06d4a32943
divrem_euclidean_qr_1 with divrem_1.
256 lines
8.1 KiB
C
256 lines
8.1 KiB
C
/*
|
|
|
|
dnl Copyright 2009 Jason Moxham
|
|
|
|
dnl This file is part of the MPIR Library.
|
|
|
|
dnl The MPIR Library is free software; you can redistribute it and/or modify
|
|
dnl it under the terms of the GNU Lesser General Public License as published
|
|
dnl by the Free Software Foundation; either version 2.1 of the License, or (at
|
|
dnl your option) any later version.
|
|
|
|
dnl The MPIR Library is distributed in the hope that it will be useful, but
|
|
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
dnl License for more details.
|
|
|
|
dnl You should have received a copy of the GNU Lesser General Public License
|
|
dnl along with the MPIR Library; see the file COPYING.LIB. If not, write
|
|
dnl to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
dnl Boston, MA 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
mp_limb_t mpn_mod_1_1_wrap(mp_srcptr xp,mp_size_t xn,mp_limb_t d)// in each round we hack off a limb from the body , ie k=1
|
|
{mp_limb_t crap,h,l,sh,sl,ret,i,c,ds,db[2],rem[2];
|
|
mp_size_t j;
|
|
|
|
ASSERT_MPN(xp,xn);
|
|
if(xn==0)return 0;
|
|
if(xn==1)return xp[0]%d;
|
|
ASSERT(d-1<=GMP_LIMB_HIGHBIT);
|
|
count_leading_zeros(c,d);ds=d<<c;
|
|
invert_limb(i,ds);
|
|
udiv_qrnnd_preinv(crap,db[0],((mp_limb_t)1)<<c,0,ds,i); // is B%ds
|
|
udiv_qrnnd_preinv(crap,db[1],db[0],0,ds,i);// is B^2%ds could calc indep of db[0]
|
|
db[0]>>=c;db[1]>>=c;// are now B^i %d
|
|
|
|
mpn_mod_1_1(rem,xp,xn,db);
|
|
/*
|
|
h=xp[xn-1];l=xp[xn-2];
|
|
for(j=xn-3;j>=0;j--)
|
|
{umul_ppmm(sh,sl,l,db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[j]);
|
|
umul_ppmm(h,l,h,db[1]);
|
|
add_ssaaaa(h,l,h,l,sh,sl);}
|
|
umul_ppmm(sh,sl,h,db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,l);
|
|
*/
|
|
sh=rem[1];sl=rem[0];
|
|
ASSERT(sh<d);
|
|
udiv_qrnnd_preinv(crap,ret,(sh<<c)|((sl>>(GMP_LIMB_BITS-1-c))>>1),sl<<c,ds,i);
|
|
return ret>>c;}
|
|
|
|
mp_limb_t mpn_mod_1_2_wrap(mp_srcptr xp,mp_size_t xn,mp_limb_t d)// in each round we hack off two limbs from the body , ie k=2
|
|
{mp_limb_t crap,h,l,sh,sl,th,tl,i,ret,ds,c,db[3],rem[2];
|
|
mp_size_t j;
|
|
|
|
ASSERT_MPN(xp,xn);
|
|
if(xn==0)return 0;
|
|
if(xn==1)return xp[0]%d;
|
|
umul_ppmm(h,l,d-1,3);ASSERT(h==0 || (h==1 && l==0));// ie (k+1)(d-1)<=B
|
|
count_leading_zeros(c,d);ds=d<<c;
|
|
invert_limb(i,ds);
|
|
udiv_qrnnd_preinv(crap,db[0],((mp_limb_t)1)<<c,0,ds,i);
|
|
udiv_qrnnd_preinv(crap,db[1],db[0],0,ds,i);db[0]>>=c;
|
|
udiv_qrnnd_preinv(crap,db[2],db[1],0,ds,i);db[1]>>=c;
|
|
db[2]>>=c;
|
|
mpn_mod_1_2(rem,xp,xn,db);
|
|
h=rem[1];l=rem[0];
|
|
/*
|
|
tl=xp[xn-2];th=xp[xn-1];
|
|
for(j=xn-4;j>=0;j-=2)
|
|
{umul_ppmm(sh,sl,xp[j+1],db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[j]);
|
|
umul_ppmm(h,l,tl,db[1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(th,tl,th,db[2]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
if(j>-2)// we have at least three limbs to do still ie xp[0],...,tl,th
|
|
{umul_ppmm(sh,sl,tl,db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[0]);
|
|
umul_ppmm(th,tl,th,db[1]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
umul_ppmm(h,l,th,db[0]);
|
|
add_ssaaaa(h,l,h,l,0,tl);
|
|
*/
|
|
ASSERT(h<d);
|
|
udiv_qrnnd_preinv(crap,ret,(h<<c)|((l>>(GMP_LIMB_BITS-1-c))>>1),l<<c,ds,i);
|
|
return ret>>c;}
|
|
|
|
mp_limb_t mpn_mod_1_3_wrap(mp_srcptr xp,mp_size_t xn,mp_limb_t d)// in each round we hack off 3 limbs from the body
|
|
{mp_limb_t crap,h,l,sh,sl,th,tl,i,ret,ds,c,db[4],rem[2];
|
|
mp_size_t j,jj;
|
|
|
|
ASSERT_MPN(xp,xn);
|
|
if(xn==0)return 0;
|
|
if(xn==1)return xp[0]%d;
|
|
umul_ppmm(h,l,d-1,4);ASSERT(h==0 || (h==1 && l==0));// ie (k+1)(d-1)<=B
|
|
count_leading_zeros(c,d);ds=d<<c;
|
|
invert_limb(i,ds);
|
|
udiv_qrnnd_preinv(crap,db[0],((mp_limb_t)1)<<c,0,ds,i);
|
|
udiv_qrnnd_preinv(crap,db[1],db[0],0,ds,i);db[0]>>=c;
|
|
udiv_qrnnd_preinv(crap,db[2],db[1],0,ds,i);db[1]>>=c;
|
|
udiv_qrnnd_preinv(crap,db[3],db[2],0,ds,i);db[2]>>=c;
|
|
db[3]>>=c;
|
|
mpn_mod_1_3(rem,xp,xn,db);
|
|
h=rem[1];l=rem[0];
|
|
/*
|
|
tl=xp[xn-2];th=xp[xn-1];
|
|
for(j=xn-5;j>=0;j-=3)
|
|
{umul_ppmm(sh,sl,xp[j+1],db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[j]);
|
|
umul_ppmm(h,l,xp[j+2],db[1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(h,l,tl,db[2]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(th,tl,th,db[3]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
if(j>-3)// we have at least three limbs to do still ie xp[0],...,tl,th
|
|
{sh=0;sl=xp[0];jj=1;
|
|
if(j==-1)
|
|
{umul_ppmm(sh,sl,xp[1],db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[0]);
|
|
jj=2;}
|
|
umul_ppmm(h,l,tl,db[jj-1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(th,tl,th,db[jj]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
umul_ppmm(h,l,th,db[0]);
|
|
add_ssaaaa(h,l,h,l,0,tl);
|
|
*/
|
|
ASSERT(h<d);
|
|
udiv_qrnnd_preinv(crap,ret,(h<<c)|((l>>(GMP_LIMB_BITS-1-c))>>1),l<<c,ds,i);
|
|
return ret>>c;}
|
|
|
|
// This is a generic version for k>=2
|
|
mp_limb_t mpn_mod_1_k(mp_srcptr xp,mp_size_t xn,mp_limb_t d,mp_size_t k)// in each round we hack off k limbs from the body
|
|
{mp_limb_t crap,h,l,sh,sl,th,tl,i,ret,ds,c,db[30];//need k+1 entries in array
|
|
mp_size_t j,jj;
|
|
|
|
ASSERT_MPN(xp,xn);
|
|
if(xn==0)return 0;
|
|
if(xn==1)return xp[0]%d;
|
|
ASSERT(k>=2);
|
|
umul_ppmm(h,l,d-1,k+1);ASSERT(h==0 || (h==1 && l==0));// ie (k+1)(d-1)<=B
|
|
count_leading_zeros(c,d);ds=d<<c;
|
|
invert_limb(i,ds);
|
|
udiv_qrnnd_preinv(crap,db[0],((mp_limb_t)1)<<c,0,ds,i);
|
|
ASSERT_ALWAYS(k+1<=numberof(db));
|
|
for(j=1;j<=k;j++){udiv_qrnnd_preinv(crap,db[j],db[j-1],0,ds,i);db[j-1]>>=c;}// so db[j]=B^j %d
|
|
db[k]>>=c;tl=xp[xn-2];th=xp[xn-1];
|
|
for(j=xn-k-2;j>=0;j-=k)
|
|
{umul_ppmm(sh,sl,xp[j+1],db[0]);
|
|
add_ssaaaa(sh,sl,sh,sl,0,xp[j]);
|
|
for(jj=2;jj<=k-1;jj++)
|
|
{umul_ppmm(h,l,xp[j+jj],db[jj-1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);}
|
|
umul_ppmm(h,l,tl,db[k-1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(th,tl,th,db[k]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
if(j+k>0)// we have at least three limbs to do still ie xp[0],...,tl,th
|
|
{sh=0;sl=xp[0];
|
|
for(jj=1;jj<j+k;jj++)
|
|
{umul_ppmm(h,l,xp[jj],db[jj-1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);}
|
|
umul_ppmm(h,l,tl,db[jj-1]);
|
|
add_ssaaaa(sh,sl,sh,sl,h,l);
|
|
umul_ppmm(th,tl,th,db[jj]);
|
|
add_ssaaaa(th,tl,th,tl,sh,sl);}
|
|
umul_ppmm(h,l,th,db[0]);
|
|
add_ssaaaa(h,l,h,l,0,tl);
|
|
ASSERT(h<d);
|
|
udiv_qrnnd_preinv(crap,ret,(h<<c)|(l>>(GMP_LIMB_BITS-c)),l<<c,ds,i);
|
|
return ret>>c;}
|
|
|
|
|
|
// d is mormalized
|
|
#define udiv_inverse(i,d) do{mp_limb_t __X;udiv_qrnnd(i,__X,~(d),GMP_LIMB_MAX,d);}while(0)
|
|
|
|
// note double lenght inverse can easily be calculated from single length inverse
|
|
// d is normalize
|
|
#define udiv_double_inverse(ih,il,d) \
|
|
do{mp_limb_t __X;udiv_qrnnd(ih,__X,~(d),GMP_LIMB_MAX,d);udiv_qrnnd(il,__X,__X,GMP_LIMB_MAX,d);}while(0)
|
|
|
|
|
|
// set to 1=store or 0=not store
|
|
#define STORE_QUOTIENT 0
|
|
// set to 0=udiv 1=gmp-preinv 2-barrett
|
|
#define UDIV_METHOD 1
|
|
|
|
#if UDIV_NEEDS_NORMALIZATION==1 || UDIV_METHOD==1
|
|
#define NORMALIZE 1
|
|
#else
|
|
#define NORMALIZE 0
|
|
#endif
|
|
|
|
#if UDIV_METHOD==0
|
|
#define UDIV(q,r,h,l,d,i) udiv_qrnnd(q,r,h,l,d)
|
|
#endif
|
|
|
|
#if UDIV_METHOD==1
|
|
#define UDIV udiv_qrnnd_preinv
|
|
#endif
|
|
|
|
#if UDIV_METHOD==2
|
|
#define UDIV udiv_qrnnd_barrett
|
|
#endif
|
|
|
|
#if STORE_QUOTIENT
|
|
mp_limb_t mpn_divrem_euclidean_qr_1(mp_ptr qp,mp_size_t qxn,mp_srcptr xp,mp_size_t n,mp_limb_t d)
|
|
#else
|
|
mp_limb_t mpn_divrem_euclidean_r_1(mp_srcptr xp,mp_size_t n,mp_limb_t d)
|
|
#endif
|
|
{mp_size_t j;
|
|
mp_limb_t r=0,s=0,h,l,q,i;
|
|
|
|
#if STORE_QUOTIENT
|
|
ASSET_ALWAYS(qxn==0);
|
|
#endif
|
|
|
|
ASSERT(n>0);ASSERT(d!=0);ASSERT_MPN(xp,n);
|
|
#if STORE_QUOTIENT
|
|
ASSERT(MPN_SAME_OR_SEPARATE_P(qp,xp,n));
|
|
#endif
|
|
|
|
if(d<=GMP_LIMB_HIGHBIT/2+1 && ABOVE_THRESHOLD(n,MOD_1_3_THRESHOLD))return mpn_mod_1_3_wrap(xp,n,d);
|
|
if(d<=MP_LIMB_T_MAX/3+1 && ABOVE_THRESHOLD(n,MOD_1_2_THRESHOLD))return mpn_mod_1_2_wrap(xp,n,d);
|
|
if(d<=GMP_LIMB_HIGHBIT+1 && ABOVE_THRESHOLD(n,MOD_1_1_THRESHOLD))return mpn_mod_1_1_wrap(xp,n,d);
|
|
|
|
// for n=1 or n=2 probably faster to do a special case
|
|
#if NORMALIZE==1
|
|
count_leading_zeros(s,d);d=d<<s;
|
|
invert_limb(i,d);
|
|
#endif
|
|
for(j=n-1;j>=0;j--)
|
|
{l=xp[j]; // out dlimb is (h=r,l)
|
|
h=(l>>((GMP_LIMB_BITS-1-s))>>1);l=l<<s;// shift dlimb left by s
|
|
h=h+r; // carry in
|
|
UDIV(q,r,h,l,d,i); // carry out , carry-out to carry-in is the critical latency bottleneck
|
|
#if STORE_QUOTIENT
|
|
qp[j]=q;
|
|
#endif
|
|
}
|
|
ASSERT((r<<(GMP_LIMB_BITS-1-s)<<1)==0);// ie bottom s bits of r are zero
|
|
r>>=s;
|
|
return r;} // so (xp,n) = (qp,n)*d +r and 0 <= r < d
|
|
/*
|
|
in hensel-div we use shiftout which means we can use mmx shifting and dont need to always use it
|
|
in euclid-div shiftout needs a final div for the remainder
|
|
*/
|