a197a2d3eb
Removed directories for no longer supported architectures.
501 lines
15 KiB
C
501 lines
15 KiB
C
/* mpn_get_str -- Convert a MSIZE long limb vector pointed to by MPTR
|
||
to a printable string in STR in base BASE.
|
||
|
||
Copyright 1991, 1992, 1993, 1994, 1996, 2000, 2001, 2002 Free Software
|
||
Foundation, Inc.
|
||
|
||
This file is part of the GNU MP Library.
|
||
|
||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU Lesser General Public License as published by
|
||
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||
option) any later version.
|
||
|
||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public License
|
||
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "gmp.h"
|
||
#include "gmp-impl.h"
|
||
#include "longlong.h"
|
||
|
||
/* Conversion of U {up,un} to a string in base b. Internally, we convert to
|
||
base B = b^m, the largest power of b that fits a limb. Basic algorithms:
|
||
|
||
A) Divide U repeatedly by B, generating a quotient and remainder, until the
|
||
quotient becomes zero. The remainders hold the converted digits. Digits
|
||
come out from right to left. (Used in mpn_sb_get_str.)
|
||
|
||
B) Divide U by b^g, for g such that 1/b <= U/b^g < 1, generating a fraction.
|
||
Then develop digits by multiplying the fraction repeatedly by b. Digits
|
||
come out from left to right. (Currently not used herein, except for in
|
||
code for converting single limbs to individual digits.)
|
||
|
||
C) Compute B^1, B^2, B^4, ..., B^(2^s), for s such that B^(2^s) > sqrt(U).
|
||
Then divide U by B^(2^k), generating an integer quotient and remainder.
|
||
Recursively convert the quotient, then the remainder, using the
|
||
precomputed powers. Digits come out from left to right. (Used in
|
||
mpn_dc_get_str.)
|
||
|
||
When using algorithm C, algorithm B might be suitable for basecase code,
|
||
since the required b^g power will be readily accessible.
|
||
|
||
Optimization ideas:
|
||
1. The recursive function of (C) could use less temporary memory. The powtab
|
||
allocation could be trimmed with some computation, and the tmp area could
|
||
be reduced, or perhaps eliminated if up is reused for both quotient and
|
||
remainder (it is currently used just for remainder).
|
||
2. Store the powers of (C) in normalized form, with the normalization count.
|
||
Quotients will usually need to be left-shifted before each divide, and
|
||
remainders will either need to be left-shifted of right-shifted.
|
||
3. When b is even, the powers will end up with lots of low zero limbs. Could
|
||
save significant time in the mpn_tdiv_qr call by stripping these zeros.
|
||
4. In the code for developing digits from a single limb, we could avoid using
|
||
a full umul_ppmm except for the first (or first few) digits, provided base
|
||
is even. Subsequent digits can be developed using plain multiplication.
|
||
(This saves on register-starved machines (read x86) and on all machines
|
||
that generate the upper product half using a separate instruction (alpha,
|
||
powerpc, IA-64) or lacks such support altogether (sparc64, hppa64).
|
||
5. Separate mpn_dc_get_str basecase code from code for small conversions. The
|
||
former code will have the exact right power readily available in the
|
||
powtab parameter for dividing the current number into a fraction. Convert
|
||
that using algorithm B.
|
||
6. Completely avoid division. Compute the inverses of the powers now in
|
||
powtab instead of the actual powers.
|
||
|
||
Basic structure of (C):
|
||
mpn_get_str:
|
||
if POW2_P (n)
|
||
...
|
||
else
|
||
if (un < GET_STR_PRECOMPUTE_THRESHOLD)
|
||
mpn_sb_get_str (str, base, up, un);
|
||
else
|
||
precompute_power_tables
|
||
mpn_dc_get_str
|
||
|
||
mpn_dc_get_str:
|
||
mpn_tdiv_qr
|
||
if (qn < GET_STR_DC_THRESHOLD)
|
||
mpn_sb_get_str
|
||
else
|
||
mpn_dc_get_str
|
||
if (rn < GET_STR_DC_THRESHOLD)
|
||
mpn_sb_get_str
|
||
else
|
||
mpn_dc_get_str
|
||
|
||
|
||
The reason for the two threshold values is the cost of
|
||
precompute_power_tables. GET_STR_PRECOMPUTE_THRESHOLD will be considerably
|
||
larger than GET_STR_PRECOMPUTE_THRESHOLD. */
|
||
|
||
|
||
/* The x86s and m68020 have a quotient and remainder "div" instruction and
|
||
gcc recognises an adjacent "/" and "%" can be combined using that.
|
||
Elsewhere "/" and "%" are either separate instructions, or separate
|
||
libgcc calls (which unfortunately gcc as of version 3.0 doesn't combine).
|
||
A multiply and subtract should be faster than a "%" in those cases. */
|
||
#if HAVE_HOST_CPU_FAMILY_x86 \
|
||
|| HAVE_HOST_CPU_m68020 \
|
||
|| HAVE_HOST_CPU_m68030 \
|
||
|| HAVE_HOST_CPU_m68040 \
|
||
|| HAVE_HOST_CPU_m68060 \
|
||
|| HAVE_HOST_CPU_m68360 /* CPU32 */
|
||
#define udiv_qrnd_unnorm(q,r,n,d) \
|
||
do { \
|
||
mp_limb_t __q = (n) / (d); \
|
||
mp_limb_t __r = (n) % (d); \
|
||
(q) = __q; \
|
||
(r) = __r; \
|
||
} while (0)
|
||
#else
|
||
#define udiv_qrnd_unnorm(q,r,n,d) \
|
||
do { \
|
||
mp_limb_t __q = (n) / (d); \
|
||
mp_limb_t __r = (n) - __q*(d); \
|
||
(q) = __q; \
|
||
(r) = __r; \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* When to stop divide-and-conquer and call the basecase mpn_get_str. */
|
||
#ifndef GET_STR_DC_THRESHOLD
|
||
#define GET_STR_DC_THRESHOLD 15
|
||
#endif
|
||
/* Whether to bother at all with precomputing powers of the base, or go
|
||
to the basecase mpn_get_str directly. */
|
||
#ifndef GET_STR_PRECOMPUTE_THRESHOLD
|
||
#define GET_STR_PRECOMPUTE_THRESHOLD 30
|
||
#endif
|
||
|
||
struct powers
|
||
{
|
||
size_t digits_in_base;
|
||
mp_ptr p;
|
||
mp_size_t n; /* mpz_struct uses int for sizes, but not mpn! */
|
||
int base;
|
||
};
|
||
typedef struct powers powers_t;
|
||
|
||
|
||
/* Convert {UP,UN} to a string with a base as represented in POWTAB, and put
|
||
the string in STR. Generate LEN characters, possibly padding with zeros to
|
||
the left. If LEN is zero, generate as many characters as required.
|
||
Return a pointer immediately after the last digit of the result string.
|
||
Complexity is O(UN^2); intended for small conversions. */
|
||
static unsigned char *
|
||
mpn_sb_get_str (unsigned char *str, size_t len,
|
||
mp_ptr up, mp_size_t un,
|
||
const powers_t *powtab)
|
||
{
|
||
mp_limb_t rl, ul;
|
||
unsigned char *s;
|
||
int base;
|
||
size_t l;
|
||
/* Allocate memory for largest possible string, given that we only get here
|
||
for operands with un < GET_STR_PRECOMPUTE_THRESHOLD and that the smallest
|
||
base is 3. 7/11 is an approximation to 1/log2(3). */
|
||
#if TUNE_PROGRAM_BUILD
|
||
#define BUF_ALLOC (GET_STR_THRESHOLD_LIMIT * BITS_PER_MP_LIMB * 7 / 11)
|
||
#else
|
||
#define BUF_ALLOC (GET_STR_PRECOMPUTE_THRESHOLD * BITS_PER_MP_LIMB * 7 / 11)
|
||
#endif
|
||
unsigned char buf[BUF_ALLOC];
|
||
#if TUNE_PROGRAM_BUILD
|
||
mp_limb_t rp[GET_STR_THRESHOLD_LIMIT];
|
||
#else
|
||
mp_limb_t rp[GET_STR_PRECOMPUTE_THRESHOLD];
|
||
#endif
|
||
|
||
base = powtab->base;
|
||
if (base == 10)
|
||
{
|
||
/* Special case code for base==10 so that the compiler has a chance to
|
||
optimize things. */
|
||
|
||
MPN_COPY (rp + 1, up, un);
|
||
|
||
s = buf + BUF_ALLOC;
|
||
while (un > 1)
|
||
{
|
||
int i;
|
||
mp_limb_t frac, digit;
|
||
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
|
||
MP_BASES_BIG_BASE_10,
|
||
MP_BASES_BIG_BASE_INVERTED_10,
|
||
MP_BASES_NORMALIZATION_STEPS_10);
|
||
un -= rp[un] == 0;
|
||
frac = (rp[0] + 1) << GMP_NAIL_BITS;
|
||
s -= MP_BASES_CHARS_PER_LIMB_10;
|
||
i = MP_BASES_CHARS_PER_LIMB_10;
|
||
#if HAVE_HOST_CPU_FAMILY_x86
|
||
/* The code below turns out to be a bit slower for x86 using gcc.
|
||
Use plain code. */
|
||
do
|
||
{
|
||
umul_ppmm (digit, frac, frac, 10);
|
||
*s++ = digit;
|
||
}
|
||
while (--i);
|
||
#else
|
||
/* Use the fact that 10 in binary is 1010, with the lowest bit 0.
|
||
After a few umul_ppmm, we will have accumulated enough low zeros
|
||
to use a plain multiply. */
|
||
if (MP_BASES_NORMALIZATION_STEPS_10 == 0)
|
||
{
|
||
umul_ppmm (digit, frac, frac, 10);
|
||
*s++ = digit;
|
||
i--;
|
||
}
|
||
if (MP_BASES_NORMALIZATION_STEPS_10 <= 1)
|
||
{
|
||
umul_ppmm (digit, frac, frac, 10);
|
||
*s++ = digit;
|
||
i--;
|
||
}
|
||
if (MP_BASES_NORMALIZATION_STEPS_10 <= 2)
|
||
{
|
||
umul_ppmm (digit, frac, frac, 10);
|
||
*s++ = digit;
|
||
i--;
|
||
}
|
||
if (MP_BASES_NORMALIZATION_STEPS_10 <= 3)
|
||
{
|
||
umul_ppmm (digit, frac, frac, 10);
|
||
*s++ = digit;
|
||
i--;
|
||
}
|
||
frac = (frac + 0xf) >> 4;
|
||
do
|
||
{
|
||
frac *= 10;
|
||
digit = frac >> (BITS_PER_MP_LIMB - 4);
|
||
*s++ = digit;
|
||
frac &= (~(mp_limb_t) 0) >> 4;
|
||
}
|
||
while (--i);
|
||
#endif
|
||
s -= MP_BASES_CHARS_PER_LIMB_10;
|
||
}
|
||
|
||
ul = rp[1];
|
||
while (ul != 0)
|
||
{
|
||
udiv_qrnd_unnorm (ul, rl, ul, 10);
|
||
*--s = rl;
|
||
}
|
||
}
|
||
else /* not base 10 */
|
||
{
|
||
unsigned chars_per_limb;
|
||
mp_limb_t big_base, big_base_inverted;
|
||
unsigned normalization_steps;
|
||
|
||
chars_per_limb = __mp_bases[base].chars_per_limb;
|
||
big_base = __mp_bases[base].big_base;
|
||
big_base_inverted = __mp_bases[base].big_base_inverted;
|
||
count_leading_zeros (normalization_steps, big_base);
|
||
|
||
MPN_COPY (rp + 1, up, un);
|
||
|
||
s = buf + BUF_ALLOC;
|
||
while (un > 1)
|
||
{
|
||
int i;
|
||
mp_limb_t frac;
|
||
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
|
||
big_base, big_base_inverted,
|
||
normalization_steps);
|
||
un -= rp[un] == 0;
|
||
frac = (rp[0] + 1) << GMP_NAIL_BITS;
|
||
s -= chars_per_limb;
|
||
i = chars_per_limb;
|
||
do
|
||
{
|
||
mp_limb_t digit;
|
||
umul_ppmm (digit, frac, frac, base);
|
||
*s++ = digit;
|
||
}
|
||
while (--i);
|
||
s -= chars_per_limb;
|
||
}
|
||
|
||
ul = rp[1];
|
||
while (ul != 0)
|
||
{
|
||
udiv_qrnd_unnorm (ul, rl, ul, base);
|
||
*--s = rl;
|
||
}
|
||
}
|
||
|
||
l = buf + BUF_ALLOC - s;
|
||
while (l < len)
|
||
{
|
||
*str++ = 0;
|
||
len--;
|
||
}
|
||
while (l != 0)
|
||
{
|
||
*str++ = *s++;
|
||
l--;
|
||
}
|
||
return str;
|
||
}
|
||
|
||
|
||
/* Convert {UP,UN} to a string with a base as represented in POWTAB, and put
|
||
the string in STR. Generate LEN characters, possibly padding with zeros to
|
||
the left. If LEN is zero, generate as many characters as required.
|
||
Return a pointer immediately after the last digit of the result string.
|
||
This uses divide-and-conquer and is intended for large conversions. */
|
||
static unsigned char *
|
||
mpn_dc_get_str (unsigned char *str, size_t len,
|
||
mp_ptr up, mp_size_t un,
|
||
const powers_t *powtab, mp_ptr tmp)
|
||
{
|
||
if (un < GET_STR_DC_THRESHOLD)
|
||
{
|
||
if (un != 0)
|
||
str = mpn_sb_get_str (str, len, up, un, powtab);
|
||
else
|
||
{
|
||
while (len != 0)
|
||
{
|
||
*str++ = 0;
|
||
len--;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mp_ptr pwp, qp, rp;
|
||
mp_size_t pwn, qn;
|
||
|
||
pwp = powtab->p;
|
||
pwn = powtab->n;
|
||
|
||
if (un < pwn || (un == pwn && mpn_cmp (up, pwp, un) < 0))
|
||
{
|
||
str = mpn_dc_get_str (str, len, up, un, powtab - 1, tmp);
|
||
}
|
||
else
|
||
{
|
||
qp = tmp; /* (un - pwn + 1) limbs for qp */
|
||
rp = up; /* pwn limbs for rp; overwrite up area */
|
||
|
||
mpn_tdiv_qr (qp, rp, 0L, up, un, pwp, pwn);
|
||
qn = un - pwn; qn += qp[qn] != 0; /* quotient size */
|
||
if (len != 0)
|
||
len = len - powtab->digits_in_base;
|
||
str = mpn_dc_get_str (str, len, qp, qn, powtab - 1, tmp + un - pwn + 1);
|
||
str = mpn_dc_get_str (str, powtab->digits_in_base, rp, pwn, powtab - 1, tmp);
|
||
}
|
||
}
|
||
return str;
|
||
}
|
||
|
||
|
||
/* There are no leading zeros on the digits generated at str, but that's not
|
||
currently a documented feature. */
|
||
|
||
size_t
|
||
mpn_get_str (unsigned char *str, int base, mp_ptr up, mp_size_t un)
|
||
{
|
||
mp_ptr powtab_mem, powtab_mem_ptr;
|
||
mp_limb_t big_base;
|
||
size_t digits_in_base;
|
||
powers_t powtab[30];
|
||
int pi;
|
||
mp_size_t n;
|
||
mp_ptr p, t;
|
||
size_t out_len;
|
||
mp_ptr tmp;
|
||
|
||
/* Special case zero, as the code below doesn't handle it. */
|
||
if (un == 0)
|
||
{
|
||
str[0] = 0;
|
||
return 1;
|
||
}
|
||
|
||
if (POW2_P (base))
|
||
{
|
||
/* The base is a power of 2. Convert from most significant end. */
|
||
mp_limb_t n1, n0;
|
||
int bits_per_digit = __mp_bases[base].big_base;
|
||
int cnt;
|
||
int bit_pos;
|
||
mp_size_t i;
|
||
unsigned char *s = str;
|
||
|
||
n1 = up[un - 1];
|
||
count_leading_zeros (cnt, n1);
|
||
|
||
/* BIT_POS should be R when input ends in least significant nibble,
|
||
R + bits_per_digit * n when input ends in nth least significant
|
||
nibble. */
|
||
|
||
{
|
||
unsigned long bits;
|
||
|
||
bits = GMP_NUMB_BITS * un - cnt + GMP_NAIL_BITS;
|
||
cnt = bits % bits_per_digit;
|
||
if (cnt != 0)
|
||
bits += bits_per_digit - cnt;
|
||
bit_pos = bits - (un - 1) * GMP_NUMB_BITS;
|
||
}
|
||
|
||
/* Fast loop for bit output. */
|
||
i = un - 1;
|
||
for (;;)
|
||
{
|
||
bit_pos -= bits_per_digit;
|
||
while (bit_pos >= 0)
|
||
{
|
||
*s++ = (n1 >> bit_pos) & ((1 << bits_per_digit) - 1);
|
||
bit_pos -= bits_per_digit;
|
||
}
|
||
i--;
|
||
if (i < 0)
|
||
break;
|
||
n0 = (n1 << -bit_pos) & ((1 << bits_per_digit) - 1);
|
||
n1 = up[i];
|
||
bit_pos += GMP_NUMB_BITS;
|
||
*s++ = n0 | (n1 >> bit_pos);
|
||
}
|
||
|
||
return s - str;
|
||
}
|
||
|
||
/* General case. The base is not a power of 2. */
|
||
|
||
if (un < GET_STR_PRECOMPUTE_THRESHOLD)
|
||
{
|
||
struct powers ptab[1];
|
||
ptab[0].base = base;
|
||
return mpn_sb_get_str (str, (size_t) 0, up, un, ptab) - str;
|
||
}
|
||
|
||
/* Allocate one large block for the powers of big_base. With the current
|
||
scheme, we need to allocate twice as much as would be possible if a
|
||
minimal set of powers were generated. */
|
||
#define POWTAB_ALLOC_SIZE (2 * un + 30)
|
||
#define TMP_ALLOC_SIZE (un + 30)
|
||
powtab_mem = __GMP_ALLOCATE_FUNC_LIMBS (POWTAB_ALLOC_SIZE);
|
||
powtab_mem_ptr = powtab_mem;
|
||
|
||
/* Compute a table of powers: big_base^1, big_base^2, big_base^4, ...,
|
||
big_base^(2^k), for k such that the biggest power is between U and
|
||
sqrt(U). */
|
||
|
||
big_base = __mp_bases[base].big_base;
|
||
digits_in_base = __mp_bases[base].chars_per_limb;
|
||
|
||
powtab[0].base = base; /* FIXME: hack for getting base to mpn_sb_get_str */
|
||
powtab[1].p = &big_base;
|
||
powtab[1].n = 1;
|
||
powtab[1].digits_in_base = digits_in_base;
|
||
powtab[1].base = base;
|
||
powtab[2].p = &big_base;
|
||
powtab[2].n = 1;
|
||
powtab[2].digits_in_base = digits_in_base;
|
||
powtab[2].base = base;
|
||
n = 1;
|
||
pi = 2;
|
||
p = &big_base;
|
||
for (;;)
|
||
{
|
||
++pi;
|
||
t = powtab_mem_ptr;
|
||
powtab_mem_ptr += 2 * n;
|
||
mpn_sqr_n (t, p, n);
|
||
n *= 2; n -= t[n - 1] == 0;
|
||
digits_in_base *= 2;
|
||
p = t;
|
||
powtab[pi].p = p;
|
||
powtab[pi].n = n;
|
||
powtab[pi].digits_in_base = digits_in_base;
|
||
powtab[pi].base = base;
|
||
|
||
if (2 * n > un)
|
||
break;
|
||
}
|
||
ASSERT_ALWAYS (POWTAB_ALLOC_SIZE > powtab_mem_ptr - powtab_mem);
|
||
|
||
/* Using our precomputed powers, now in powtab[], convert our number. */
|
||
tmp = __GMP_ALLOCATE_FUNC_LIMBS (TMP_ALLOC_SIZE);
|
||
out_len = mpn_dc_get_str (str, 0, up, un, powtab + pi, tmp) - str;
|
||
__GMP_FREE_FUNC_LIMBS (tmp, TMP_ALLOC_SIZE);
|
||
|
||
__GMP_FREE_FUNC_LIMBS (powtab_mem, POWTAB_ALLOC_SIZE);
|
||
|
||
return out_len;
|
||
}
|