mpir/mpz/probable_prime_p.c
2014-02-16 17:23:27 +00:00

122 lines
2.7 KiB
C

/*
Copyright 2009 Jason Moxham
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "mpir.h"
#include "gmp-impl.h"
int
mpz_probable_prime_p (mpz_srcptr N, gmp_randstate_t STATE, int PROB, mpir_ui td)
{
int d, t, i, r;
mpz_t base, nm1, x, e, n;
ALLOC(n) = ALLOC(N);
SIZ(n) = ABSIZ(N);
PTR(n) = PTR(N); /* fake up an absolute value that we dont have de-allocate */
/* algorithm dose not handle small values, get rid of them here */
if (mpz_cmp_ui(n, 2) == 0 || mpz_cmp_ui(n, 3) == 0)
return 1;
if (mpz_cmp_ui(n, 5) < 0 || mpz_even_p(n))
return 0;
/*
We assume we know nothing about N, i.e. it is a random integer
So we try here anything which speeds up the average case
We try some trial division
*/
#define LIM 1024
d = mpz_trial_division(n, 3, LIM);
if (d != 0)
{
if (mpz_cmp_ui(n, d) == 0)
return 1;
return 0;
}
if (mpz_cmp_ui(n, LIM * LIM) < 0)
return 1;
ASSERT (mpz_odd_p(n));
ASSERT (mpz_cmp_ui(n, 5) >= 0);
/* now do some random strong pseudoprime tests */
mpz_init(base);
mpz_init_set(nm1, n);
mpz_sub_ui(nm1, nm1, 1);
mpz_init(e);
mpz_init(x);
t = mpz_scan1(nm1, 0); /* 2^t divides nm1 */
ASSERT (t > 0);
mpz_tdiv_q_2exp (e, nm1, t); /* e = nm1/2^t */
r = 1;
while (PROB > 0)
{
PROB -= 2;
do
{
mpz_urandomm (base, STATE, nm1);
} while (mpz_cmp_ui (base, 1) <= 0);
mpz_powm (x, base, e, n); /* x = base^e mod n */
if (mpz_cmp_ui(x, 1) == 0 || mpz_cmp(x, nm1) == 0)
continue;
for (i = t - 1; i > 0; i--)
{
mpz_mul(x, x, x);
mpz_mod(x, x, n);
if (mpz_cmp(x, nm1) == 0)
break;
if (mpz_cmp_ui(x, 1) == 0)
{
r = 0;
break;
}
}
if (i == 0 || r == 0)
{
r = 0;
break;
}
}
mpz_clear (nm1);
mpz_clear (x);
mpz_clear (e);
mpz_clear (base);
return r;
}