mpir/yasm/libyasm/inttree.c
2011-12-04 12:01:57 +00:00

892 lines
28 KiB
C

#include "util.h"
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <math.h>
#include "coretype.h"
#include "inttree.h"
#define VERIFY(condition) \
if (!(condition)) { \
fprintf(stderr, "Assumption \"%s\"\nFailed in file %s: at line:%i\n", \
#condition,__FILE__,__LINE__); \
abort();}
/*#define DEBUG_ASSERT 1*/
#ifdef DEBUG_ASSERT
static void Assert(int assertion, const char *error)
{
if (!assertion) {
fprintf(stderr, "Assertion Failed: %s\n", error);
abort();
}
}
#endif
/* If the symbol CHECK_INTERVAL_TREE_ASSUMPTIONS is defined then the
* code does a lot of extra checking to make sure certain assumptions
* are satisfied. This only needs to be done if you suspect bugs are
* present or if you make significant changes and want to make sure
* your changes didn't mess anything up.
*/
/*#define CHECK_INTERVAL_TREE_ASSUMPTIONS 1*/
static IntervalTreeNode *ITN_create(long low, long high, void *data);
static void LeftRotate(IntervalTree *, IntervalTreeNode *);
static void RightRotate(IntervalTree *, IntervalTreeNode *);
static void TreeInsertHelp(IntervalTree *, IntervalTreeNode *);
static void TreePrintHelper(const IntervalTree *, IntervalTreeNode *);
static void FixUpMaxHigh(IntervalTree *, IntervalTreeNode *);
static void DeleteFixUp(IntervalTree *, IntervalTreeNode *);
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
static void CheckMaxHighFields(const IntervalTree *, IntervalTreeNode *);
static int CheckMaxHighFieldsHelper(const IntervalTree *, IntervalTreeNode *y,
const int currentHigh, int match);
static void IT_CheckAssumptions(const IntervalTree *);
#endif
/* define a function to find the maximum of two objects. */
#define ITMax(a, b) ( (a > b) ? a : b )
IntervalTreeNode *
ITN_create(long low, long high, void *data)
{
IntervalTreeNode *itn = yasm_xmalloc(sizeof(IntervalTreeNode));
itn->data = data;
if (low < high) {
itn->low = low;
itn->high = high;
} else {
itn->low = high;
itn->high = low;
}
itn->maxHigh = high;
return itn;
}
IntervalTree *
IT_create(void)
{
IntervalTree *it = yasm_xmalloc(sizeof(IntervalTree));
it->nil = ITN_create(LONG_MIN, LONG_MIN, NULL);
it->nil->left = it->nil;
it->nil->right = it->nil;
it->nil->parent = it->nil;
it->nil->red = 0;
it->root = ITN_create(LONG_MAX, LONG_MAX, NULL);
it->root->left = it->nil;
it->root->right = it->nil;
it->root->parent = it->nil;
it->root->red = 0;
/* the following are used for the Enumerate function */
it->recursionNodeStackSize = 128;
it->recursionNodeStack = (it_recursion_node *)
yasm_xmalloc(it->recursionNodeStackSize*sizeof(it_recursion_node));
it->recursionNodeStackTop = 1;
it->recursionNodeStack[0].start_node = NULL;
return it;
}
/***********************************************************************/
/* FUNCTION: LeftRotate */
/**/
/* INPUTS: the node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input: this, x */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. Also updates the maxHigh fields of x and y */
/* after rotation. */
/***********************************************************************/
static void
LeftRotate(IntervalTree *it, IntervalTreeNode *x)
{
IntervalTreeNode *y;
/* I originally wrote this function to use the sentinel for
* nil to avoid checking for nil. However this introduces a
* very subtle bug because sometimes this function modifies
* the parent pointer of nil. This can be a problem if a
* function which calls LeftRotate also uses the nil sentinel
* and expects the nil sentinel's parent pointer to be unchanged
* after calling this function. For example, when DeleteFixUP
* calls LeftRotate it expects the parent pointer of nil to be
* unchanged.
*/
y=x->right;
x->right=y->left;
if (y->left != it->nil)
y->left->parent=x; /* used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
y->parent=x->parent;
/* Instead of checking if x->parent is the root as in the book, we
* count on the root sentinel to implicitly take care of this case
*/
if (x == x->parent->left)
x->parent->left=y;
else
x->parent->right=y;
y->left=x;
x->parent=y;
x->maxHigh=ITMax(x->left->maxHigh,ITMax(x->right->maxHigh,x->high));
y->maxHigh=ITMax(x->maxHigh,ITMax(y->right->maxHigh,y->high));
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not red in ITLeftRotate");
Assert((it->nil->maxHigh=LONG_MIN),
"nil->maxHigh != LONG_MIN in ITLeftRotate");
#endif
}
/***********************************************************************/
/* FUNCTION: RightRotate */
/**/
/* INPUTS: node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input?: this, y */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. Also updates the maxHigh fields of x and y */
/* after rotation. */
/***********************************************************************/
static void
RightRotate(IntervalTree *it, IntervalTreeNode *y)
{
IntervalTreeNode *x;
/* I originally wrote this function to use the sentinel for
* nil to avoid checking for nil. However this introduces a
* very subtle bug because sometimes this function modifies
* the parent pointer of nil. This can be a problem if a
* function which calls LeftRotate also uses the nil sentinel
* and expects the nil sentinel's parent pointer to be unchanged
* after calling this function. For example, when DeleteFixUP
* calls LeftRotate it expects the parent pointer of nil to be
* unchanged.
*/
x=y->left;
y->left=x->right;
if (it->nil != x->right)
x->right->parent=y; /*used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
/* Instead of checking if x->parent is the root as in the book, we
* count on the root sentinel to implicitly take care of this case
*/
x->parent=y->parent;
if (y == y->parent->left)
y->parent->left=x;
else
y->parent->right=x;
x->right=y;
y->parent=x;
y->maxHigh=ITMax(y->left->maxHigh,ITMax(y->right->maxHigh,y->high));
x->maxHigh=ITMax(x->left->maxHigh,ITMax(y->maxHigh,x->high));
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not red in ITRightRotate");
Assert((it->nil->maxHigh=LONG_MIN),
"nil->maxHigh != LONG_MIN in ITRightRotate");
#endif
}
/***********************************************************************/
/* FUNCTION: TreeInsertHelp */
/**/
/* INPUTS: z is the node to insert */
/**/
/* OUTPUT: none */
/**/
/* Modifies Input: this, z */
/**/
/* EFFECTS: Inserts z into the tree as if it were a regular binary tree */
/* using the algorithm described in _Introduction_To_Algorithms_ */
/* by Cormen et al. This funciton is only intended to be called */
/* by the InsertTree function and not by the user */
/***********************************************************************/
static void
TreeInsertHelp(IntervalTree *it, IntervalTreeNode *z)
{
/* This function should only be called by InsertITTree (see above) */
IntervalTreeNode* x;
IntervalTreeNode* y;
z->left=z->right=it->nil;
y=it->root;
x=it->root->left;
while( x != it->nil) {
y=x;
if (x->low > z->low)
x=x->left;
else /* x->low <= z->low */
x=x->right;
}
z->parent=y;
if ((y == it->root) || (y->low > z->low))
y->left=z;
else
y->right=z;
#if defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not red in ITTreeInsertHelp");
Assert((it->nil->maxHigh=INT_MIN),
"nil->maxHigh != INT_MIN in ITTreeInsertHelp");
#endif
}
/***********************************************************************/
/* FUNCTION: FixUpMaxHigh */
/**/
/* INPUTS: x is the node to start from*/
/**/
/* OUTPUT: none */
/**/
/* Modifies Input: this */
/**/
/* EFFECTS: Travels up to the root fixing the maxHigh fields after */
/* an insertion or deletion */
/***********************************************************************/
static void
FixUpMaxHigh(IntervalTree *it, IntervalTreeNode *x)
{
while(x != it->root) {
x->maxHigh=ITMax(x->high,ITMax(x->left->maxHigh,x->right->maxHigh));
x=x->parent;
}
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#endif
}
/* Before calling InsertNode the node x should have its key set */
/***********************************************************************/
/* FUNCTION: InsertNode */
/**/
/* INPUTS: newInterval is the interval to insert*/
/**/
/* OUTPUT: This function returns a pointer to the newly inserted node */
/* which is guarunteed to be valid until this node is deleted. */
/* What this means is if another data structure stores this */
/* pointer then the tree does not need to be searched when this */
/* is to be deleted. */
/**/
/* Modifies Input: tree */
/**/
/* EFFECTS: Creates a node node which contains the appropriate key and */
/* info pointers and inserts it into the tree. */
/***********************************************************************/
IntervalTreeNode *
IT_insert(IntervalTree *it, long low, long high, void *data)
{
IntervalTreeNode *x, *y, *newNode;
x = ITN_create(low, high, data);
TreeInsertHelp(it, x);
FixUpMaxHigh(it, x->parent);
newNode = x;
x->red=1;
while(x->parent->red) { /* use sentinel instead of checking for root */
if (x->parent == x->parent->parent->left) {
y=x->parent->parent->right;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->right) {
x=x->parent;
LeftRotate(it, x);
}
x->parent->red=0;
x->parent->parent->red=1;
RightRotate(it, x->parent->parent);
}
} else { /* case for x->parent == x->parent->parent->right */
/* this part is just like the section above with */
/* left and right interchanged */
y=x->parent->parent->left;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->left) {
x=x->parent;
RightRotate(it, x);
}
x->parent->red=0;
x->parent->parent->red=1;
LeftRotate(it, x->parent->parent);
}
}
}
it->root->left->red=0;
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not red in ITTreeInsert");
Assert(!it->root->red,"root not red in ITTreeInsert");
Assert((it->nil->maxHigh=LONG_MIN),
"nil->maxHigh != LONG_MIN in ITTreeInsert");
#endif
return newNode;
}
/***********************************************************************/
/* FUNCTION: GetSuccessorOf */
/**/
/* INPUTS: x is the node we want the succesor of */
/**/
/* OUTPUT: This function returns the successor of x or NULL if no */
/* successor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
IntervalTreeNode *
IT_get_successor(const IntervalTree *it, IntervalTreeNode *x)
{
IntervalTreeNode *y;
if (it->nil != (y = x->right)) { /* assignment to y is intentional */
while(y->left != it->nil) /* returns the minium of the right subtree of x */
y=y->left;
return y;
} else {
y=x->parent;
while(x == y->right) { /* sentinel used instead of checking for nil */
x=y;
y=y->parent;
}
if (y == it->root)
return(it->nil);
return y;
}
}
/***********************************************************************/
/* FUNCTION: GetPredecessorOf */
/**/
/* INPUTS: x is the node to get predecessor of */
/**/
/* OUTPUT: This function returns the predecessor of x or NULL if no */
/* predecessor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
IntervalTreeNode *
IT_get_predecessor(const IntervalTree *it, IntervalTreeNode *x)
{
IntervalTreeNode *y;
if (it->nil != (y = x->left)) { /* assignment to y is intentional */
while(y->right != it->nil) /* returns the maximum of the left subtree of x */
y=y->right;
return y;
} else {
y=x->parent;
while(x == y->left) {
if (y == it->root)
return(it->nil);
x=y;
y=y->parent;
}
return y;
}
}
/***********************************************************************/
/* FUNCTION: Print */
/**/
/* INPUTS: none */
/**/
/* OUTPUT: none */
/**/
/* EFFECTS: This function recursively prints the nodes of the tree */
/* inorder. */
/**/
/* Modifies Input: none */
/**/
/* Note: This function should only be called from ITTreePrint */
/***********************************************************************/
static void
ITN_print(const IntervalTreeNode *itn, IntervalTreeNode *nil,
IntervalTreeNode *root)
{
printf(", l=%li, h=%li, mH=%li", itn->low, itn->high, itn->maxHigh);
printf(" l->low=");
if (itn->left == nil)
printf("NULL");
else
printf("%li", itn->left->low);
printf(" r->low=");
if (itn->right == nil)
printf("NULL");
else
printf("%li", itn->right->low);
printf(" p->low=");
if (itn->parent == root)
printf("NULL");
else
printf("%li", itn->parent->low);
printf(" red=%i\n", itn->red);
}
static void
TreePrintHelper(const IntervalTree *it, IntervalTreeNode *x)
{
if (x != it->nil) {
TreePrintHelper(it, x->left);
ITN_print(x, it->nil, it->root);
TreePrintHelper(it, x->right);
}
}
void
IT_destroy(IntervalTree *it)
{
IntervalTreeNode *x = it->root->left;
SLIST_HEAD(node_head, nodeent)
stuffToFree = SLIST_HEAD_INITIALIZER(stuffToFree);
struct nodeent {
SLIST_ENTRY(nodeent) link;
struct IntervalTreeNode *node;
} *np;
if (x != it->nil) {
if (x->left != it->nil) {
np = yasm_xmalloc(sizeof(struct nodeent));
np->node = x->left;
SLIST_INSERT_HEAD(&stuffToFree, np, link);
}
if (x->right != it->nil) {
np = yasm_xmalloc(sizeof(struct nodeent));
np->node = x->right;
SLIST_INSERT_HEAD(&stuffToFree, np, link);
}
yasm_xfree(x);
while (!SLIST_EMPTY(&stuffToFree)) {
np = SLIST_FIRST(&stuffToFree);
x = np->node;
SLIST_REMOVE_HEAD(&stuffToFree, link);
yasm_xfree(np);
if (x->left != it->nil) {
np = yasm_xmalloc(sizeof(struct nodeent));
np->node = x->left;
SLIST_INSERT_HEAD(&stuffToFree, np, link);
}
if (x->right != it->nil) {
np = yasm_xmalloc(sizeof(struct nodeent));
np->node = x->right;
SLIST_INSERT_HEAD(&stuffToFree, np, link);
}
yasm_xfree(x);
}
}
yasm_xfree(it->nil);
yasm_xfree(it->root);
yasm_xfree(it->recursionNodeStack);
yasm_xfree(it);
}
/***********************************************************************/
/* FUNCTION: Print */
/**/
/* INPUTS: none */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: This function recursively prints the nodes of the tree */
/* inorder. */
/**/
/* Modifies Input: none */
/**/
/***********************************************************************/
void
IT_print(const IntervalTree *it)
{
TreePrintHelper(it, it->root->left);
}
/***********************************************************************/
/* FUNCTION: DeleteFixUp */
/**/
/* INPUTS: x is the child of the spliced */
/* out node in DeleteNode. */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: Performs rotations and changes colors to restore red-black */
/* properties after a node is deleted */
/**/
/* Modifies Input: this, x */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
static void
DeleteFixUp(IntervalTree *it, IntervalTreeNode *x)
{
IntervalTreeNode *w;
IntervalTreeNode *rootLeft = it->root->left;
while ((!x->red) && (rootLeft != x)) {
if (x == x->parent->left) {
w=x->parent->right;
if (w->red) {
w->red=0;
x->parent->red=1;
LeftRotate(it, x->parent);
w=x->parent->right;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->right->red) {
w->left->red=0;
w->red=1;
RightRotate(it, w);
w=x->parent->right;
}
w->red=x->parent->red;
x->parent->red=0;
w->right->red=0;
LeftRotate(it, x->parent);
x=rootLeft; /* this is to exit while loop */
}
} else { /* the code below is has left and right switched from above */
w=x->parent->left;
if (w->red) {
w->red=0;
x->parent->red=1;
RightRotate(it, x->parent);
w=x->parent->left;
}
if ((!w->right->red) && (!w->left->red)) {
w->red=1;
x=x->parent;
} else {
if (!w->left->red) {
w->right->red=0;
w->red=1;
LeftRotate(it, w);
w=x->parent->left;
}
w->red=x->parent->red;
x->parent->red=0;
w->left->red=0;
RightRotate(it, x->parent);
x=rootLeft; /* this is to exit while loop */
}
}
}
x->red=0;
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not black in ITDeleteFixUp");
Assert((it->nil->maxHigh=LONG_MIN),
"nil->maxHigh != LONG_MIN in ITDeleteFixUp");
#endif
}
/***********************************************************************/
/* FUNCTION: DeleteNode */
/**/
/* INPUTS: tree is the tree to delete node z from */
/**/
/* OUTPUT: returns the Interval stored at deleted node */
/**/
/* EFFECT: Deletes z from tree and but don't call destructor */
/* Then calls FixUpMaxHigh to fix maxHigh fields then calls */
/* ITDeleteFixUp to restore red-black properties */
/**/
/* Modifies Input: z */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
void *
IT_delete_node(IntervalTree *it, IntervalTreeNode *z, long *low, long *high)
{
IntervalTreeNode *x, *y;
void *returnValue = z->data;
if (low)
*low = z->low;
if (high)
*high = z->high;
y= ((z->left == it->nil) || (z->right == it->nil)) ?
z : IT_get_successor(it, z);
x= (y->left == it->nil) ? y->right : y->left;
if (it->root == (x->parent = y->parent))
/* assignment of y->p to x->p is intentional */
it->root->left=x;
else {
if (y == y->parent->left)
y->parent->left=x;
else
y->parent->right=x;
}
if (y != z) { /* y should not be nil in this case */
#ifdef DEBUG_ASSERT
Assert( (y!=it->nil),"y is nil in DeleteNode \n");
#endif
/* y is the node to splice out and x is its child */
y->maxHigh = INT_MIN;
y->left=z->left;
y->right=z->right;
y->parent=z->parent;
z->left->parent=z->right->parent=y;
if (z == z->parent->left)
z->parent->left=y;
else
z->parent->right=y;
FixUpMaxHigh(it, x->parent);
if (!(y->red)) {
y->red = z->red;
DeleteFixUp(it, x);
} else
y->red = z->red;
yasm_xfree(z);
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not black in ITDelete");
Assert((it->nil->maxHigh=LONG_MIN),"nil->maxHigh != LONG_MIN in ITDelete");
#endif
} else {
FixUpMaxHigh(it, x->parent);
if (!(y->red))
DeleteFixUp(it, x);
yasm_xfree(y);
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
IT_CheckAssumptions(it);
#elif defined(DEBUG_ASSERT)
Assert(!it->nil->red,"nil not black in ITDelete");
Assert((it->nil->maxHigh=LONG_MIN),"nil->maxHigh != LONG_MIN in ITDelete");
#endif
}
return returnValue;
}
/***********************************************************************/
/* FUNCTION: Overlap */
/**/
/* INPUTS: [a1,a2] and [b1,b2] are the low and high endpoints of two */
/* closed intervals. */
/**/
/* OUTPUT: stack containing pointers to the nodes between [low,high] */
/**/
/* Modifies Input: none */
/**/
/* EFFECT: returns 1 if the intervals overlap, and 0 otherwise */
/***********************************************************************/
static int
Overlap(int a1, int a2, int b1, int b2)
{
if (a1 <= b1)
return (b1 <= a2);
else
return (a1 <= b2);
}
/***********************************************************************/
/* FUNCTION: Enumerate */
/**/
/* INPUTS: tree is the tree to look for intervals overlapping the */
/* closed interval [low,high] */
/**/
/* OUTPUT: stack containing pointers to the nodes overlapping */
/* [low,high] */
/**/
/* Modifies Input: none */
/**/
/* EFFECT: Returns a stack containing pointers to nodes containing */
/* intervals which overlap [low,high] in O(max(N,k*log(N))) */
/* where N is the number of intervals in the tree and k is */
/* the number of overlapping intervals */
/**/
/* Note: This basic idea for this function comes from the */
/* _Introduction_To_Algorithms_ book by Cormen et al, but */
/* modifications were made to return all overlapping intervals */
/* instead of just the first overlapping interval as in the */
/* book. The natural way to do this would require recursive */
/* calls of a basic search function. I translated the */
/* recursive version into an interative version with a stack */
/* as described below. */
/***********************************************************************/
/* The basic idea for the function below is to take the IntervalSearch
* function from the book and modify to find all overlapping intervals
* instead of just one. This means that any time we take the left
* branch down the tree we must also check the right branch if and only if
* we find an overlapping interval in that left branch. Note this is a
* recursive condition because if we go left at the root then go left
* again at the first left child and find an overlap in the left subtree
* of the left child of root we must recursively check the right subtree
* of the left child of root as well as the right child of root.
*/
void
IT_enumerate(IntervalTree *it, long low, long high, void *cbd,
void (*callback) (IntervalTreeNode *node, void *cbd))
{
IntervalTreeNode *x=it->root->left;
int stuffToDo = (x != it->nil);
/* Possible speed up: add min field to prune right searches */
#ifdef DEBUG_ASSERT
Assert((it->recursionNodeStackTop == 1),
"recursionStack not empty when entering IntervalTree::Enumerate");
#endif
it->currentParent = 0;
while (stuffToDo) {
if (Overlap(low,high,x->low,x->high) ) {
callback(x, cbd);
it->recursionNodeStack[it->currentParent].tryRightBranch=1;
}
if(x->left->maxHigh >= low) { /* implies x != nil */
if (it->recursionNodeStackTop == it->recursionNodeStackSize) {
it->recursionNodeStackSize *= 2;
it->recursionNodeStack = (it_recursion_node *)
yasm_xrealloc(it->recursionNodeStack,
it->recursionNodeStackSize * sizeof(it_recursion_node));
}
it->recursionNodeStack[it->recursionNodeStackTop].start_node = x;
it->recursionNodeStack[it->recursionNodeStackTop].tryRightBranch = 0;
it->recursionNodeStack[it->recursionNodeStackTop].parentIndex = it->currentParent;
it->currentParent = it->recursionNodeStackTop++;
x = x->left;
} else {
x = x->right;
}
stuffToDo = (x != it->nil);
while (!stuffToDo && (it->recursionNodeStackTop > 1)) {
if (it->recursionNodeStack[--it->recursionNodeStackTop].tryRightBranch) {
x=it->recursionNodeStack[it->recursionNodeStackTop].start_node->right;
it->currentParent=it->recursionNodeStack[it->recursionNodeStackTop].parentIndex;
it->recursionNodeStack[it->currentParent].tryRightBranch=1;
stuffToDo = (x != it->nil);
}
}
}
#ifdef DEBUG_ASSERT
Assert((it->recursionNodeStackTop == 1),
"recursionStack not empty when exiting IntervalTree::Enumerate");
#endif
}
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS
static int
CheckMaxHighFieldsHelper(const IntervalTree *it, IntervalTreeNode *y,
int currentHigh, int match)
{
if (y != it->nil) {
match = CheckMaxHighFieldsHelper(it, y->left, currentHigh, match) ?
1 : match;
VERIFY(y->high <= currentHigh);
if (y->high == currentHigh)
match = 1;
match = CheckMaxHighFieldsHelper(it, y->right, currentHigh, match) ?
1 : match;
}
return match;
}
/* Make sure the maxHigh fields for everything makes sense. *
* If something is wrong, print a warning and exit */
static void
CheckMaxHighFields(const IntervalTree *it, IntervalTreeNode *x)
{
if (x != it->nil) {
CheckMaxHighFields(it, x->left);
if(!(CheckMaxHighFieldsHelper(it, x, x->maxHigh, 0) > 0)) {
fprintf(stderr, "error found in CheckMaxHighFields.\n");
abort();
}
CheckMaxHighFields(it, x->right);
}
}
static void
IT_CheckAssumptions(const IntervalTree *it)
{
VERIFY(it->nil->low == INT_MIN);
VERIFY(it->nil->high == INT_MIN);
VERIFY(it->nil->maxHigh == INT_MIN);
VERIFY(it->root->low == INT_MAX);
VERIFY(it->root->high == INT_MAX);
VERIFY(it->root->maxHigh == INT_MAX);
VERIFY(it->nil->data == NULL);
VERIFY(it->root->data == NULL);
VERIFY(it->nil->red == 0);
VERIFY(it->root->red == 0);
CheckMaxHighFields(it, it->root->left);
}
#endif