mpir/mpz/probable_prime_p.c
2010-03-19 13:57:34 +00:00

97 lines
2.6 KiB
C

/*
Copyright 2009 Jason Moxham
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "mpir.h"
#include "gmp-impl.h"
int
mpz_probable_prime_p (mpz_srcptr N, gmp_randstate_t STATE, int PROB,
unsigned long td)
{
int d, t, i, r;
mpz_t base, nm1, x, e, n;
ALLOC (n) = ALLOC (N);
SIZ (n) = ABSIZ (N);
PTR (n) = PTR (N); // fake up an absolute value that we dont have de-allocate
// algorithm dose not handle small values , get rid of them here
if (mpz_cmp_ui (n, 2) == 0 || mpz_cmp_ui (n, 3) == 0)
return 1;
if (mpz_cmp_ui (n, 5) < 0 || mpz_even_p (n))
return 0;
// we assume we know nothing about N ie it is a random integer
// so we try here anything which speeds up the average case
// we try some trial division
#define LIM 1024
d=mpz_trial_division(n,3,LIM);
if(d!=0)
{if(mpz_cmp_ui(n, d) == 0)return 1;
return 0;}
if (mpz_cmp_ui (n, LIM * LIM) < 0)
return 1;
ASSERT (mpz_odd_p (n));
ASSERT (mpz_cmp_ui (n, 5) >= 0);
// now do some random strong pseudoprime tests
mpz_init (base);
mpz_init_set (nm1, n);
mpz_sub_ui (nm1, nm1, 1);
mpz_init (e);
mpz_init (x);
t = mpz_scan1 (nm1, 0); // so 2^t divides nm1
ASSERT (t > 0);
mpz_tdiv_q_2exp (e, nm1, t); // so e=nm1/2^t
r = 1;
while (PROB > 0)
{
PROB -= 2;
do
{
mpz_urandomm (base, STATE, nm1);
}
while (mpz_cmp_ui (base, 1) <= 0);
mpz_powm (x, base, e, n); // x=base^e mod n
if (mpz_cmp_ui (x, 1) == 0 || mpz_cmp (x, nm1) == 0)
continue;
for (i = t - 1; i > 0; i--)
{
mpz_mul (x, x, x);
mpz_mod (x, x, n);
if (mpz_cmp (x, nm1) == 0)
break;
if (mpz_cmp_ui (x, 1) == 0)
{
r=0;
break;
}
}
if (i == 0 || r == 0)
{
r=0;
break;
}
}
mpz_clear (nm1);
mpz_clear (x);
mpz_clear (e);
mpz_clear (base);
return r;
}