LIMB_BITS;
|
|
b2 = b2%GMP_LIMB_BITS;
|
|
|
|
mpir_butterfly_lshB(u, v, s, t, limbs, x, y);
|
|
mpn_mul_2expmod_2expp1(u, u, limbs, b1);
|
|
if (negate2) mpn_neg_n(u, u, limbs + 1);
|
|
mpn_mul_2expmod_2expp1(v, v, limbs, b2);
|
|
if (negate1) mpn_neg_n(v, v, limbs + 1);
|
|
}
|
|
|
|
void mpir_fft_radix2_twiddle(mp_ptr * ii, mp_size_t is,
|
|
mp_size_t n, mp_bitcnt_t w, mp_ptr * t1, mp_ptr * t2,
|
|
mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t rs)
|
|
{
|
|
mp_size_t i;
|
|
mp_size_t limbs;
|
|
start:
|
|
limbs = (w*n)/GMP_LIMB_BITS;
|
|
|
|
if (n == 1)
|
|
{
|
|
mp_size_t tw1 = r*c;
|
|
mp_size_t tw2 = tw1 + rs*c;
|
|
|
|
mpir_fft_butterfly_twiddle(*t1, *t2, ii[0], ii[is], limbs, tw1*ws, tw2*ws);
|
|
MP_PTR_SWAP(ii[0], *t1);
|
|
MP_PTR_SWAP(ii[is], *t2);
|
|
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
mpir_fft_butterfly(*t1, *t2, ii[i*is], ii[(n+i)*is], i, limbs, w);
|
|
|
|
MP_PTR_SWAP(ii[i*is], *t1);
|
|
MP_PTR_SWAP(ii[(n+i)*is], *t2);
|
|
}
|
|
|
|
mpir_fft_radix2_twiddle(ii, is, n/2, 2*w, t1, t2, ws, r, c, 2*rs);
|
|
#if 0
|
|
ii += n * is;
|
|
n /= 2;
|
|
w += w;
|
|
r += rs;
|
|
rs += rs;
|
|
goto start;
|
|
#else
|
|
mpir_fft_radix2_twiddle(ii+n*is, is, n/2, 2*w, t1, t2, ws, r + rs, c, 2*rs);
|
|
#endif
|
|
}
|
|
|
|
void mpir_fft_trunc1_twiddle(mp_ptr * ii, mp_size_t is,
|
|
mp_size_t n, mp_bitcnt_t w, mp_ptr * t1, mp_ptr * t2,
|
|
mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t rs, mp_size_t trunc)
|
|
{
|
|
mp_size_t i;
|
|
mp_size_t limbs = (w*n)/GMP_LIMB_BITS;
|
|
|
|
if (trunc == 2*n)
|
|
mpir_fft_radix2_twiddle(ii, is, n, w, t1, t2, ws, r, c, rs);
|
|
else if (trunc <= n)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
mpn_add_n(ii[i*is], ii[i*is], ii[(i+n)*is], limbs + 1);
|
|
|
|
mpir_fft_trunc1_twiddle(ii, is, n/2, 2*w, t1, t2, ws, r, c, 2*rs, trunc);
|
|
} else
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
mpir_fft_butterfly(*t1, *t2, ii[i*is], ii[(n+i)*is], i, limbs, w);
|
|
|
|
MP_PTR_SWAP(ii[i*is], *t1);
|
|
MP_PTR_SWAP(ii[(n+i)*is], *t2);
|
|
}
|
|
|
|
mpir_fft_radix2_twiddle(ii, is, n/2, 2*w, t1, t2, ws, r, c, 2*rs);
|
|
mpir_fft_trunc1_twiddle(ii + n*is, is, n/2, 2*w,
|
|
t1, t2, ws, r + rs, c, 2*rs, trunc - n);
|
|
}
|
|
}
|
|
|
|
void mpir_fft_mfa_trunc_sqrt2(mp_ptr * ii, mp_size_t n,
|
|
mp_bitcnt_t w, mp_ptr * t1, mp_ptr * t2,
|
|
mp_ptr * temp, mp_size_t n1, mp_size_t trunc)
|
|
{
|
|
mp_size_t i, j, s;
|
|
mp_size_t n2 = (2*n)/n1;
|
|
mp_size_t trunc2 = (trunc - 2*n)/n1;
|
|
mp_size_t limbs = (n*w)/GMP_LIMB_BITS;
|
|
mp_bitcnt_t depth = 0;
|
|
mp_bitcnt_t depth2 = 0;
|
|
|
|
while ((((mp_size_t)1)<<depth) < n2) depth++;
|
|
while ((((mp_size_t)1)<<depth2) < n1) depth2++;
|
|
|
|
/* first half matrix fourier FFT : n2 rows, n1 cols */
|
|
|
|
/* FFTs on columns */
|
|
for (i = 0; i < n1; i++)
|
|
{
|
|
/* relevant part of first layer of full sqrt2 FFT */
|
|
if (w & 1)
|
|
{
|
|
for (j = i; j < trunc - 2*n; j+=n1)
|
|
{
|
|
if (j & 1)
|
|
mpir_fft_butterfly_sqrt2(*t1, *t2, ii[j], ii[2*n+j], j, limbs, w, *temp);
|
|
else
|
|
mpir_fft_butterfly(*t1, *t2, ii[j], ii[2*n+j], j/2, limbs, w);
|
|
|
|
MP_PTR_SWAP(ii[j], *t1);
|
|
MP_PTR_SWAP(ii[2*n+j], *t2);
|
|
}
|
|
|
|
for ( ; j < 2*n; j+=n1)
|
|
{
|
|
if (i & 1)
|
|
mpir_fft_adjust_sqrt2(ii[j + 2*n], ii[j], j, limbs, w, *temp);
|
|
else
|
|
mpir_fft_adjust(ii[j + 2*n], ii[j], j/2, limbs, w);
|
|
}
|
|
} else
|
|
{
|
|
for (j = i; j < trunc - 2*n; j+=n1)
|
|
{
|
|
mpir_fft_butterfly(*t1, *t2, ii[j], ii[2*n+j], j, limbs, w/2);
|
|
|
|
MP_PTR_SWAP(ii[j], *t1);
|
|
MP_PTR_SWAP(ii[2*n+j], *t2);
|
|
}
|
|
|
|
for ( ; j < 2*n; j+=n1)
|
|
mpir_fft_adjust(ii[j + 2*n], ii[j], j, limbs, w/2);
|
|
}
|
|
|
|
/*
|
|
FFT of length n2 on column i, applying z^{r*i} for rows going up in steps
|
|
of 1 starting at row 0, where z => w bits
|
|
*/
|
|
|
|
mpir_fft_radix2_twiddle(ii + i, n1, n2/2, w*n1, t1, t2, w, 0, i, 1);
|
|
for (j = 0; j < n2; j++)
|
|
{
|
|
mp_size_t s = mpir_revbin(j, depth);
|
|
if (j < s) MP_PTR_SWAP(ii[i+j*n1], ii[i+s*n1]);
|
|
}
|
|
}
|
|
|
|
/* FFTs on rows */
|
|
for (i = 0; i < n2; i++)
|
|
{
|
|
mpir_fft_radix2(ii + i*n1, n1/2, w*n2, t1, t2);
|
|
for (j = 0; j < n1; j++)
|
|
{
|
|
mp_size_t t = mpir_revbin(j, depth2);
|
|
if (j < t) MP_PTR_SWAP(ii[i*n1+j], ii[i*n1+t]);
|
|
}
|
|
}
|
|
|
|
/* second half matrix fourier FFT : n2 rows, n1 cols */
|
|
ii += 2*n;
|
|
|
|
/* FFTs on columns */
|
|
for (i = 0; i < n1; i++)
|
|
{
|
|
/*
|
|
FFT of length n2 on column i, applying z^{r*i} for rows going up in steps
|
|
of 1 starting at row 0, where z => w bits
|
|
*/
|
|
|
|
mpir_fft_trunc1_twiddle(ii + i, n1, n2/2, w*n1, t1, t2, w, 0, i, 1, trunc2);
|
|
for (j = 0; j < n2; j++)
|
|
{
|
|
mp_size_t s = mpir_revbin(j, depth);
|
|
if (j < s) MP_PTR_SWAP(ii[i+j*n1], ii[i+s*n1]);
|
|
}
|
|
}
|
|
|
|
/* FFTs on relevant rows */
|
|
for (s = 0; s < trunc2; s++)
|
|
{
|
|
i = mpir_revbin(s, depth);
|
|
mpir_fft_radix2(ii + i*n1, n1/2, w*n2, t1, t2);
|
|
|
|
for (j = 0; j < n1; j++)
|
|
{
|
|
mp_size_t t = mpir_revbin(j, depth2);
|
|
if (j < t) MP_PTR_SWAP(ii[i*n1+j], ii[i*n1+t]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mpir_fft_mfa_trunc_sqrt2_outer(mp_ptr * ii, mp_size_t n,
|
|
mp_bitcnt_t w, mp_ptr * t1, mp_ptr * t2,
|
|
mp_ptr * temp, mp_size_t n1, mp_size_t trunc)
|
|
{
|
|
mp_size_t i, j;
|
|
mp_size_t n2 = (2*n)/n1;
|
|
mp_size_t trunc2 = (trunc - 2*n)/n1;
|
|
mp_size_t limbs = (n*w)/GMP_LIMB_BITS;
|
|
mp_bitcnt_t depth = 0;
|
|
mp_bitcnt_t depth2 = 0;
|
|
|
|
while ((((mp_size_t)1)<<depth) < n2) depth++;
|
|
while ((((mp_size_t)1)<<depth2) < n1) depth2++;
|
|
|
|
/* first half matrix fourier FFT : n2 rows, n1 cols */
|
|
|
|
/* FFTs on columns */
|
|
for (i = 0; i < n1; i++)
|
|
{
|
|
/* relevant part of first layer of full sqrt2 FFT */
|
|
if (w & 1)
|
|
{
|
|
for (j = i; j < trunc - 2*n; j+=n1)
|
|
{
|
|
if (j & 1)
|
|
mpir_fft_butterfly_sqrt2(*t1, *t2, ii[j], ii[2*n+j], j, limbs, w, *temp);
|
|
else
|
|
mpir_fft_butterfly(*t1, *t2, ii[j], ii[2*n+j], j/2, limbs, w);
|
|
|
|
MP_PTR_SWAP(ii[j], *t1);
|
|
MP_PTR_SWAP(ii[2*n+j], *t2);
|
|
}
|
|
|
|
for ( ; j < 2*n; j+=n1)
|
|
{
|
|
if (i & 1)
|
|
mpir_fft_adjust_sqrt2(ii[j + 2*n], ii[j], j, limbs, w, *temp);
|
|
else
|
|
mpir_fft_adjust(ii[j + 2*n], ii[j], j/2, limbs, w);
|
|
}
|
|
} else
|
|
{
|
|
for (j = i; j < trunc - 2*n; j+=n1)
|
|
{
|
|
mpir_fft_butterfly(*t1, *t2, ii[j], ii[2*n+j], j, limbs, w/2);
|
|
|
|
MP_PTR_SWAP(ii[j], *t1);
|
|
MP_PTR_SWAP(ii[2*n+j], *t2);
|
|
}
|
|
|
|
for ( ; j < 2*n; j+=n1)
|
|
mpir_fft_adjust(ii[j + 2*n], ii[j], j, limbs, w/2);
|
|
}
|
|
|
|
/*
|
|
FFT of length n2 on column i, applying z^{r*i} for rows going up in steps
|
|
of 1 starting at row 0, where z => w bits
|
|
*/
|
|
|
|
mpir_fft_radix2_twiddle(ii + i, n1, n2/2, w*n1, t1, t2, w, 0, i, 1);
|
|
for (j = 0; j < n2; j++)
|
|
{
|
|
mp_size_t s = mpir_revbin(j, depth);
|
|
if (j < s) MP_PTR_SWAP(ii[i+j*n1], ii[i+s*n1]);
|
|
}
|
|
}
|
|
|
|
/* second half matrix fourier FFT : n2 rows, n1 cols */
|
|
ii += 2*n;
|
|
|
|
/* FFTs on columns */
|
|
for (i = 0; i < n1; i++)
|
|
{
|
|
/*
|
|
FFT of length n2 on column i, applying z^{r*i} for rows going up in steps
|
|
of 1 starting at row 0, where z => w bits
|
|
*/
|
|
|
|
mpir_fft_trunc1_twiddle(ii + i, n1, n2/2, w*n1, t1, t2, w, 0, i, 1, trunc2);
|
|
for (j = 0; j < n2; j++)
|
|
{
|
|
mp_size_t s = mpir_revbin(j, depth);
|
|
if (j < s) MP_PTR_SWAP(ii[i+j*n1], ii[i+s*n1]);
|
|
}
|
|
}
|
|
}
|