mpir/mpn/generic/toom_eval_pm2exp.c
2011-07-24 19:19:58 +00:00

118 lines
3.5 KiB
C

/* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k
Contributed to the GNU project by Niels Möller
THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY
SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 2009 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "mpir.h"
#include "gmp-impl.h"
/* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */
int
mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k,
mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift,
mp_ptr tp)
{
unsigned i;
int neg;
#if HAVE_NATIVE_mpn_addlsh_n
mp_limb_t cy;
#endif
ASSERT (k >= 3);
ASSERT (shift*k < GMP_NUMB_BITS);
ASSERT (hn > 0);
ASSERT (hn <= n);
/* The degree k is also the number of full-size coefficients, so
* that last coefficient, of size hn, starts at xp + k*n. */
#if HAVE_NATIVE_mpn_addlsh_n
xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift);
for (i = 4; i < k; i += 2)
xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift);
tp[n] = mpn_lshift (tp, xp+n, n, shift);
for (i = 3; i < k; i+= 2)
tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift);
if (k & 1)
{
cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift);
MPN_INCR_U (tp + hn, n+1 - hn, cy);
}
else
{
cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift);
MPN_INCR_U (xp2 + hn, n+1 - hn, cy);
}
#else /* !HAVE_NATIVE_mpn_addlsh_n */
xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift);
xp2[n] += mpn_add_n (xp2, xp, tp, n);
for (i = 4; i < k; i += 2)
{
xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift);
xp2[n] += mpn_add_n (xp2, xp2, tp, n);
}
tp[n] = mpn_lshift (tp, xp+n, n, shift);
for (i = 3; i < k; i+= 2)
{
tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift);
tp[n] += mpn_add_n (tp, tp, xm2, n);
}
xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift);
if (k & 1)
mpn_add (tp, tp, n+1, xm2, hn+1);
else
mpn_add (xp2, xp2, n+1, xm2, hn+1);
#endif /* !HAVE_NATIVE_mpn_addlsh_n */
neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
#if HAVE_NATIVE_mpn_sumdiff_n
if (neg)
mpn_sumdiff_n (xp2, xm2, tp, xp2, n + 1);
else
mpn_sumdiff_n (xp2, xm2, xp2, tp, n + 1);
#else
if (neg)
mpn_sub_n (xm2, tp, xp2, n + 1);
else
mpn_sub_n (xm2, xp2, tp, n + 1);
mpn_add_n (xp2, xp2, tp, n + 1);
#endif
/* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */
ASSERT ((k+1)*shift >= GMP_LIMB_BITS ||
xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<<shift)-1));
ASSERT ((k+2)*shift >= GMP_LIMB_BITS ||
xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<<shift):1))/((CNST_LIMB(1)<<(2*shift))-1));
return neg;
}