287 lines
8.2 KiB
C
287 lines
8.2 KiB
C
/* mpn_sqrtrem -- square root and remainder
|
|
|
|
Copyright 1999, 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
|
|
/* Contributed by Paul Zimmermann.
|
|
See "Karatsuba Square Root", reference in gmp.texi. */
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "mpir.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
|
|
|
|
/* Square roots table. Generated by the following program:
|
|
#include "mpir.h"
|
|
main(){mpz_t x;int i;mpz_init(x);for(i=64;i<256;i++){mpz_set_ui(x,256*i);
|
|
mpz_sqrt(x,x);mpz_out_str(0,10,x);printf(",");if(i%16==15)printf("\n");}}
|
|
*/
|
|
static const unsigned char approx_tab[192] =
|
|
{
|
|
128,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,
|
|
143,144,144,145,146,147,148,149,150,150,151,152,153,154,155,155,
|
|
156,157,158,159,160,160,161,162,163,163,164,165,166,167,167,168,
|
|
169,170,170,171,172,173,173,174,175,176,176,177,178,178,179,180,
|
|
181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,
|
|
192,192,193,193,194,195,195,196,197,197,198,199,199,200,201,201,
|
|
202,203,203,204,204,205,206,206,207,208,208,209,209,210,211,211,
|
|
212,212,213,214,214,215,215,216,217,217,218,218,219,219,220,221,
|
|
221,222,222,223,224,224,225,225,226,226,227,227,228,229,229,230,
|
|
230,231,231,232,232,233,234,234,235,235,236,236,237,237,238,238,
|
|
239,240,240,241,241,242,242,243,243,244,244,245,245,246,246,247,
|
|
247,248,248,249,249,250,250,251,251,252,252,253,253,254,254,255
|
|
};
|
|
|
|
#define HALF_NAIL (GMP_NAIL_BITS / 2)
|
|
|
|
/* same as mpn_sqrtrem, but for size=1 and {np, 1} normalized */
|
|
static mp_size_t
|
|
mpn_sqrtrem1 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
|
|
{
|
|
mp_limb_t np0, s, r, q, u;
|
|
int prec;
|
|
|
|
ASSERT (np[0] >= GMP_NUMB_HIGHBIT / 2);
|
|
ASSERT (GMP_LIMB_BITS >= 16);
|
|
|
|
/* first compute a 8-bit approximation from the high 8-bits of np[0] */
|
|
np0 = np[0] << GMP_NAIL_BITS;
|
|
q = np0 >> (GMP_LIMB_BITS - 8);
|
|
/* 2^6 = 64 <= q < 256 = 2^8 */
|
|
s = approx_tab[q - 64]; /* 128 <= s < 255 */
|
|
r = (np0 >> (GMP_LIMB_BITS - 16)) - s * s; /* r <= 2*s */
|
|
if (r > 2 * s)
|
|
{
|
|
r -= 2 * s + 1;
|
|
s++;
|
|
}
|
|
|
|
prec = 8;
|
|
np0 <<= 2 * prec;
|
|
while (2 * prec < GMP_LIMB_BITS)
|
|
{
|
|
/* invariant: s has prec bits, and r <= 2*s */
|
|
r = (r << prec) + (np0 >> (GMP_LIMB_BITS - prec));
|
|
np0 <<= prec;
|
|
u = 2 * s;
|
|
q = r / u;
|
|
u = r - q * u;
|
|
s = (s << prec) + q;
|
|
u = (u << prec) + (np0 >> (GMP_LIMB_BITS - prec));
|
|
q = q * q;
|
|
r = u - q;
|
|
if (u < q)
|
|
{
|
|
r += 2 * s - 1;
|
|
s --;
|
|
}
|
|
np0 <<= prec;
|
|
prec = 2 * prec;
|
|
}
|
|
|
|
ASSERT (2 * prec == GMP_LIMB_BITS); /* GMP_LIMB_BITS must be a power of 2 */
|
|
|
|
/* normalize back, assuming GMP_NAIL_BITS is even */
|
|
ASSERT (GMP_NAIL_BITS % 2 == 0);
|
|
sp[0] = s >> HALF_NAIL;
|
|
u = s - (sp[0] << HALF_NAIL); /* s mod 2^HALF_NAIL */
|
|
r += u * ((sp[0] << (HALF_NAIL + 1)) + u);
|
|
r = r >> GMP_NAIL_BITS;
|
|
|
|
if (rp != NULL)
|
|
rp[0] = r;
|
|
return r != 0 ? 1 : 0;
|
|
}
|
|
|
|
|
|
#define Prec (GMP_NUMB_BITS >> 1)
|
|
|
|
/* same as mpn_sqrtrem, but for size=2 and {np, 2} normalized
|
|
return cc such that {np, 2} = sp[0]^2 + cc*2^GMP_NUMB_BITS + rp[0] */
|
|
static mp_limb_t
|
|
mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
|
|
{
|
|
mp_limb_t qhl, q, u, np0;
|
|
int cc;
|
|
|
|
ASSERT (np[1] >= GMP_NUMB_HIGHBIT / 2);
|
|
|
|
np0 = np[0];
|
|
mpn_sqrtrem1 (sp, rp, np + 1);
|
|
qhl = 0;
|
|
while (rp[0] >= sp[0])
|
|
{
|
|
qhl++;
|
|
rp[0] -= sp[0];
|
|
}
|
|
/* now rp[0] < sp[0] < 2^Prec */
|
|
rp[0] = (rp[0] << Prec) + (np0 >> Prec);
|
|
u = 2 * sp[0];
|
|
q = rp[0] / u;
|
|
u = rp[0] - q * u;
|
|
q += (qhl & 1) << (Prec - 1);
|
|
qhl >>= 1; /* if qhl=1, necessary q=0 as qhl*2^Prec + q <= 2^Prec */
|
|
/* now we have (initial rp[0])<<Prec + np0>>Prec = (qhl<<Prec + q) * (2sp[0]) + u */
|
|
sp[0] = ((sp[0] + qhl) << Prec) + q;
|
|
cc = u >> Prec;
|
|
rp[0] = ((u << Prec) & GMP_NUMB_MASK) + (np0 & (((mp_limb_t) 1 << Prec) - 1));
|
|
/* subtract q * q or qhl*2^(2*Prec) from rp */
|
|
cc -= mpn_sub_1 (rp, rp, 1, q * q) + qhl;
|
|
/* now subtract 2*q*2^Prec + 2^(2*Prec) if qhl is set */
|
|
if (cc < 0)
|
|
{
|
|
cc += sp[0] != 0 ? mpn_add_1 (rp, rp, 1, sp[0]) : 1;
|
|
cc += mpn_add_1 (rp, rp, 1, --sp[0]);
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n},
|
|
and in {np, n} the low n limbs of the remainder, returns the high
|
|
limb of the remainder (which is 0 or 1).
|
|
Assumes {np, 2n} is normalized, i.e. np[2n-1] >= B/4
|
|
where B=2^GMP_NUMB_BITS. */
|
|
static mp_limb_t
|
|
mpn_dc_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n)
|
|
{
|
|
mp_limb_t q; /* carry out of {sp, n} */
|
|
int c, b; /* carry out of remainder */
|
|
mp_size_t l, h;
|
|
|
|
ASSERT (np[2 * n - 1] >= GMP_NUMB_HIGHBIT / 2);
|
|
|
|
if (n == 1)
|
|
c = mpn_sqrtrem2 (sp, np, np);
|
|
else
|
|
{
|
|
l = n / 2;
|
|
h = n - l;
|
|
q = mpn_dc_sqrtrem (sp + l, np + 2 * l, h);
|
|
if (q != 0)
|
|
mpn_sub_n (np + 2 * l, np + 2 * l, sp + l, h);
|
|
q += mpn_divrem (sp, 0, np + l, n, sp + l, h);
|
|
c = sp[0] & 1;
|
|
mpn_rshift1 (sp, sp, l);
|
|
sp[l - 1] |= (q << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK;
|
|
q >>= 1;
|
|
if (c != 0)
|
|
c = mpn_add_n (np + l, np + l, sp + l, h);
|
|
mpn_sqr_n (np + n, sp, l);
|
|
b = q + mpn_sub_n (np, np, np + n, 2 * l);
|
|
c -= (l == h) ? b : mpn_sub_1 (np + 2 * l, np + 2 * l, 1, (mp_limb_t) b);
|
|
q = mpn_add_1 (sp + l, sp + l, h, q);
|
|
|
|
if (c < 0)
|
|
{
|
|
c += mpn_addmul_1 (np, sp, n, CNST_LIMB(2)) + 2 * q;
|
|
c -= mpn_sub_1 (np, np, n, CNST_LIMB(1));
|
|
q -= mpn_sub_1 (sp, sp, n, CNST_LIMB(1));
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
mp_size_t
|
|
mpn_sqrtrem (mp_ptr sp, mp_ptr rp, mp_srcptr np, mp_size_t nn)
|
|
{
|
|
mp_limb_t *tp, s0[1], cc, high, rl;
|
|
int c;
|
|
mp_size_t rn, tn;
|
|
TMP_DECL;
|
|
|
|
ASSERT (nn >= 0);
|
|
ASSERT_MPN (np, nn);
|
|
|
|
/* If OP is zero, both results are zero. */
|
|
if (nn == 0)
|
|
return 0;
|
|
|
|
ASSERT (np[nn - 1] != 0);
|
|
ASSERT (rp == NULL || MPN_SAME_OR_SEPARATE_P (np, rp, nn));
|
|
ASSERT (rp == NULL || ! MPN_OVERLAP_P (sp, (nn + 1) / 2, rp, nn));
|
|
ASSERT (! MPN_OVERLAP_P (sp, (nn + 1) / 2, np, nn));
|
|
|
|
high = np[nn - 1];
|
|
if (nn == 1 && (high & GMP_NUMB_HIGHBIT))
|
|
return mpn_sqrtrem1 (sp, rp, np);
|
|
count_leading_zeros (c, high);
|
|
c -= GMP_NAIL_BITS;
|
|
|
|
c = c / 2; /* we have to shift left by 2c bits to normalize {np, nn} */
|
|
tn = (nn + 1) / 2; /* 2*tn is the smallest even integer >= nn */
|
|
|
|
TMP_MARK;
|
|
if (nn % 2 != 0 || c > 0)
|
|
{
|
|
tp = TMP_ALLOC_LIMBS (2 * tn);
|
|
tp[0] = 0; /* needed only when 2*tn > nn, but saves a test */
|
|
if (c != 0)
|
|
mpn_lshift (tp + 2 * tn - nn, np, nn, 2 * c);
|
|
else
|
|
MPN_COPY (tp + 2 * tn - nn, np, nn);
|
|
rl = mpn_dc_sqrtrem (sp, tp, tn);
|
|
/* We have 2^(2k)*N = S^2 + R where k = c + (2tn-nn)*GMP_NUMB_BITS/2,
|
|
thus 2^(2k)*N = (S-s0)^2 + 2*S*s0 - s0^2 + R where s0=S mod 2^k */
|
|
c += (nn % 2) * GMP_NUMB_BITS / 2; /* c now represents k */
|
|
s0[0] = sp[0] & (((mp_limb_t) 1 << c) - 1); /* S mod 2^k */
|
|
rl += mpn_addmul_1 (tp, sp, tn, 2 * s0[0]); /* R = R + 2*s0*S */
|
|
cc = mpn_submul_1 (tp, s0, 1, s0[0]);
|
|
rl -= (tn > 1) ? mpn_sub_1 (tp + 1, tp + 1, tn - 1, cc) : cc;
|
|
mpn_rshift (sp, sp, tn, c);
|
|
tp[tn] = rl;
|
|
if (rp == NULL)
|
|
rp = tp;
|
|
c = c << 1;
|
|
if (c < GMP_NUMB_BITS)
|
|
tn++;
|
|
else
|
|
{
|
|
tp++;
|
|
c -= GMP_NUMB_BITS;
|
|
}
|
|
if (c != 0)
|
|
mpn_rshift (rp, tp, tn, c);
|
|
else
|
|
MPN_COPY_INCR (rp, tp, tn);
|
|
rn = tn;
|
|
}
|
|
else
|
|
{
|
|
if (rp == NULL)
|
|
rp = TMP_ALLOC_LIMBS (nn);
|
|
if (rp != np)
|
|
MPN_COPY (rp, np, nn);
|
|
rn = tn + (rp[tn] = mpn_dc_sqrtrem (sp, rp, tn));
|
|
}
|
|
|
|
MPN_NORMALIZE (rp, rn);
|
|
|
|
TMP_FREE;
|
|
return rn;
|
|
}
|