mpir/tests/devel/try.c
2010-12-16 23:02:29 +00:00

3618 lines
86 KiB
C

/* Run some tests on various mpn routines.
THIS IS A TEST PROGRAM USED ONLY FOR DEVELOPMENT. IT'S ALMOST CERTAIN TO
BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE VERSIONS OF GMP.
Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/* Usage: try [options] <function>...
For example, "./try mpn_add_n" to run tests of that function.
Combinations of alignments and overlaps are tested, with redzones above
or below the destinations, and with the sources write-protected.
The number of tests performed becomes ridiculously large with all the
combinations, and for that reason this can't be a part of a "make check",
it's meant only for development. The code isn't very pretty either.
During development it can help to disable the redzones, since seeing the
rest of the destination written can show where the wrong part is, or if
the dst pointers are off by 1 or whatever. The magic DEADVAL initial
fill (see below) will show locations never written.
The -s option can be used to test only certain size operands, which is
useful if some new code doesn't yet support say sizes less than the
unrolling, or whatever.
When a problem occurs it'll of course be necessary to run the program
under gdb to find out quite where, how and why it's going wrong. Disable
the spinner with the -W option when doing this, or single stepping won't
work. Using the "-1" option to run with simple data can be useful.
New functions to test can be added in try_array[]. If a new TYPE is
required then add it to the existing constants, set up its parameters in
param_init(), and add it to the call() function. Extra parameter fields
can be added if necessary, or further interpretations given to existing
fields.
Enhancements:
umul_ppmm support is not very good, lots of source data is generated
whereas only two limbs are needed.
Make a little scheme for interpreting the "SIZE" selections uniformly.
Make tr->size==SIZE_2 work, for the benefit of find_a which wants just 2
source limbs. Possibly increase the default repetitions in that case.
Automatically detect gdb and disable the spinner (use -W for now).
Make a way to re-run a failing case in the debugger. Have an option to
snapshot each test case before it's run so the data is available if a
segv occurs. (This should be more reliable than the current print_all()
in the signal handler.)
When alignment means a dst isn't hard against the redzone, check the
space in between remains unchanged.
When a source overlaps a destination, don't run both s[i].high 0 and 1,
as s[i].high has no effect. Maybe encode s[i].high into overlap->s[i].
When partial overlaps aren't done, don't loop over source alignments
during overlaps.
Try to make the looping code a bit less horrible. Right now it's pretty
hard to see what iterations are actually done.
Perhaps specific setups and loops for each style of function under test
would be clearer than a parameterized general loop. There's lots of
stuff common to all functions, but the exceptions get messy.
When there's no overlap, run with both src>dst and src<dst. A subtle
calling-conventions violation occured in a P6 copy which depended on the
relative location of src and dst.
multiplier_N is more or less a third source region for the addmul_N
routines, and could be done with the redzoned region scheme.
*/
/* always do assertion checking */
#define WANT_ASSERT 1
#include "config.h"
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#if defined( _MSC_VER )
#define WINDOWS_LEAN_AND_MEAN
#include <windows.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "tests.h"
#if !HAVE_DECL_OPTARG
extern char *optarg;
extern int optind, opterr;
#endif
#if ! HAVE_DECL_SYS_NERR
extern int sys_nerr;
#endif
#if ! HAVE_DECL_SYS_ERRLIST && !defined( _MSC_VER )
extern char *sys_errlist[];
#endif
#if ! HAVE_STRERROR
char *
strerror (int n)
{
if (n < 0 || n >= sys_nerr)
return "errno out of range";
else
return sys_errlist[n];
}
#endif
/* Rumour has it some systems lack a define of PROT_NONE. */
#ifndef PROT_NONE
#define PROT_NONE 0
#endif
/* Dummy defines for when mprotect doesn't exist. */
#ifndef PROT_READ
#define PROT_READ 0
#endif
#ifndef PROT_WRITE
#define PROT_WRITE 0
#endif
/* _SC_PAGESIZE is standard, but hpux 9 and possibly other systems have
_SC_PAGE_SIZE instead. */
#if defined (_SC_PAGE_SIZE) && ! defined (_SC_PAGESIZE)
#define _SC_PAGESIZE _SC_PAGE_SIZE
#endif
#ifdef EXTRA_PROTOS
EXTRA_PROTOS
#endif
#ifdef EXTRA_PROTOS2
EXTRA_PROTOS2
#endif
#define DEFAULT_REPETITIONS 10
int option_repetitions = DEFAULT_REPETITIONS;
int option_spinner = 1;
int option_redzones = 1;
int option_firstsize = 0;
int option_lastsize = 500;
int option_firstsize2 = 0;
#define ALIGNMENTS 4
#define OVERLAPS 4
#define CARRY_RANDOMS 5
#define MULTIPLIER_RANDOMS 5
#define DIVISOR_RANDOMS 5
#define FRACTION_COUNT 4
int option_print = 0;
#define DATA_TRAND 0
#define DATA_ZEROS 1
#define DATA_SEQ 2
#define DATA_FFS 3
#define DATA_2FD 4
int option_data = DATA_TRAND;
mp_size_t pagesize;
#define PAGESIZE_LIMBS (pagesize / BYTES_PER_MP_LIMB)
/* must be a multiple of the page size */
#define REDZONE_BYTES (pagesize * 16)
#define REDZONE_LIMBS (REDZONE_BYTES / BYTES_PER_MP_LIMB)
#define MAX3(x,y,z) (MAX (x, MAX (y, z)))
#if BITS_PER_MP_LIMB == 32
#define DEADVAL CNST_LIMB(0xDEADBEEF)
#else
#define DEADVAL CNST_LIMB(0xDEADBEEFBADDCAFE)
#endif
struct region_t {
mp_ptr ptr;
mp_size_t size;
};
#define TRAP_NOWHERE 0
#define TRAP_REF 1
#define TRAP_FUN 2
#define TRAP_SETUPS 3
int trap_location = TRAP_NOWHERE;
#define NUM_SOURCES 3
#define NUM_DESTS 2
struct source_t {
struct region_t region;
int high;
mp_size_t align;
mp_ptr p;
};
struct source_t s[NUM_SOURCES];
struct dest_t {
int high;
mp_size_t align;
mp_size_t size;
};
struct dest_t d[NUM_DESTS];
struct source_each_t {
mp_ptr p;
};
struct dest_each_t {
struct region_t region;
mp_ptr p;
};
mp_size_t size;
mp_size_t size2;
unsigned long shift;
mp_limb_t carry;
mp_limb_t divisor;
mp_limb_t altdiv;
mp_limb_t multiplier;
mp_limb_t multiplier_N[8];
struct each_t {
const char *name;
struct dest_each_t d[NUM_DESTS];
struct source_each_t s[NUM_SOURCES];
mp_limb_t retval;
};
struct each_t ref = { "Ref" };
struct each_t fun = { "Fun" };
#define SRC_SIZE(n) ((n) == 1 && tr->size2 ? size2 : size)
void validate_fail _PROTO ((void));
#if HAVE_TRY_NEW_C
#include "try-new.c"
#endif
typedef mp_limb_t (*tryfun_t) _PROTO ((ANYARGS));
struct try_t {
char retval;
char src[NUM_SOURCES];
char dst[NUM_DESTS];
#define SIZE_YES 1
#define SIZE_ALLOW_ZERO 2
#define SIZE_1 3 /* 1 limb */
#define SIZE_2 4 /* 2 limbs */
#define SIZE_3 5 /* 3 limbs */
#define SIZE_4 20 /* 4 limbs */
#define SIZE_FRACTION 6 /* size2 is fraction for divrem etc */
#define SIZE_SIZE2 7
#define SIZE_PLUS_1 8
#define SIZE_PLUS_2 9
#define SIZE_SUM 10
#define SIZE_DIFF 11
#define SIZE_DIFF_PLUS_1 12
#define SIZE_DIFF_PLUS_3 13
#define SIZE_RETVAL 14
#define SIZE_CEIL_HALF 15
#define SIZE_GET_STR 16
#define SIZE_PLUS_MSIZE_SUB_1 17 /* size+msize-1 */
#define SIZE_DOUBLE 18
#define SIZE_DOUBLE_MINUS_1 19
char size;
char size2;
char dst_size[NUM_DESTS];
/* multiplier_N size in limbs */
mp_size_t msize;
char dst_bytes[NUM_DESTS];
char dst0_from_src1;
#define CARRY_BIT 1 /* single bit 0 or 1 */
#define CARRY_3 2 /* 0, 1, 2 */
#define CARRY_4 3 /* 0 to 3 */
#define CARRY_LIMB 4 /* any limb value */
#define CARRY_DIVISOR 5 /* carry<divisor */
char carry;
/* a fudge to tell the output when to print negatives */
char carry_sign;
char multiplier;
char shift;
#define DIVISOR_LIMB 1
#define DIVISOR_NORM 2
#define DIVISOR_ODD 3
#define DIVISOR_DIVBM1 4
char divisor;
#define DATA_NON_ZERO 1
#define DATA_GCD 2
#define DATA_SRC1_ODD 3
#define DATA_SRC1_HIGHBIT 4
#define DATA_MULTIPLE_DIVISOR 5
#define DATA_UDIV_QRNND 6
#define DATA_SRC0_ODD 7
char data;
/* Default is allow full overlap. */
#define OVERLAP_NONE 1
#define OVERLAP_LOW_TO_HIGH 2
#define OVERLAP_HIGH_TO_LOW 3
#define OVERLAP_NOT_SRCS 4
#define OVERLAP_NOT_SRC2 8
char overlap;
tryfun_t reference;
const char *reference_name;
void (*validate) _PROTO ((void));
const char *validate_name;
};
struct try_t *tr;
void
validate_mod_34lsub1 (void)
{
#define CNST_34LSUB1 ((CNST_LIMB(1) << (3 * (GMP_NUMB_BITS / 4))) - 1)
mp_srcptr ptr = s[0].p;
int error = 0;
mp_limb_t got, got_mod, want, want_mod;
ASSERT (size >= 1);
got = fun.retval;
got_mod = got % CNST_34LSUB1;
want = refmpn_mod_34lsub1 (ptr, size);
want_mod = want % CNST_34LSUB1;
if (got_mod != want_mod)
{
gmp_printf ("got 0x%MX reduced from 0x%MX\n", got_mod, got);
gmp_printf ("want 0x%MX reduced from 0x%MX\n", want_mod, want);
error = 1;
}
if (error)
validate_fail ();
}
void
validate_divexact_1 (void)
{
mp_srcptr src = s[0].p;
mp_srcptr dst = fun.d[0].p;
int error = 0;
ASSERT (size >= 1);
{
mp_ptr tp = refmpn_malloc_limbs (size);
mp_limb_t rem;
rem = refmpn_divrem_1 (tp, 0, src, size, divisor);
if (rem != 0)
{
gmp_printf ("Remainder a%%d == 0x%MX, mpn_divexact_1 undefined\n", rem);
error = 1;
}
if (! refmpn_equal_anynail (tp, dst, size))
{
printf ("Quotient a/d wrong\n");
mpn_trace ("fun ", dst, size);
mpn_trace ("want", tp, size);
error = 1;
}
free (tp);
}
if (error)
validate_fail ();
}
void
validate_modexact_1c_odd (void)
{
mp_srcptr ptr = s[0].p;
mp_limb_t r = fun.retval;
int error = 0;
ASSERT (size >= 1);
ASSERT (divisor & 1);
if ((r & GMP_NAIL_MASK) != 0)
printf ("r has non-zero nail\n");
if (carry < divisor)
{
if (! (r < divisor))
{
printf ("Don't have r < divisor\n");
error = 1;
}
}
else /* carry >= divisor */
{
if (! (r <= divisor))
{
printf ("Don't have r <= divisor\n");
error = 1;
}
}
{
mp_limb_t c = carry % divisor;
mp_ptr tp = refmpn_malloc_limbs (size+1);
mp_size_t k;
for (k = size-1; k <= size; k++)
{
/* set {tp,size+1} to r*b^k + a - c */
refmpn_copyi (tp, ptr, size);
tp[size] = 0;
ASSERT_NOCARRY (refmpn_add_1 (tp+k, tp+k, size+1-k, r));
if (refmpn_sub_1 (tp, tp, size+1, c))
ASSERT_CARRY (mpn_add_1 (tp, tp, size+1, divisor));
if (refmpn_mod_1 (tp, size+1, divisor) == 0)
goto good_remainder;
}
printf ("Remainder matches neither r*b^(size-1) nor r*b^size\n");
error = 1;
good_remainder:
free (tp);
}
if (error)
validate_fail ();
}
void
validate_modexact_1_odd (void)
{
carry = 0;
validate_modexact_1c_odd ();
}
void
validate_sqrtrem (void)
{
mp_srcptr orig_ptr = s[0].p;
mp_size_t orig_size = size;
mp_size_t root_size = (size+1)/2;
mp_srcptr root_ptr = fun.d[0].p;
mp_size_t rem_size = fun.retval;
mp_srcptr rem_ptr = fun.d[1].p;
mp_size_t prod_size = 2*root_size;
mp_ptr p;
int error = 0;
if (rem_size < 0 || rem_size > size)
{
printf ("Bad remainder size retval %ld\n", (long) rem_size);
validate_fail ();
}
p = refmpn_malloc_limbs (prod_size);
p[root_size] = refmpn_lshift (p, root_ptr, root_size, 1);
if (refmpn_cmp_twosizes (p,root_size+1, rem_ptr,rem_size) < 0)
{
printf ("Remainder bigger than 2*root\n");
error = 1;
}
refmpn_sqr (p, root_ptr, root_size);
if (rem_size != 0)
refmpn_add (p, p, prod_size, rem_ptr, rem_size);
if (refmpn_cmp_twosizes (p,prod_size, orig_ptr,orig_size) != 0)
{
printf ("root^2+rem != original\n");
mpn_trace ("prod", p, prod_size);
error = 1;
}
free (p);
if (error)
validate_fail ();
}
/* These types are indexes into the param[] array and are arbitrary so long
as they're all distinct and within the size of param[]. Renumber
whenever necessary or desired. */
#define TYPE_ADD 1
#define TYPE_ADD_N 2
#define TYPE_ADD_NC 3
#define TYPE_SUB 4
#define TYPE_SUB_N 5
#define TYPE_SUB_NC 6
#define TYPE_MUL_1 7
#define TYPE_MUL_1C 8
#define TYPE_MUL_2 9
#define TYPE_ADDMUL_1 10
#define TYPE_ADDMUL_1C 11
#define TYPE_SUBMUL_1 12
#define TYPE_SUBMUL_1C 13
#define TYPE_ADDMUL_2 14
#define TYPE_ADDMUL_3 15
#define TYPE_ADDMUL_4 16
#define TYPE_ADDMUL_5 17
#define TYPE_ADDMUL_6 18
#define TYPE_ADDMUL_7 19
#define TYPE_ADDMUL_8 20
#define TYPE_SUMDIFF_N 21
#define TYPE_SUMDIFF_NC 22
#define TYPE_RSHIFT 23
#define TYPE_LSHIFT 24
#define TYPE_COPY 25
#define TYPE_COPYI 26
#define TYPE_COPYD 27
#define TYPE_COM_N 28
#define TYPE_ADDLSH1_N 30
#define TYPE_SUBLSH1_N 31
#define TYPE_RSH1ADD_N 32
#define TYPE_RSH1SUB_N 33
#define TYPE_MOD_1 35
#define TYPE_MOD_1C 36
#define TYPE_DIVMOD_1 37
#define TYPE_DIVMOD_1C 38
#define TYPE_DIVREM_1 39
#define TYPE_DIVREM_1C 40
#define TYPE_PREINV_DIVREM_1 41
#define TYPE_PREINV_MOD_1 42
#define TYPE_MOD_34LSUB1 43
#define TYPE_UDIV_QRNND 44
#define TYPE_UDIV_QRNND_R 45
#define TYPE_DIVEXACT_1 50
#define TYPE_DIVEXACT_BY3 51
#define TYPE_DIVEXACT_BY3C 52
#define TYPE_MODEXACT_1_ODD 53
#define TYPE_MODEXACT_1C_ODD 54
#define TYPE_GCD 60
#define TYPE_GCD_1 61
#define TYPE_GCD_FINDA 62
#define TYPE_MPZ_JACOBI 63
#define TYPE_MPZ_KRONECKER 64
#define TYPE_MPZ_KRONECKER_UI 65
#define TYPE_MPZ_KRONECKER_SI 66
#define TYPE_MPZ_UI_KRONECKER 67
#define TYPE_MPZ_SI_KRONECKER 68
#define TYPE_AND_N 70
#define TYPE_NAND_N 71
#define TYPE_ANDN_N 72
#define TYPE_IOR_N 73
#define TYPE_IORN_N 74
#define TYPE_NIOR_N 75
#define TYPE_XOR_N 76
#define TYPE_XNOR_N 77
#define TYPE_MUL_BASECASE 80
#define TYPE_MUL_N 81
#define TYPE_MULMID_BASECASE 82
#define TYPE_MULMID 83
#define TYPE_MULMID_N 84
#define TYPE_SQR 85
#define TYPE_UMUL_PPMM 86
#define TYPE_UMUL_PPMM_R 87
#define TYPE_SB_DIVREM_MN 90
#define TYPE_TDIV_QR 91
#define TYPE_TDIV_Q 92
#define TYPE_SQRTREM 100
#define TYPE_ZERO 101
#define TYPE_GET_STR 102
#define TYPE_POPCOUNT 103
#define TYPE_HAMDIST 104
#define TYPE_DIVEXACT_BYFF 105
#define TYPE_LSHIFT1 106
#define TYPE_RSHIFT1 107
#define TYPE_ADDADD_N 108
#define TYPE_ADDSUB_N 109
#define TYPE_SUBADD_N 110
#define TYPE_REDC_BASECASE 111
#define TYPE_DIVREM_EUCLIDEAN_QR_1 112
#define TYPE_DIVREM_EUCLIDEAN_R_1 113
#define TYPE_DIVEXACT_BYFOBM1 114
#define TYPE_LSHIFT2 115
#define TYPE_RSHIFT2 116
#define TYPE_STORE 117
#define TYPE_LSHIFTC 118
//#define TYPE_DIVREM_EUCLIDEAN_QR_2 118
#define TYPE_ADDLSH_N 120
#define TYPE_SUBLSH_N 121
#define TYPE_INCLSH_N 122
#define TYPE_DECLSH_N 123
#define TYPE_ADDERR1_N 124
#define TYPE_SUBERR1_N 125
#define TYPE_ADDERR2_N 126
#define TYPE_SUBERR2_N 127
#define TYPE_ADDLSH_NC 128
#define TYPE_SUBLSH_NC 129
#define TYPE_DIVREM_HENSEL_QR_1 130
#define TYPE_DIVREM_HENSEL_QR_1_1 131
#define TYPE_DIVREM_HENSEL_QR_1_2 132
#define TYPE_DIVREM_HENSEL_R_1 133
#define TYPE_RSH_DIVREM_HENSEL_QR_1 134
#define TYPE_RSH_DIVREM_HENSEL_QR_1_1 135
#define TYPE_RSH_DIVREM_HENSEL_QR_1_2 136
#define TYPE_DIVREM_HENSEL_RSH_QR_1 137
#define TYPE_NOT 138
#define TYPE_EXTRA 150
struct try_t param[150];
void
param_init (void)
{
struct try_t *p;
#define COPY(index) memcpy (p, &param[index], sizeof (*p))
#if HAVE_STRINGIZE
#define REFERENCE(fun) \
p->reference = (tryfun_t) fun; \
p->reference_name = #fun
#define VALIDATE(fun) \
p->validate = fun; \
p->validate_name = #fun
#else
#define REFERENCE(fun) \
p->reference = (tryfun_t) fun; \
p->reference_name = "fun"
#define VALIDATE(fun) \
p->validate = fun; \
p->validate_name = "fun"
#endif
p = &param[TYPE_ADD_N];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
REFERENCE (refmpn_add_n);
p = &param[TYPE_ADD_NC];
COPY (TYPE_ADD_N);
p->carry = CARRY_BIT;
REFERENCE (refmpn_add_nc);
p = &param[TYPE_SUB_N];
COPY (TYPE_ADD_N);
REFERENCE (refmpn_sub_n);
p = &param[TYPE_SUB_NC];
COPY (TYPE_ADD_NC);
REFERENCE (refmpn_sub_nc);
p = &param[TYPE_ADD];
COPY (TYPE_ADD_N);
p->size = SIZE_ALLOW_ZERO;
p->size2 = 1;
REFERENCE (refmpn_add);
p = &param[TYPE_SUB];
COPY (TYPE_ADD);
REFERENCE (refmpn_sub);
p = &param[TYPE_MUL_1];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->multiplier = 1;
p->overlap = OVERLAP_LOW_TO_HIGH;
REFERENCE (refmpn_mul_1);
p = &param[TYPE_MUL_1C];
COPY (TYPE_MUL_1);
p->carry = CARRY_LIMB;
REFERENCE (refmpn_mul_1c);
p = &param[TYPE_MUL_2];
p->retval = 1;
p->dst[0] = 1;
p->dst_size[0] = SIZE_PLUS_MSIZE_SUB_1;
p->src[0] = 1;
p->src[1] = 1;
p->msize = 2;
p->overlap = OVERLAP_NOT_SRC2;
REFERENCE (refmpn_mul_2);
p = &param[TYPE_ADDMUL_1];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->multiplier = 1;
p->dst0_from_src1 = 1;
REFERENCE (refmpn_addmul_1);
p = &param[TYPE_ADDMUL_1C];
COPY (TYPE_ADDMUL_1);
p->carry = CARRY_LIMB;
REFERENCE (refmpn_addmul_1c);
p = &param[TYPE_SUBMUL_1];
COPY (TYPE_ADDMUL_1);
REFERENCE (refmpn_submul_1);
p = &param[TYPE_SUBMUL_1C];
COPY (TYPE_ADDMUL_1C);
REFERENCE (refmpn_submul_1c);
p = &param[TYPE_ADDMUL_2];
p->retval = 1;
p->dst[0] = 1;
p->dst_size[0] = SIZE_PLUS_MSIZE_SUB_1;
p->src[0] = 1;
p->src[1] = 1;
p->msize = 2;
p->dst0_from_src1 = 1;
p->overlap = OVERLAP_NOT_SRC2;
REFERENCE (refmpn_addmul_2);
p = &param[TYPE_ADDMUL_3];
COPY (TYPE_ADDMUL_2);
p->msize = 3;
REFERENCE (refmpn_addmul_3);
p = &param[TYPE_ADDMUL_4];
COPY (TYPE_ADDMUL_2);
p->msize = 4;
REFERENCE (refmpn_addmul_4);
p = &param[TYPE_ADDMUL_5];
COPY (TYPE_ADDMUL_2);
p->msize = 5;
REFERENCE (refmpn_addmul_5);
p = &param[TYPE_ADDMUL_6];
COPY (TYPE_ADDMUL_2);
p->msize = 6;
REFERENCE (refmpn_addmul_6);
p = &param[TYPE_ADDMUL_7];
COPY (TYPE_ADDMUL_2);
p->msize = 7;
REFERENCE (refmpn_addmul_7);
p = &param[TYPE_ADDMUL_8];
COPY (TYPE_ADDMUL_2);
p->msize = 8;
REFERENCE (refmpn_addmul_8);
p = &param[TYPE_AND_N];
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
REFERENCE (refmpn_and_n);
p = &param[TYPE_ANDN_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_andn_n);
p = &param[TYPE_NAND_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_nand_n);
p = &param[TYPE_IOR_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_ior_n);
p = &param[TYPE_IORN_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_iorn_n);
p = &param[TYPE_NIOR_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_nior_n);
p = &param[TYPE_XOR_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_xor_n);
p = &param[TYPE_XNOR_N];
COPY (TYPE_AND_N);
REFERENCE (refmpn_xnor_n);
p = &param[TYPE_SUMDIFF_N];
p->retval = 1;
p->dst[0] = 1;
p->dst[1] = 1;
p->src[0] = 1;
p->src[1] = 1;
REFERENCE (refmpn_sumdiff_n);
p = &param[TYPE_ADDERR1_N];
p->retval=1;
p->dst[0]=1;
p->dst[1]=1;
p->dst_size[1]=SIZE_2;
p->src[0]=1;
p->src[1]=1;
p->src[2]=1;
p->carry=CARRY_BIT;
p->overlap=OVERLAP_NONE;
REFERENCE (refmpn_add_err1_n);
p = &param[TYPE_SUBERR1_N];
p->retval=1;
p->dst[0]=1;
p->dst[1]=1;
p->dst_size[1]=SIZE_2;
p->src[0]=1;
p->src[1]=1;
p->src[2]=1;
p->carry=CARRY_BIT;
p->overlap=OVERLAP_NONE;
REFERENCE (refmpn_sub_err1_n);
p = &param[TYPE_ADDERR2_N];
p->retval=1;
p->dst[0]=1;
p->dst[1]=1;
p->dst_size[1]=SIZE_4;
p->src[0]=1;
p->src[1]=1;
p->src[2]=1;
p->src[3]=1;//FIXME
p->carry=CARRY_BIT;
p->overlap=OVERLAP_NONE;
REFERENCE (refmpn_add_err2_n);
p = &param[TYPE_SUBERR2_N];
p->retval=1;
p->dst[0]=1;
p->dst[1]=1;
p->dst_size[1]=SIZE_4;
p->src[0]=1;
p->src[1]=1;
p->src[2]=1;
p->src[3]=1;//FIXME
p->carry=CARRY_BIT;
p->overlap=OVERLAP_NONE;
REFERENCE (refmpn_sub_err2_n);
p = &param[TYPE_SUMDIFF_NC];
COPY (TYPE_SUMDIFF_N);
p->carry = CARRY_4;
REFERENCE (refmpn_sumdiff_nc);
p = &param[TYPE_ADDADD_N];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->src[2] = 1;
REFERENCE (refmpn_addadd_n);
p = &param[TYPE_ADDSUB_N];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->src[2] = 1;
REFERENCE (refmpn_addsub_n);
p = &param[TYPE_SUBADD_N];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->src[2] = 1;
REFERENCE (refmpn_subadd_n);
p = &param[TYPE_COPY];
p->dst[0] = 1;
p->src[0] = 1;
p->overlap = OVERLAP_NONE;
p->size = SIZE_ALLOW_ZERO;
REFERENCE (refmpn_copy);
p = &param[TYPE_COPYI];
p->dst[0] = 1;
p->src[0] = 1;
p->overlap = OVERLAP_LOW_TO_HIGH;
p->size = SIZE_ALLOW_ZERO;
REFERENCE (refmpn_copyi);
p = &param[TYPE_COPYD];
p->dst[0] = 1;
p->src[0] = 1;
p->overlap = OVERLAP_HIGH_TO_LOW;
p->size = SIZE_ALLOW_ZERO;
REFERENCE (refmpn_copyd);
p = &param[TYPE_COM_N];
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_com_n);
p = &param[TYPE_ADDLSH_N];
p->dst[0]=1;
p->src[0]=1;
p->src[1]=1;
p->shift=1;
REFERENCE (refmpn_addlsh_n);
p = &param[TYPE_SUBLSH_N];
p->dst[0]=1;
p->src[0]=1;
p->src[1]=1;
p->shift=1;
REFERENCE (refmpn_sublsh_n);
p = &param[TYPE_ADDLSH_NC];
p->dst[0]=1;
p->src[0]=1;
p->src[1]=1;
p->shift=1;
p->carry=CARRY_LIMB;
REFERENCE (refmpn_addlsh_nc);
p = &param[TYPE_SUBLSH_NC];
p->dst[0]=1;
p->src[0]=1;
p->src[1]=1;
p->shift=1;
p->carry=CARRY_LIMB;
REFERENCE (refmpn_sublsh_nc);
p = &param[TYPE_INCLSH_N];
p->dst[0]=1;
p->src[0]=1;
p->shift=1;
REFERENCE (refmpn_inclsh_n);
p = &param[TYPE_DECLSH_N];
p->dst[0]=1;
p->src[0]=1;
p->shift=1;
REFERENCE (refmpn_declsh_n);
p = &param[TYPE_ADDLSH1_N];
COPY (TYPE_ADD_N);
REFERENCE (refmpn_addlsh1_n);
p = &param[TYPE_SUBLSH1_N];
COPY (TYPE_ADD_N);
REFERENCE (refmpn_sublsh1_n);
p = &param[TYPE_RSH1ADD_N];
COPY (TYPE_ADD_N);
REFERENCE (refmpn_rsh1add_n);
p = &param[TYPE_RSH1SUB_N];
COPY (TYPE_ADD_N);
REFERENCE (refmpn_rsh1sub_n);
p = &param[TYPE_MOD_1];
p->retval = 1;
p->src[0] = 1;
p->size = SIZE_ALLOW_ZERO;
p->divisor = DIVISOR_LIMB;
REFERENCE (refmpn_mod_1);
p = &param[TYPE_MOD_1C];
COPY (TYPE_MOD_1);
p->carry = CARRY_DIVISOR;
REFERENCE (refmpn_mod_1c);
p = &param[TYPE_DIVMOD_1];
COPY (TYPE_MOD_1);
p->dst[0] = 1;
REFERENCE (refmpn_divmod_1);
p = &param[TYPE_DIVREM_EUCLIDEAN_QR_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_LIMB;
p->dst[0] = 1;
REFERENCE (refmpn_divrem_1);
p = &param[TYPE_DIVREM_EUCLIDEAN_R_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_LIMB;
REFERENCE (refmpn_divrem_euclidean_r_1);
p = &param[TYPE_DIVREM_HENSEL_QR_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
REFERENCE (refmpn_divrem_hensel_qr_1);
p = &param[TYPE_DIVREM_HENSEL_QR_1_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
REFERENCE (refmpn_divrem_hensel_qr_1);
p = &param[TYPE_DIVREM_HENSEL_QR_1_2];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
REFERENCE (refmpn_divrem_hensel_qr_1);
p = &param[TYPE_DIVREM_HENSEL_R_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
REFERENCE (refmpn_divrem_hensel_r_1);
p = &param[TYPE_DIVREM_HENSEL_RSH_QR_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
p->shift=1;
REFERENCE (refmpn_divrem_hensel_rsh_qr_1);
p = &param[TYPE_RSH_DIVREM_HENSEL_QR_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
p->shift=1;
p->carry=CARRY_LIMB;
REFERENCE (refmpn_rsh_divrem_hensel_qr_1);
p = &param[TYPE_RSH_DIVREM_HENSEL_QR_1_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
p->shift=1;
p->carry=CARRY_LIMB;
REFERENCE (refmpn_rsh_divrem_hensel_qr_1);
p = &param[TYPE_RSH_DIVREM_HENSEL_QR_1_2];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
p->dst[0] = 1;
p->shift=1;
p->carry=CARRY_LIMB;
REFERENCE (refmpn_rsh_divrem_hensel_qr_1);
p = &param[TYPE_DIVEXACT_BYFOBM1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_DIVBM1;
p->dst[0] = 1;
REFERENCE (refmpn_divexact_byfobm1);
p = &param[TYPE_DIVMOD_1C];
COPY (TYPE_DIVMOD_1);
p->carry = CARRY_DIVISOR;
REFERENCE (refmpn_divmod_1c);
p = &param[TYPE_DIVREM_1];
COPY (TYPE_DIVMOD_1);
p->size2 = SIZE_FRACTION;
p->dst_size[0] = SIZE_SUM;
REFERENCE (refmpn_divrem_1);
p = &param[TYPE_DIVREM_1C];
COPY (TYPE_DIVREM_1);
p->carry = CARRY_DIVISOR;
REFERENCE (refmpn_divrem_1c);
p = &param[TYPE_PREINV_DIVREM_1];
COPY (TYPE_DIVREM_1);
p->size = SIZE_YES; /* ie. no size==0 */
REFERENCE (refmpn_preinv_divrem_1);
p = &param[TYPE_PREINV_MOD_1];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_NORM;
REFERENCE (refmpn_preinv_mod_1);
p = &param[TYPE_MOD_34LSUB1];
p->retval = 1;
p->src[0] = 1;
VALIDATE (validate_mod_34lsub1);
p = &param[TYPE_UDIV_QRNND];
p->retval = 1;
p->src[0] = 1;
p->dst[0] = 1;
p->dst_size[0] = SIZE_1;
p->divisor = UDIV_NEEDS_NORMALIZATION ? DIVISOR_NORM : DIVISOR_LIMB;
p->data = DATA_UDIV_QRNND;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_udiv_qrnnd);
p = &param[TYPE_UDIV_QRNND_R];
COPY (TYPE_UDIV_QRNND);
REFERENCE (refmpn_udiv_qrnnd_r);
p = &param[TYPE_DIVEXACT_1];
p->dst[0] = 1;
p->src[0] = 1;
p->divisor = DIVISOR_LIMB;
p->data = DATA_MULTIPLE_DIVISOR;
VALIDATE (validate_divexact_1);
REFERENCE (refmpn_divmod_1);
p = &param[TYPE_DIVEXACT_BY3];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_divexact_by3);
p = &param[TYPE_DIVEXACT_BYFF];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_divexact_byff);
p = &param[TYPE_LSHIFT1];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_lshift1);
p = &param[TYPE_RSHIFT1];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_rshift1);
p = &param[TYPE_LSHIFT2];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_lshift2);
p = &param[TYPE_RSHIFT2];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
REFERENCE (refmpn_rshift2);
p = &param[TYPE_DIVEXACT_BY3C];
COPY (TYPE_DIVEXACT_BY3);
p->carry = CARRY_3;
REFERENCE (refmpn_divexact_by3c);
p = &param[TYPE_MODEXACT_1_ODD];
p->retval = 1;
p->src[0] = 1;
p->divisor = DIVISOR_ODD;
VALIDATE (validate_modexact_1_odd);
p = &param[TYPE_MODEXACT_1C_ODD];
COPY (TYPE_MODEXACT_1_ODD);
p->carry = CARRY_LIMB;
VALIDATE (validate_modexact_1c_odd);
p = &param[TYPE_GCD_1];
p->retval = 1;
p->src[0] = 1;
p->data = DATA_NON_ZERO;
p->divisor = DIVISOR_LIMB;
REFERENCE (refmpn_gcd_1);
p = &param[TYPE_GCD];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->size2 = 1;
p->dst_size[0] = SIZE_RETVAL;
p->overlap = OVERLAP_NOT_SRCS;
p->data = DATA_GCD;
REFERENCE (refmpn_gcd);
/* FIXME: size==2 */
p = &param[TYPE_GCD_FINDA];
p->retval = 1;
p->src[0] = 1;
REFERENCE (refmpn_gcd_finda);
p = &param[TYPE_MPZ_JACOBI];
p->retval = 1;
p->src[0] = 1;
p->size = SIZE_ALLOW_ZERO;
p->src[1] = 1;
p->data = DATA_SRC1_ODD;
p->size2 = 1;
p->carry = CARRY_4;
p->carry_sign = 1;
REFERENCE (refmpz_jacobi);
p = &param[TYPE_MPZ_KRONECKER];
COPY (TYPE_MPZ_JACOBI);
p->data = 0; /* clear inherited DATA_SRC1_ODD */
REFERENCE (refmpz_kronecker);
p = &param[TYPE_MPZ_KRONECKER_UI];
p->retval = 1;
p->src[0] = 1;
p->size = SIZE_ALLOW_ZERO;
p->multiplier = 1;
p->carry = CARRY_BIT;
REFERENCE (refmpz_kronecker_ui);
p = &param[TYPE_MPZ_KRONECKER_SI];
COPY (TYPE_MPZ_KRONECKER_UI);
REFERENCE (refmpz_kronecker_si);
p = &param[TYPE_MPZ_UI_KRONECKER];
COPY (TYPE_MPZ_KRONECKER_UI);
REFERENCE (refmpz_ui_kronecker);
p = &param[TYPE_MPZ_SI_KRONECKER];
COPY (TYPE_MPZ_KRONECKER_UI);
REFERENCE (refmpz_si_kronecker);
p = &param[TYPE_REDC_BASECASE];
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->data = DATA_SRC0_ODD ;
p->size2 = SIZE_DOUBLE;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_redc_1);
p = &param[TYPE_SQR];
p->dst[0] = 1;
p->src[0] = 1;
p->dst_size[0] = SIZE_SUM;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_sqr);
p = &param[TYPE_MUL_N];
COPY (TYPE_SQR);
p->src[1] = 1;
REFERENCE (refmpn_mul_n);
p = &param[TYPE_MULMID_BASECASE];
COPY (TYPE_MUL_BASECASE);
p->dst_size[0] = SIZE_DIFF_PLUS_3;
p->size2 = 1;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_mulmid_basecase);
p = &param[TYPE_MULMID];
COPY (TYPE_MULMID_BASECASE);
REFERENCE (refmpn_mulmid);
p = &param[TYPE_MULMID_N];
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->dst_size[0] = SIZE_PLUS_2;
p->size2 = SIZE_DOUBLE_MINUS_1;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_mulmid_n);
p = &param[TYPE_MUL_BASECASE];
COPY (TYPE_MUL_N);
p->dst_size[0] = SIZE_SUM;
p->size2 = 1;
REFERENCE (refmpn_mul_basecase);
p = &param[TYPE_UMUL_PPMM];
p->retval = 1;
p->src[0] = 1;
p->dst[0] = 1;
p->dst_size[0] = SIZE_1;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_umul_ppmm);
p = &param[TYPE_UMUL_PPMM_R];
COPY (TYPE_UMUL_PPMM);
REFERENCE (refmpn_umul_ppmm_r);
p = &param[TYPE_RSHIFT];
p->retval = 1;
p->dst[0] = 1;
p->src[0] = 1;
p->shift = 1;
p->overlap = OVERLAP_LOW_TO_HIGH;
REFERENCE (refmpn_rshift);
p = &param[TYPE_LSHIFT];
COPY (TYPE_RSHIFT);
p->overlap = OVERLAP_HIGH_TO_LOW;
REFERENCE (refmpn_lshift);
p = &param[TYPE_LSHIFTC];
COPY (TYPE_LSHIFT);
REFERENCE (refmpn_lshiftc);
p = &param[TYPE_POPCOUNT];
p->retval = 1;
p->src[0] = 1;
REFERENCE (refmpn_popcount);
p = &param[TYPE_NOT];
//p->src[0] = 1;
p->dst[0] = 1;
REFERENCE (refmpn_not);
p = &param[TYPE_HAMDIST];
COPY (TYPE_POPCOUNT);
p->src[1] = 1;
REFERENCE (refmpn_hamdist);
p = &param[TYPE_TDIV_QR];
p->dst[0] = 1;
p->dst[1] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->size2 = 1;
p->dst_size[0] = SIZE_DIFF_PLUS_1;
p->dst_size[1] = SIZE_SIZE2;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_tdiv_qr);
p = &param[TYPE_TDIV_Q];
p->dst[0] = 1;
p->src[0] = 1;
p->src[1] = 1;
p->size2 = 1;
p->dst_size[0] = SIZE_DIFF_PLUS_1;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_tdiv_q);
p = &param[TYPE_SQRTREM];
p->retval = 1;
p->dst[0] = 1;
p->dst[1] = 1;
p->src[0] = 1;
p->dst_size[0] = SIZE_CEIL_HALF;
p->dst_size[1] = SIZE_RETVAL;
p->overlap = OVERLAP_NONE;
VALIDATE (validate_sqrtrem);
REFERENCE (refmpn_sqrtrem);
p = &param[TYPE_ZERO];
p->dst[0] = 1;
p->size = SIZE_ALLOW_ZERO;
REFERENCE (refmpn_zero);
p = &param[TYPE_STORE];
p->dst[0] = 1;
p->size = SIZE_ALLOW_ZERO;
REFERENCE (refmpn_store);
p = &param[TYPE_GET_STR];
p->retval = 1;
p->src[0] = 1;
p->size = SIZE_ALLOW_ZERO;
p->dst[0] = 1;
p->dst[1] = 1;
p->dst_size[0] = SIZE_GET_STR;
p->dst_bytes[0] = 1;
p->overlap = OVERLAP_NONE;
REFERENCE (refmpn_get_str);
#ifdef EXTRA_PARAM_INIT
EXTRA_PARAM_INIT
#endif
}
/* The following are macros if there's no native versions, so wrap them in
functions that can be in try_array[]. */
void
MPN_COPY_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ MPN_COPY (rp, sp, size); }
void
MPN_COPY_INCR_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ MPN_COPY_INCR (rp, sp, size); }
void
MPN_COPY_DECR_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ MPN_COPY_DECR (rp, sp, size); }
void
__GMPN_COPY_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ __GMPN_COPY (rp, sp, size); }
#ifdef __GMPN_COPY_INCR
void
__GMPN_COPY_INCR_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ __GMPN_COPY_INCR (rp, sp, size); }
#endif
void
mpn_com_n_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{ mpn_com_n (rp, sp, size); }
void
mpn_and_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_and_n (rp, s1, s2, size); }
void
mpn_andn_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_andn_n (rp, s1, s2, size); }
void
mpn_nand_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_nand_n (rp, s1, s2, size); }
void
mpn_ior_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_ior_n (rp, s1, s2, size); }
void
mpn_iorn_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_iorn_n (rp, s1, s2, size); }
void
mpn_nior_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_nior_n (rp, s1, s2, size); }
void
mpn_xor_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_xor_n (rp, s1, s2, size); }
void
mpn_xnor_n_fun (mp_ptr rp, mp_srcptr s1, mp_srcptr s2, mp_size_t size)
{ mpn_xnor_n (rp, s1, s2, size); }
mp_limb_t
udiv_qrnnd_fun (mp_limb_t *remptr, mp_limb_t n1, mp_limb_t n0, mp_limb_t d)
{
mp_limb_t q;
udiv_qrnnd (q, *remptr, n1, n0, d);
return q;
}
mp_limb_t
mpn_divexact_by3_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{
return mpn_divexact_by3 (rp, sp, size);
}
void
mpn_not_fun (mp_ptr rp, mp_size_t size)
{
mpn_not (rp, size);
}
mp_limb_t
mpn_lshift1_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{
return mpn_lshift1 (rp, sp, size);
}
mp_limb_t
mpn_rshift1_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{
return mpn_rshift1 (rp, sp, size);
}
mp_limb_t
mpn_lshift2_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{
return mpn_lshift2 (rp, sp, size);
}
mp_limb_t
mpn_rshift2_fun (mp_ptr rp, mp_srcptr sp, mp_size_t size)
{
return mpn_rshift2 (rp, sp, size);
}
#if HAVE_NATIVE_mpn_addlsh1_n
mp_limb_t
mpn_addlsh1_n_fun (mp_ptr rp, mp_srcptr sp, mp_srcptr sp1,mp_size_t size)
{
return mpn_addlsh1_n (rp, sp,sp1, size);
}
#endif
#if HAVE_NATIVE_mpn_sublsh1_n
mp_limb_t
mpn_sublsh1_n_fun (mp_ptr rp, mp_srcptr sp, mp_srcptr sp1,mp_size_t size)
{
return mpn_sublsh1_n (rp, sp,sp1, size);
}
#endif
#if HAVE_NATIVE_mpn_inclsh_n
mp_limb_t
mpn_inclsh_n_fun (mp_ptr rp, mp_srcptr sp,mp_size_t size,unsigned int c)
{
return mpn_inclsh_n (rp, sp, size,c);
}
#endif
#if HAVE_NATIVE_mpn_declsh_n
mp_limb_t
mpn_declsh_n_fun (mp_ptr rp, mp_srcptr sp,mp_size_t size,unsigned int c)
{
return mpn_declsh_n (rp, sp, size,c);
}
#endif
mp_limb_t
mpn_modexact_1_odd_fun (mp_srcptr ptr, mp_size_t size, mp_limb_t divisor)
{
return mpn_modexact_1_odd (ptr, size, divisor);
}
void
mpn_kara_mul_n_fun (mp_ptr dst, mp_srcptr src1, mp_srcptr src2, mp_size_t size)
{
mp_ptr tspace;
TMP_DECL;
TMP_MARK;
tspace = TMP_ALLOC_LIMBS (MPN_KARA_MUL_N_TSIZE (size));
mpn_kara_mul_n (dst, src1, src2, size, tspace);
}
void
mpn_kara_sqr_n_fun (mp_ptr dst, mp_srcptr src, mp_size_t size)
{
mp_ptr tspace;
TMP_DECL;
TMP_MARK;
tspace = TMP_ALLOC_LIMBS (MPN_KARA_SQR_N_TSIZE (size));
mpn_kara_sqr_n (dst, src, size, tspace);
TMP_FREE;
}
void
mpn_toom3_mul_n_fun (mp_ptr dst, mp_srcptr src1, mp_srcptr src2, mp_size_t size)
{
mp_ptr tspace;
TMP_DECL;
TMP_MARK;
tspace = TMP_ALLOC_LIMBS (MPN_TOOM3_MUL_N_TSIZE (size));
mpn_toom3_mul_n (dst, src1, src2, size, tspace);
TMP_FREE;
}
void
mpn_toom3_sqr_n_fun (mp_ptr dst, mp_srcptr src1, mp_size_t size)
{
mp_ptr tspace;
TMP_DECL;
TMP_MARK;
tspace = TMP_ALLOC_LIMBS (MPN_TOOM3_SQR_N_TSIZE (size));
mpn_toom3_sqr_n (dst, src1, size, tspace);
TMP_FREE;
}
void
mpn_toom4_mul_n_fun (mp_ptr dst, mp_srcptr src1, mp_srcptr src2, mp_size_t size)
{
mpn_toom4_mul_n (dst, src1, src2, size);
}
void
mpn_toom4_sqr_n_fun (mp_ptr dst, mp_srcptr src1, mp_size_t size)
{
mpn_toom4_sqr_n (dst, src1, size);
}
void
mpn_toom8h_mul_fun (mp_ptr dst, mp_srcptr src1, mp_size_t size1, mp_srcptr src2, mp_size_t size2)
{
mpn_toom8h_mul (dst, src1, size1, src2, size2);
}
void
mpn_toom8_sqr_n_fun (mp_ptr dst, mp_srcptr src1, mp_size_t size)
{
mpn_toom8_sqr_n (dst, src1, size);
}
mp_limb_t
umul_ppmm_fun (mp_limb_t *lowptr, mp_limb_t m1, mp_limb_t m2)
{
mp_limb_t high;
umul_ppmm (high, *lowptr, m1, m2);
return high;
}
void
MPN_ZERO_fun (mp_ptr ptr, mp_size_t size)
{ MPN_ZERO (ptr, size); }
void
mpn_store_fun (mp_ptr ptr, mp_size_t size,mp_limb_t val)
{ mpn_store (ptr, size,val); }
struct choice_t {
const char *name;
tryfun_t function;
int type;
mp_size_t minsize;
};
#if HAVE_STRINGIZE
#define TRY(fun) #fun, (tryfun_t) fun
#define TRY_FUNFUN(fun) #fun, (tryfun_t) fun##_fun
#else
#define TRY(fun) "fun", (tryfun_t) fun
#define TRY_FUNFUN(fun) "fun", (tryfun_t) fun/**/_fun
#endif
const struct choice_t choice_array[] = {
{ TRY(mpn_add), TYPE_ADD },
{ TRY(mpn_sub), TYPE_SUB },
{ TRY(mpn_add_n), TYPE_ADD_N },
{ TRY(mpn_sub_n), TYPE_SUB_N },
#if HAVE_NATIVE_mpn_add_nc
{ TRY(mpn_add_nc), TYPE_ADD_NC },
#endif
#if HAVE_NATIVE_mpn_sub_nc
{ TRY(mpn_sub_nc), TYPE_SUB_NC },
#endif
#if HAVE_NATIVE_mpn_sumdiff_n
{ TRY(mpn_sumdiff_n), TYPE_SUMDIFF_N },
#endif
#if HAVE_NATIVE_mpn_sumdiff_nc
{ TRY(mpn_sumdiff_nc), TYPE_SUMDIFF_NC },
#endif
#if HAVE_NATIVE_mpn_addadd_n
{ TRY(mpn_addadd_n), TYPE_ADDADD_N },
#endif
#if HAVE_NATIVE_mpn_addsub_n
{ TRY(mpn_addsub_n), TYPE_ADDSUB_N },
#endif
#if HAVE_NATIVE_mpn_subadd_n
{ TRY(mpn_subadd_n), TYPE_SUBADD_N },
#endif
{ TRY(mpn_addmul_1), TYPE_ADDMUL_1 },
{ TRY(mpn_submul_1), TYPE_SUBMUL_1 },
#if HAVE_NATIVE_mpn_addmul_1c
{ TRY(mpn_addmul_1c), TYPE_ADDMUL_1C },
#endif
#if HAVE_NATIVE_mpn_submul_1c
{ TRY(mpn_submul_1c), TYPE_SUBMUL_1C },
#endif
#if HAVE_NATIVE_mpn_addmul_2
{ TRY(mpn_addmul_2), TYPE_ADDMUL_2, 2 },
#endif
#if HAVE_NATIVE_mpn_addmul_3
{ TRY(mpn_addmul_3), TYPE_ADDMUL_3, 3 },
#endif
#if HAVE_NATIVE_mpn_addmul_4
{ TRY(mpn_addmul_4), TYPE_ADDMUL_4, 4 },
#endif
#if HAVE_NATIVE_mpn_addmul_5
{ TRY(mpn_addmul_5), TYPE_ADDMUL_5, 5 },
#endif
#if HAVE_NATIVE_mpn_addmul_6
{ TRY(mpn_addmul_6), TYPE_ADDMUL_6, 6 },
#endif
#if HAVE_NATIVE_mpn_addmul_7
{ TRY(mpn_addmul_7), TYPE_ADDMUL_7, 7 },
#endif
#if HAVE_NATIVE_mpn_addmul_8
{ TRY(mpn_addmul_8), TYPE_ADDMUL_8, 8 },
#endif
{ TRY_FUNFUN(mpn_com_n), TYPE_COM_N },
{ TRY_FUNFUN(MPN_COPY), TYPE_COPY },
{ TRY_FUNFUN(MPN_COPY_INCR), TYPE_COPYI },
{ TRY_FUNFUN(MPN_COPY_DECR), TYPE_COPYD },
{ TRY_FUNFUN(__GMPN_COPY), TYPE_COPY },
#ifdef __GMPN_COPY_INCR
{ TRY_FUNFUN(__GMPN_COPY_INCR), TYPE_COPYI },
#endif
#if HAVE_NATIVE_mpn_copyi
{ TRY(mpn_copyi), TYPE_COPYI },
#endif
#if HAVE_NATIVE_mpn_copyd
{ TRY(mpn_copyd), TYPE_COPYD },
#endif
#if HAVE_NATIVE_mpn_addlsh1_n
{ TRY_FUNFUN(mpn_addlsh1_n), TYPE_ADDLSH1_N },
#endif
#if HAVE_NATIVE_mpn_sublsh1_n
{ TRY_FUNFUN(mpn_sublsh1_n), TYPE_SUBLSH1_N },
#endif
#if HAVE_NATIVE_mpn_addlsh_n
{ TRY(mpn_addlsh_n), TYPE_ADDLSH_N },
#endif
#if HAVE_NATIVE_mpn_sublsh_n
{ TRY(mpn_sublsh_n), TYPE_SUBLSH_N },
#endif
#if HAVE_NATIVE_mpn_addlsh_nc
{ TRY(mpn_addlsh_nc), TYPE_ADDLSH_NC },
#endif
#if HAVE_NATIVE_mpn_sublsh_nc
{ TRY(mpn_sublsh_nc), TYPE_SUBLSH_NC },
#endif
#if HAVE_NATIVE_mpn_inclsh_n
{ TRY_FUNFUN(mpn_inclsh_n), TYPE_INCLSH_N },
#endif
#if HAVE_NATIVE_mpn_declsh_n
{ TRY_FUNFUN(mpn_declsh_n), TYPE_DECLSH_N },
#endif
#if HAVE_NATIVE_mpn_rsh1add_n
{ TRY(mpn_rsh1add_n), TYPE_RSH1ADD_N },
#endif
#if HAVE_NATIVE_mpn_rsh1sub_n
{ TRY(mpn_rsh1sub_n), TYPE_RSH1SUB_N },
#endif
{ TRY_FUNFUN(mpn_and_n), TYPE_AND_N },
{ TRY_FUNFUN(mpn_andn_n), TYPE_ANDN_N },
{ TRY_FUNFUN(mpn_nand_n), TYPE_NAND_N },
{ TRY_FUNFUN(mpn_ior_n), TYPE_IOR_N },
{ TRY_FUNFUN(mpn_iorn_n), TYPE_IORN_N },
{ TRY_FUNFUN(mpn_nior_n), TYPE_NIOR_N },
{ TRY_FUNFUN(mpn_xor_n), TYPE_XOR_N },
{ TRY_FUNFUN(mpn_xnor_n), TYPE_XNOR_N },
{ TRY(mpn_divrem_1), TYPE_DIVREM_1 },
{ TRY(mpn_divrem_euclidean_qr_1), TYPE_DIVREM_EUCLIDEAN_QR_1 },
{ TRY(mpn_divrem_euclidean_r_1), TYPE_DIVREM_EUCLIDEAN_R_1 },
{ TRY(mpn_divrem_hensel_qr_1), TYPE_DIVREM_HENSEL_QR_1 },
{ TRY(mpn_divrem_hensel_qr_1_1), TYPE_DIVREM_HENSEL_QR_1_1 },
{ TRY(mpn_divrem_hensel_qr_1_2), TYPE_DIVREM_HENSEL_QR_1_2 ,2},
{ TRY(mpn_divrem_hensel_r_1), TYPE_DIVREM_HENSEL_R_1 },
{ TRY(mpn_rsh_divrem_hensel_qr_1), TYPE_RSH_DIVREM_HENSEL_QR_1 },
{ TRY(mpn_rsh_divrem_hensel_qr_1_1), TYPE_RSH_DIVREM_HENSEL_QR_1_1 },
{ TRY(mpn_rsh_divrem_hensel_qr_1_2), TYPE_RSH_DIVREM_HENSEL_QR_1_2 ,3},
{ TRY(mpn_divrem_hensel_rsh_qr_1), TYPE_DIVREM_HENSEL_RSH_QR_1 },
{ TRY(mpn_add_err1_n), TYPE_ADDERR1_N},
{ TRY(mpn_sub_err1_n), TYPE_SUBERR1_N},
{ TRY(mpn_add_err2_n), TYPE_ADDERR2_N},
{ TRY(mpn_sub_err2_n), TYPE_SUBERR2_N},
#if USE_PREINV_DIVREM_1
{ TRY(mpn_preinv_divrem_1), TYPE_PREINV_DIVREM_1 },
#endif
{ TRY(mpn_mod_1), TYPE_MOD_1 },
#if USE_PREINV_MOD_1
{ TRY(mpn_preinv_mod_1), TYPE_PREINV_MOD_1 },
#endif
#if HAVE_NATIVE_mpn_divrem_1c
{ TRY(mpn_divrem_1c), TYPE_DIVREM_1C },
#endif
#if HAVE_NATIVE_mpn_mod_1c
{ TRY(mpn_mod_1c), TYPE_MOD_1C },
#endif
#if GMP_NUMB_BITS % 4 == 0
{ TRY(mpn_mod_34lsub1), TYPE_MOD_34LSUB1 },
#endif
{ TRY_FUNFUN(udiv_qrnnd), TYPE_UDIV_QRNND, 2 },
#if HAVE_NATIVE_mpn_udiv_qrnnd
{ TRY(mpn_udiv_qrnnd), TYPE_UDIV_QRNND, 2 },
#endif
#if HAVE_NATIVE_mpn_udiv_qrnnd_r
{ TRY(mpn_udiv_qrnnd_r), TYPE_UDIV_QRNND_R, 2 },
#endif
{ TRY(mpn_divexact_1), TYPE_DIVEXACT_1 },
{ TRY_FUNFUN(mpn_divexact_by3), TYPE_DIVEXACT_BY3 },
{ TRY(mpn_divexact_byff), TYPE_DIVEXACT_BYFF },
{ TRY(mpn_divexact_byfobm1), TYPE_DIVEXACT_BYFOBM1 },
{ TRY_FUNFUN(mpn_lshift1), TYPE_LSHIFT1 },
{ TRY_FUNFUN(mpn_rshift1), TYPE_RSHIFT1 },
{ TRY_FUNFUN(mpn_lshift2), TYPE_LSHIFT2 },
{ TRY_FUNFUN(mpn_rshift2), TYPE_RSHIFT2 },
{ TRY(mpn_divexact_by3c), TYPE_DIVEXACT_BY3C },
{ TRY_FUNFUN(mpn_modexact_1_odd), TYPE_MODEXACT_1_ODD },
{ TRY(mpn_modexact_1c_odd), TYPE_MODEXACT_1C_ODD },
{ TRY(mpn_tdiv_qr), TYPE_TDIV_QR },
{ TRY(mpn_tdiv_q), TYPE_TDIV_Q },
{ TRY(mpn_mul_1), TYPE_MUL_1 },
#if HAVE_NATIVE_mpn_mul_1c
{ TRY(mpn_mul_1c), TYPE_MUL_1C },
#endif
#if HAVE_NATIVE_mpn_mul_2
{ TRY(mpn_mul_2), TYPE_MUL_2, 2 },
#endif
{ TRY(mpn_rshift), TYPE_RSHIFT },
{ TRY(mpn_lshift), TYPE_LSHIFT },
#if HAVE_NATIVE_mpn_lshiftc
{ TRY(mpn_lshiftc), TYPE_LSHIFTC },
#endif
{ TRY(mpn_mul_basecase), TYPE_MUL_BASECASE },
{ TRY(mpn_redc_1), TYPE_REDC_BASECASE },
#if SQR_KARATSUBA_THRESHOLD > 0
{ TRY(mpn_sqr_basecase), TYPE_SQR },
#endif
{ TRY(mpn_mul), TYPE_MUL_BASECASE },
{ TRY(mpn_mul_n), TYPE_MUL_N },
{ TRY(mpn_sqr), TYPE_SQR },
{ TRY(mpn_mulmid_basecase), TYPE_MULMID_BASECASE },
{ TRY(mpn_mulmid), TYPE_MULMID },
{ TRY(mpn_mulmid_n), TYPE_MULMID_N },
{ TRY_FUNFUN(umul_ppmm), TYPE_UMUL_PPMM, 2 },
#if HAVE_NATIVE_mpn_umul_ppmm
{ TRY(mpn_umul_ppmm), TYPE_UMUL_PPMM, 2 },
#endif
#if HAVE_NATIVE_mpn_umul_ppmm_r
{ TRY(mpn_umul_ppmm_r), TYPE_UMUL_PPMM_R, 2 },
#endif
{ TRY_FUNFUN(mpn_kara_mul_n), TYPE_MUL_N, MPN_KARA_MUL_N_MINSIZE },
{ TRY_FUNFUN(mpn_kara_sqr_n), TYPE_SQR, MPN_KARA_SQR_N_MINSIZE },
{ TRY_FUNFUN(mpn_toom3_mul_n), TYPE_MUL_N, MPN_TOOM3_MUL_N_MINSIZE },
{ TRY_FUNFUN(mpn_toom4_mul_n), TYPE_MUL_N, MPN_TOOM4_MUL_N_MINSIZE },
{ TRY_FUNFUN(mpn_toom8h_mul), TYPE_MUL_BASECASE, MPN_TOOM8H_MUL_MINSIZE },
{ TRY_FUNFUN(mpn_toom3_sqr_n), TYPE_SQR, MPN_TOOM3_SQR_N_MINSIZE },
{ TRY_FUNFUN(mpn_toom4_sqr_n), TYPE_SQR, MPN_TOOM4_SQR_N_MINSIZE },
{ TRY_FUNFUN(mpn_toom8_sqr_n), TYPE_SQR, MPN_TOOM8_SQR_N_MINSIZE },
{ TRY(mpn_gcd_1), TYPE_GCD_1 },
{ TRY(mpn_gcd), TYPE_GCD },
#if HAVE_NATIVE_mpn_gcd_finda
{ TRY(mpn_gcd_finda), TYPE_GCD_FINDA },
#endif
{ TRY(mpz_jacobi), TYPE_MPZ_JACOBI },
{ TRY(mpz_kronecker_ui), TYPE_MPZ_KRONECKER_UI },
{ TRY(mpz_kronecker_si), TYPE_MPZ_KRONECKER_SI },
{ TRY(mpz_ui_kronecker), TYPE_MPZ_UI_KRONECKER },
{ TRY(mpz_si_kronecker), TYPE_MPZ_SI_KRONECKER },
{ TRY_FUNFUN(mpn_not), TYPE_NOT },
{ TRY(mpn_popcount), TYPE_POPCOUNT },
{ TRY(mpn_hamdist), TYPE_HAMDIST },
{ TRY(mpn_sqrtrem), TYPE_SQRTREM },
{ TRY_FUNFUN(MPN_ZERO), TYPE_ZERO },
{ TRY_FUNFUN(mpn_store), TYPE_STORE },
{ TRY(mpn_get_str), TYPE_GET_STR },
#ifdef EXTRA_ROUTINES
EXTRA_ROUTINES
#endif
};
const struct choice_t *choice = NULL;
void
mprotect_maybe (void *addr, size_t len, int prot)
{
if (!option_redzones)
return;
#if HAVE_MPROTECT
if (mprotect (addr, len, prot) != 0)
{
fprintf (stderr, "Cannot mprotect %p 0x%X 0x%X: %s\n",
addr, len, prot, strerror (errno));
exit (1);
}
#else
{
static int warned = 0;
if (!warned)
{
fprintf (stderr,
"mprotect not available, bounds testing not performed\n");
warned = 1;
}
}
#endif
}
/* round "a" up to a multiple of "m" */
size_t
round_up_multiple (size_t a, size_t m)
{
unsigned long r;
r = a % m;
if (r == 0)
return a;
else
return a + (m - r);
}
/* On some systems it seems that only an mmap'ed region can be mprotect'ed,
for instance HP-UX 10.
mmap will almost certainly return a pointer already aligned to a page
boundary, but it's easy enough to share the alignment handling with the
malloc case. */
void
malloc_region (struct region_t *r, mp_size_t n)
{
mp_ptr p;
size_t nbytes;
ASSERT ((pagesize % BYTES_PER_MP_LIMB) == 0);
n = round_up_multiple (n, PAGESIZE_LIMBS);
r->size = n;
nbytes = n*BYTES_PER_MP_LIMB + 2*REDZONE_BYTES + pagesize;
#if defined (MAP_ANONYMOUS) && ! defined (MAP_ANON)
#define MAP_ANON MAP_ANONYMOUS
#endif
#if HAVE_MMAP && defined (MAP_ANON)
/* note must pass fd=-1 for MAP_ANON on BSD */
p = (mp_ptr)mmap (NULL, nbytes, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
if (p == (void *) -1)
{
fprintf (stderr, "Cannot mmap %#x anon bytes: %s\n",
nbytes, strerror (errno));
exit (1);
}
#else
p = (mp_ptr) malloc (nbytes);
ASSERT_ALWAYS (p != NULL);
#endif
p = align_pointer (p, pagesize);
mprotect_maybe (p, REDZONE_BYTES, PROT_NONE);
p += REDZONE_LIMBS;
r->ptr = p;
mprotect_maybe (p + n, REDZONE_BYTES, PROT_NONE);
}
void
mprotect_region (const struct region_t *r, int prot)
{
mprotect_maybe (r->ptr, r->size, prot);
}
/* First four entries must be 0,1,2,3 for the benefit of CARRY_BIT, CARRY_3,
and CARRY_4 */
mp_limb_t carry_array[] = {
0, 1, 2, 3,
4,
CNST_LIMB(1) << 8,
CNST_LIMB(1) << 16,
GMP_NUMB_MAX
};
int carry_index;
#define CARRY_COUNT \
((tr->carry == CARRY_BIT) ? 2 \
: tr->carry == CARRY_3 ? 3 \
: tr->carry == CARRY_4 ? 4 \
: (tr->carry == CARRY_LIMB || tr->carry == CARRY_DIVISOR) \
? numberof(carry_array) + CARRY_RANDOMS \
: 1)
#define MPN_RANDOM_ALT(index,dst,size) \
(((index) & 1) ? refmpn_random (dst, size) : refmpn_random2 (dst, size))
/* The dummy value after MPN_RANDOM_ALT ensures both sides of the ":" have
the same type */
#define CARRY_ITERATION \
for (carry_index = 0; \
(carry_index < numberof (carry_array) \
? (carry = carry_array[carry_index]) \
: (MPN_RANDOM_ALT (carry_index, &carry, 1), (mp_limb_t) 0)), \
(tr->carry == CARRY_DIVISOR ? carry %= divisor : 0), \
carry_index < CARRY_COUNT; \
carry_index++)
mp_limb_t multiplier_array[] = {
0, 1, 2, 3,
CNST_LIMB(1) << 8,
CNST_LIMB(1) << 16,
GMP_NUMB_MAX - 2,
GMP_NUMB_MAX - 1,
GMP_NUMB_MAX
};
int multiplier_index;
mp_limb_t divisor_array[] = {
1, 2, 3,
CNST_LIMB(1) << 8,
CNST_LIMB(1) << 16,
CNST_LIMB(1) << (GMP_NUMB_BITS/2 - 1),
GMP_NUMB_MAX >> (GMP_NUMB_BITS/2),
GMP_NUMB_HIGHBIT,
GMP_NUMB_HIGHBIT + 1,
GMP_NUMB_MAX - 2,
GMP_NUMB_MAX - 1,
GMP_NUMB_MAX
};
int divisor_index;
mp_limb_t altdiv_array[]={1,3,5,15,17,51,85,255,65535,
GMP_NUMB_MAX/1,GMP_NUMB_MAX/3,GMP_NUMB_MAX/5,GMP_NUMB_MAX/15,
GMP_NUMB_MAX/17,GMP_NUMB_MAX/51,GMP_NUMB_MAX/85,GMP_NUMB_MAX/255,GMP_NUMB_MAX/65535};
int altdiv_index;
/* The dummy value after MPN_RANDOM_ALT ensures both sides of the ":" have
the same type */
#define ARRAY_ITERATION(var, index, limit, array, randoms, cond) \
for (index = 0; \
(index < numberof (array) \
? (var = array[index]) \
: (MPN_RANDOM_ALT (index, &var, 1), (mp_limb_t) 0)), \
index < limit; \
index++)
#define MULTIPLIER_COUNT \
(tr->multiplier \
? numberof (multiplier_array) + MULTIPLIER_RANDOMS \
: 1)
#define MULTIPLIER_ITERATION \
ARRAY_ITERATION(multiplier, multiplier_index, MULTIPLIER_COUNT, \
multiplier_array, MULTIPLIER_RANDOMS, TRY_MULTIPLIER)
#define DIVISOR_COUNT \
(tr->divisor == 0 ? 1 : \
tr->divisor == DIVISOR_DIVBM1 \
? 1 \
: numberof (divisor_array) + DIVISOR_RANDOMS )
#define ALTDIV_COUNT \
(tr->divisor == 0 ? 1 : \
tr->divisor == DIVISOR_DIVBM1 \
? numberof (divisor_array) : 1 )
#define DIVISOR_ITERATION \
ARRAY_ITERATION(divisor, divisor_index, DIVISOR_COUNT,divisor_array , \
DIVISOR_RANDOMS, TRY_DIVISOR)
#define ALTDIV_ITERATION \
ARRAY_ITERATION(altdiv, altdiv_index, ALTDIV_COUNT, altdiv_array, \
0 , TRY_DIVISOR)
/* overlap_array[].s[i] is where s[i] should be, 0 or 1 means overlapping
d[0] or d[1] respectively, -1 means a separate (write-protected)
location. */
struct overlap_t {
int s[NUM_SOURCES];
} overlap_array[] = {
{ { -1, -1, -1 } },
{ { 0, -1, -1 } },
{ { -1, 0, -1 } },
{ { 0, 0, -1 } },
{ { 1, -1, -1 } },
{ { -1, 1, -1 } },
{ { 1, 1, -1 } },
{ { 0, 1, -1 } },
{ { 1, 0, -1 } },
{ { -1, -1, 0 } },
{ { 0, -1, 0 } },
{ { -1, 0, 0 } },
{ { 0, 0, 0 } },
{ { 1, -1, 0 } },
{ { -1, 1, 0 } },
{ { 1, 1, 0 } },
{ { 0, 1, 0 } },
{ { 1, 0, 0 } },
{ { -1, -1, 1 } },
{ { 0, -1, 1 } },
{ { -1, 0, 1 } },
{ { 0, 0, 1 } },
{ { 1, -1, 1 } },
{ { -1, 1, 1 } },
{ { 1, 1, 1 } },
{ { 0, 1, 1 } },
{ { 1, 0, 1 } },
};
struct overlap_t *overlap, *overlap_limit;
/*
This is a count of the number of overlaps from the above table to try.
Each source operand can be overlapped with each destination operand (which
are fixed and cannot be overlapped) or put in a non-overlapping block all
to itself. Some functions require that source operands don't overlap. They
can't go beyond the first three entries of the table, as after that, this
starts to happen.
Three source operands are available, but only those which are used by the
function are actually filled with data and made part of the test. The rest
are ignored.
*/
#define OVERLAP_COUNT \
(tr->overlap & OVERLAP_NONE ? 1 \
: tr->overlap & OVERLAP_NOT_SRCS ? 3 \
: tr->overlap & OVERLAP_NOT_SRC2 ? 2 \
: tr->dst[1] ? 9 \
: tr->src[2] ? 27 \
: tr->src[1] ? 4 \
: tr->dst[0] ? 2 \
: 1)
#define OVERLAP_ITERATION \
for (overlap = &overlap_array[0], \
overlap_limit = &overlap_array[OVERLAP_COUNT]; \
overlap < overlap_limit; \
overlap++)
int base = 10;
#define T_RAND_COUNT 2
int t_rand;
void
t_random (mp_ptr ptr, mp_size_t n)
{
if (n == 0)
return;
switch (option_data) {
case DATA_TRAND:
switch (t_rand) {
case 0: refmpn_random (ptr, n); break;
case 1: refmpn_random2 (ptr, n); break;
default: abort();
}
break;
case DATA_SEQ:
{
static mp_limb_t counter = 0;
mp_size_t i;
for (i = 0; i < n; i++)
ptr[i] = ++counter;
}
break;
case DATA_ZEROS:
refmpn_zero (ptr, n);
break;
case DATA_FFS:
refmpn_fill (ptr, n, GMP_NUMB_MAX);
break;
case DATA_2FD:
/* Special value 0x2FFF...FFFD, which divided by 3 gives 0xFFF...FFF,
inducing the q1_ff special case in the mul-by-inverse part of some
versions of divrem_1 and mod_1. */
refmpn_fill (ptr, n, (mp_limb_t) -1);
ptr[n-1] = 2;
ptr[0] -= 2;
break;
default:
abort();
}
}
#define T_RAND_ITERATION \
for (t_rand = 0; t_rand < T_RAND_COUNT; t_rand++)
void
print_each (const struct each_t *e)
{
int i;
printf ("%s %s\n", e->name, e == &ref ? tr->reference_name : choice->name);
if (tr->retval)
mpn_trace (" retval", &e->retval, 1);
for (i = 0; i < NUM_DESTS; i++)
{
if (tr->dst[i])
{
if (tr->dst_bytes[i])
byte_tracen (" d[%d]", i, e->d[i].p, d[i].size);
else
mpn_tracen (" d[%d]", i, e->d[i].p, d[i].size);
printf (" located %p\n", e->d[i].p);
}
}
for (i = 0; i < NUM_SOURCES; i++)
if (tr->src[i])
printf (" s[%d] located %p\n", i, e->s[i].p);
}
void
print_all (void)
{
int i;
printf ("\n");
printf ("size %ld\n", (long) size);
if (tr->size2)
printf ("size2 %ld\n", (long) size2);
for (i = 0; i < NUM_DESTS; i++)
if (d[i].size != size)
printf ("d[%d].size %ld\n", i, (long) d[i].size);
if (tr->multiplier)
mpn_trace (" multiplier", &multiplier, 1);
if (tr->divisor)
mpn_trace (" divisor", &divisor, 1);
if (tr->shift)
printf (" shift %lu\n", shift);
if (tr->carry)
mpn_trace (" carry", &carry, 1);
if (tr->msize)
mpn_trace (" multiplier_N", multiplier_N, tr->msize);
for (i = 0; i < NUM_DESTS; i++)
if (tr->dst[i])
printf (" d[%d] %s, align %ld, size %ld\n",
i, d[i].high ? "high" : "low",
(long) d[i].align, (long) d[i].size);
for (i = 0; i < NUM_SOURCES; i++)
{
if (tr->src[i])
{
printf (" s[%d] %s, align %ld, ",
i, s[i].high ? "high" : "low", (long) s[i].align);
switch (overlap->s[i]) {
case -1:
printf ("no overlap\n");
break;
default:
printf ("==d[%d]%s\n",
overlap->s[i],
tr->overlap == OVERLAP_LOW_TO_HIGH ? "+a"
: tr->overlap == OVERLAP_HIGH_TO_LOW ? "-a"
: "");
break;
}
printf (" s[%d]=", i);
if (tr->carry_sign && (carry & (1 << i)))
printf ("-");
mpn_trace (NULL, s[i].p, SRC_SIZE(i));
}
}
if (tr->dst0_from_src1)
mpn_trace (" d[0]", s[1].region.ptr, size);
if (tr->reference)
print_each (&ref);
print_each (&fun);
}
void
compare (void)
{
int error = 0;
int i;
if (tr->retval && ref.retval != fun.retval)
{
gmp_printf ("Different return values (%Mu, %Mu)\n",
ref.retval, fun.retval);
error = 1;
}
for (i = 0; i < NUM_DESTS; i++)
{
switch (tr->dst_size[i]) {
case SIZE_RETVAL:
case SIZE_GET_STR:
d[i].size = ref.retval;
break;
}
}
for (i = 0; i < NUM_DESTS; i++)
{
if (! tr->dst[i])
continue;
if (tr->dst_bytes[i])
{
if (memcmp (ref.d[i].p, fun.d[i].p, d[i].size) != 0)
{
printf ("Different d[%d] data results, low diff at %ld, high diff at %ld\n",
i,
(long) byte_diff_lowest (ref.d[i].p, fun.d[i].p, d[i].size),
(long) byte_diff_highest (ref.d[i].p, fun.d[i].p, d[i].size));
error = 1;
}
}
else
{
if (d[i].size != 0
&& ! refmpn_equal_anynail (ref.d[i].p, fun.d[i].p, d[i].size))
{
printf ("Different d[%d] data results, low diff at %ld, high diff at %ld\n",
i,
(long) mpn_diff_lowest (ref.d[i].p, fun.d[i].p, d[i].size),
(long) mpn_diff_highest (ref.d[i].p, fun.d[i].p, d[i].size));
error = 1;
}
}
}
if (error)
{
print_all();
abort();
}
}
/* The functions are cast if the return value should be a long rather than
the default mp_limb_t. This is necessary under _LONG_LONG_LIMB. This
might not be enough if some actual calling conventions checking is
implemented on a long long limb system. */
void
call (struct each_t *e, tryfun_t function)
{
switch (choice->type) {
case TYPE_ADD:
case TYPE_SUB:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, e->s[1].p, size2);
break;
case TYPE_ADDERR1_N:
case TYPE_SUBERR1_N:
e->retval =CALLING_CONVENTIONS(function)
(e->d[0].p, e->s[0].p, e->s[1].p, e->d[1].p, e->s[2].p , size,carry);
break;
case TYPE_ADDERR2_N:
case TYPE_SUBERR2_N:
e->retval =CALLING_CONVENTIONS(function)
(e->d[0].p, e->s[0].p, e->s[1].p, e->d[1].p, e->s[2].p ,e->s[3].p, size,carry);
break;
case TYPE_ADD_N:
case TYPE_SUB_N:
case TYPE_ADDLSH1_N:
case TYPE_SUBLSH1_N:
case TYPE_RSH1ADD_N:
case TYPE_RSH1SUB_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, size);
break;
case TYPE_ADDLSH_N:
case TYPE_SUBLSH_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, size,shift);
break;
case TYPE_ADDLSH_NC:
case TYPE_SUBLSH_NC:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, size,shift,carry);
break;
case TYPE_INCLSH_N:
case TYPE_DECLSH_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size,shift);
break;
case TYPE_ADD_NC:
case TYPE_SUB_NC:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, size, carry);
break;
case TYPE_MUL_1:
case TYPE_ADDMUL_1:
case TYPE_SUBMUL_1:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, multiplier);
break;
case TYPE_MUL_1C:
case TYPE_ADDMUL_1C:
case TYPE_SUBMUL_1C:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, multiplier, carry);
break;
case TYPE_MUL_2:
if (size == 1)
abort ();
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, e->s[1].p);
break;
case TYPE_ADDMUL_2:
case TYPE_ADDMUL_3:
case TYPE_ADDMUL_4:
case TYPE_ADDMUL_5:
case TYPE_ADDMUL_6:
case TYPE_ADDMUL_7:
case TYPE_ADDMUL_8:
if (size == 1)
abort ();
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, multiplier_N);
break;
case TYPE_AND_N:
case TYPE_ANDN_N:
case TYPE_NAND_N:
case TYPE_IOR_N:
case TYPE_IORN_N:
case TYPE_NIOR_N:
case TYPE_XOR_N:
case TYPE_XNOR_N:
CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, e->s[1].p, size);
break;
case TYPE_SUMDIFF_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->d[1].p, e->s[0].p, e->s[1].p, size);
break;
case TYPE_SUMDIFF_NC:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->d[1].p, e->s[0].p, e->s[1].p, size, carry);
break;
case TYPE_ADDSUB_N:
e->retval = (int)CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, e->s[2].p,size);
break;
case TYPE_ADDADD_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, e->s[2].p,size);
break;
case TYPE_SUBADD_N:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, e->s[1].p, e->s[2].p,size);
break;
case TYPE_COPY:
case TYPE_COPYI:
case TYPE_COPYD:
case TYPE_COM_N:
CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size);
break;
case TYPE_DIVEXACT_BY3:
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size);
break;
case TYPE_DIVEXACT_BYFF:
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size);
break;
case TYPE_LSHIFT1:
case TYPE_RSHIFT1:
case TYPE_LSHIFT2:
case TYPE_RSHIFT2:
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size);
break;
case TYPE_DIVEXACT_BY3C:
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size,
carry);
break;
case TYPE_DIVREM_HENSEL_QR_1:
case TYPE_DIVREM_HENSEL_QR_1_1:
case TYPE_DIVREM_HENSEL_QR_1_2:
case TYPE_DIVMOD_1:
case TYPE_DIVEXACT_1:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, divisor);
break;
case TYPE_RSH_DIVREM_HENSEL_QR_1:
case TYPE_RSH_DIVREM_HENSEL_QR_1_1:
case TYPE_RSH_DIVREM_HENSEL_QR_1_2:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, divisor,shift,carry);
break;
case TYPE_DIVREM_HENSEL_RSH_QR_1:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, divisor,shift);
break;
case TYPE_DIVEXACT_BYFOBM1:
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size, altdiv,GMP_NUMB_MAX/altdiv);
break;
case TYPE_DIVMOD_1C:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, divisor, carry);
break;
case TYPE_DIVREM_EUCLIDEAN_QR_1:
case TYPE_DIVREM_1:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, size2, e->s[0].p, size, divisor);
break;
case TYPE_DIVREM_1C:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, size2, e->s[0].p, size, divisor, carry);
break;
case TYPE_PREINV_DIVREM_1:
{
mp_limb_t dinv;
unsigned shift;
shift = refmpn_count_leading_zeros (divisor);
dinv = refmpn_invert_limb (divisor << shift);
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, size2, e->s[0].p, size, divisor, dinv, shift);
}
break;
case TYPE_DIVREM_HENSEL_R_1:
case TYPE_DIVREM_EUCLIDEAN_R_1:
case TYPE_MOD_1:
case TYPE_MODEXACT_1_ODD:
e->retval = CALLING_CONVENTIONS (function)
(e->s[0].p, size, divisor);
break;
case TYPE_MOD_1C:
case TYPE_MODEXACT_1C_ODD:
e->retval = CALLING_CONVENTIONS (function)
(e->s[0].p, size, divisor, carry);
break;
case TYPE_PREINV_MOD_1:
e->retval = CALLING_CONVENTIONS (function)
(e->s[0].p, size, divisor, refmpn_invert_limb (divisor));
break;
case TYPE_MOD_34LSUB1:
e->retval = CALLING_CONVENTIONS (function) (e->s[0].p, size);
break;
case TYPE_UDIV_QRNND:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p[1], e->s[0].p[0], divisor);
break;
case TYPE_UDIV_QRNND_R:
e->retval = CALLING_CONVENTIONS (function)
(e->s[0].p[1], e->s[0].p[0], divisor, e->d[0].p);
break;
case TYPE_SB_DIVREM_MN:
refmpn_copyi (e->d[1].p, e->s[0].p, size); /* dividend */
refmpn_fill (e->d[0].p, size-size2, 0x98765432); /* quotient */
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->d[1].p, size, e->s[1].p, size2);
refmpn_zero (e->d[1].p+size2, size-size2); /* excess over remainder */
break;
case TYPE_TDIV_QR:
CALLING_CONVENTIONS (function) (e->d[0].p, e->d[1].p, 0,
e->s[0].p, size, e->s[1].p, size2);
break;
case TYPE_TDIV_Q:
CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p,
size, e->s[1].p, size2);
break;
case TYPE_GCD_1:
/* Must have a non-zero src, but this probably isn't the best way to do
it. */
if (refmpn_zero_p (e->s[0].p, size))
e->retval = 0;
else
e->retval = CALLING_CONVENTIONS (function) (e->s[0].p, size, divisor);
break;
case TYPE_GCD:
/* Sources are destroyed, so they're saved and replaced, but a general
approach to this might be better. Note that it's still e->s[0].p and
e->s[1].p that are passed, to get the desired alignments. */
{
mp_ptr s0 = refmpn_malloc_limbs (size);
mp_ptr s1 = refmpn_malloc_limbs (size2);
refmpn_copyi (s0, e->s[0].p, size);
refmpn_copyi (s1, e->s[1].p, size2);
mprotect_region (&s[0].region, PROT_READ|PROT_WRITE);
mprotect_region (&s[1].region, PROT_READ|PROT_WRITE);
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p,
e->s[0].p, size,
e->s[1].p, size2);
refmpn_copyi (e->s[0].p, s0, size);
refmpn_copyi (e->s[1].p, s1, size2);
free (s0);
free (s1);
}
break;
case TYPE_GCD_FINDA:
{
/* FIXME: do this with a flag */
mp_limb_t c[2];
c[0] = e->s[0].p[0];
c[0] += (c[0] == 0);
c[1] = e->s[0].p[0];
c[1] += (c[1] == 0);
e->retval = CALLING_CONVENTIONS (function) (c);
}
break;
case TYPE_MPZ_JACOBI:
case TYPE_MPZ_KRONECKER:
{
mpz_t a, b;
PTR(a) = e->s[0].p; SIZ(a) = ((carry&1)==0 ? size : -size);
PTR(b) = e->s[1].p; SIZ(b) = ((carry&2)==0 ? size2 : -size2);
e->retval = CALLING_CONVENTIONS (function) (a, b);
}
break;
case TYPE_MPZ_KRONECKER_UI:
{
mpz_t a;
PTR(a) = e->s[0].p; SIZ(a) = (carry==0 ? size : -size);
e->retval = CALLING_CONVENTIONS(function) (a, (unsigned long)multiplier);
}
break;
case TYPE_MPZ_KRONECKER_SI:
{
mpz_t a;
PTR(a) = e->s[0].p; SIZ(a) = (carry==0 ? size : -size);
e->retval = CALLING_CONVENTIONS (function) (a, (long) multiplier);
}
break;
case TYPE_MPZ_UI_KRONECKER:
{
mpz_t b;
PTR(b) = e->s[0].p; SIZ(b) = (carry==0 ? size : -size);
e->retval = CALLING_CONVENTIONS(function) ((unsigned long)multiplier, b);
}
break;
case TYPE_MPZ_SI_KRONECKER:
{
mpz_t b;
PTR(b) = e->s[0].p; SIZ(b) = (carry==0 ? size : -size);
e->retval = CALLING_CONVENTIONS (function) ((long) multiplier, b);
}
break;
case TYPE_MUL_BASECASE:
CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, e->s[1].p, size2);
break;
case TYPE_MULMID_BASECASE:
CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, e->s[1].p, size2);
break;
case TYPE_MULMID:
CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, e->s[1].p, size2);
break;
case TYPE_MULMID_N:
CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[1].p, e->s[0].p, size);
break;
case TYPE_REDC_BASECASE:
/* Sources are destroyed, so they're saved and replaced, but a general
approach to this might be better. Note that it's still e->s[0].p and
e->s[1].p that are passed, to get the desired alignments. */
{
mp_limb_t Np;
mp_ptr s0 = refmpn_malloc_limbs (size);
mp_ptr s1 = refmpn_malloc_limbs (size2);
modlimb_invert(Np,e->s[0].p[0]);
Np=-Np;
refmpn_copyi (s0, e->s[0].p, size);
refmpn_copyi (s1, e->s[1].p, size2);
mprotect_region (&s[0].region, PROT_READ|PROT_WRITE);
mprotect_region (&s[1].region, PROT_READ|PROT_WRITE);
e->retval = CALLING_CONVENTIONS (function) (e->d[0].p,e->s[1].p,
e->s[0].p, size,Np);
refmpn_copyi (e->s[0].p, s0, size);
refmpn_copyi (e->s[1].p, s1, size2);
free (s0);
free (s1);
}
break;
case TYPE_MUL_N:
CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, e->s[1].p, size);
break;
case TYPE_SQR:
CALLING_CONVENTIONS (function) (e->d[0].p, e->s[0].p, size);
break;
case TYPE_UMUL_PPMM:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p[0], e->s[0].p[1]);
break;
case TYPE_UMUL_PPMM_R:
e->retval = CALLING_CONVENTIONS (function)
(e->s[0].p[0], e->s[0].p[1], e->d[0].p);
break;
case TYPE_LSHIFTC:
case TYPE_LSHIFT:
case TYPE_RSHIFT:
e->retval = CALLING_CONVENTIONS (function)
(e->d[0].p, e->s[0].p, size, shift);
break;
case TYPE_NOT:
CALLING_CONVENTIONS (function) (e->s[0].p, size);
break;
case TYPE_POPCOUNT:
e->retval = (* (unsigned long (*)(ANYARGS))
CALLING_CONVENTIONS (function)) (e->s[0].p, size);
break;
case TYPE_HAMDIST:
e->retval = (* (unsigned long (*)(ANYARGS))
CALLING_CONVENTIONS (function)) (e->s[0].p, e->s[1].p, size);
break;
case TYPE_SQRTREM:
e->retval = (* (long (*)(ANYARGS)) CALLING_CONVENTIONS (function))
(e->d[0].p, e->d[1].p, e->s[0].p, size);
break;
case TYPE_ZERO:
CALLING_CONVENTIONS (function) (e->d[0].p, size);
break;
case TYPE_STORE:
CALLING_CONVENTIONS (function) (e->d[0].p, size,4354);
break;
case TYPE_GET_STR:
{
size_t sizeinbase, fill;
char *dst;
MPN_SIZEINBASE (sizeinbase, e->s[0].p, size, base);
ASSERT_ALWAYS (sizeinbase <= d[0].size);
fill = d[0].size - sizeinbase;
if (d[0].high)
{
memset (e->d[0].p, 0xBA, fill);
dst = (char *) e->d[0].p + fill;
}
else
{
dst = (char *) e->d[0].p;
memset (dst + sizeinbase, 0xBA, fill);
}
if (POW2_P (base))
{
e->retval = CALLING_CONVENTIONS (function) (dst, base,
e->s[0].p, size);
}
else
{
refmpn_copy (e->d[1].p, e->s[0].p, size);
e->retval = CALLING_CONVENTIONS (function) (dst, base,
e->d[1].p, size);
}
refmpn_zero (e->d[1].p, size); /* cloberred or unused */
}
break;
#ifdef EXTRA_CALL
EXTRA_CALL
#endif
default:
printf ("Unknown routine type %d\n", choice->type);
abort ();
break;
}
}
void
pointer_setup (struct each_t *e)
{
int i, j;
for (i = 0; i < NUM_DESTS; i++)
{
switch (tr->dst_size[i]) {
case 0:
case SIZE_RETVAL: /* will be adjusted later */
d[i].size = size;
break;
case SIZE_1:
d[i].size = 1;
break;
case SIZE_2:
d[i].size = 2;
break;
case SIZE_3:
d[i].size = 3;
break;
case SIZE_4:
d[i].size = 4;
break;
case SIZE_PLUS_1:
d[i].size = size+1;
break;
case SIZE_PLUS_2:
d[i].size = size+2;
break;
case SIZE_PLUS_MSIZE_SUB_1:
d[i].size = size + tr->msize - 1;
break;
case SIZE_SUM:
if (tr->size2)
d[i].size = size + size2;
else
d[i].size = 2*size;
break;
case SIZE_SIZE2:
d[i].size = size2;
break;
case SIZE_DIFF:
d[i].size = size - size2;
break;
case SIZE_DIFF_PLUS_1:
d[i].size = size - size2 + 1;
break;
case SIZE_DIFF_PLUS_3:
d[i].size = size - size2 + 3;
break;
case SIZE_CEIL_HALF:
d[i].size = (size+1)/2;
break;
case SIZE_GET_STR:
{
mp_limb_t ff = GMP_NUMB_MAX;
MPN_SIZEINBASE (d[i].size, &ff - (size-1), size, base);
}
break;
default:
printf ("Unrecognised dst_size type %d\n", tr->dst_size[i]);
abort ();
}
}
/* establish e->d[].p destinations */
for (i = 0; i < NUM_DESTS; i++)
{
mp_size_t offset = 0;
/* possible room for overlapping sources */
for (j = 0; j < numberof (overlap->s); j++)
if (overlap->s[j] == i)
offset = MAX (offset, s[j].align);
if (d[i].high)
{
if (tr->dst_bytes[i])
{
e->d[i].p = (mp_ptr)
((char *) (e->d[i].region.ptr + e->d[i].region.size)
- d[i].size - d[i].align);
}
else
{
e->d[i].p = e->d[i].region.ptr + e->d[i].region.size
- d[i].size - d[i].align;
if (tr->overlap == OVERLAP_LOW_TO_HIGH)
e->d[i].p -= offset;
}
}
else
{
if (tr->dst_bytes[i])
{
e->d[i].p = (mp_ptr) ((char *) e->d[i].region.ptr + d[i].align);
}
else
{
e->d[i].p = e->d[i].region.ptr + d[i].align;
if (tr->overlap == OVERLAP_HIGH_TO_LOW)
e->d[i].p += offset;
}
}
}
/* establish e->s[].p sources */
for (i = 0; i < NUM_SOURCES; i++)
{
int o = overlap->s[i];
switch (o) {
case -1:
/* no overlap */
e->s[i].p = s[i].p;
break;
case 0:
case 1:
/* overlap with d[o] */
if (tr->overlap == OVERLAP_HIGH_TO_LOW)
e->s[i].p = e->d[o].p - s[i].align;
else if (tr->overlap == OVERLAP_LOW_TO_HIGH)
e->s[i].p = e->d[o].p + s[i].align;
else if (tr->size2 == SIZE_FRACTION)
e->s[i].p = e->d[o].p + size2;
else
e->s[i].p = e->d[o].p;
break;
default:
abort();
break;
}
}
}
void
validate_fail (void)
{
if (tr->reference)
{
trap_location = TRAP_REF;
call (&ref, tr->reference);
trap_location = TRAP_NOWHERE;
}
print_all();
abort();
}
void
try_one (void)
{
int i;
if (option_spinner)
spinner();
spinner_count++;
trap_location = TRAP_SETUPS;
if (tr->divisor == DIVISOR_NORM)
divisor |= GMP_NUMB_HIGHBIT;
if (tr->divisor == DIVISOR_ODD)
divisor |= 1;
for (i = 0; i < NUM_SOURCES; i++)
{
if (s[i].high)
s[i].p = s[i].region.ptr + s[i].region.size - SRC_SIZE(i) - s[i].align;
else
s[i].p = s[i].region.ptr + s[i].align;
}
pointer_setup (&ref);
pointer_setup (&fun);
ref.retval = 0x04152637;
fun.retval = 0x8C9DAEBF;
t_random (multiplier_N, tr->msize);
for (i = 0; i < NUM_SOURCES; i++)
{
if (! tr->src[i])
continue;
mprotect_region (&s[i].region, PROT_READ|PROT_WRITE);
t_random (s[i].p, SRC_SIZE(i));
switch (tr->data) {
case DATA_NON_ZERO:
if (refmpn_zero_p (s[i].p, SRC_SIZE(i)))
s[i].p[0] = 1;
break;
case DATA_MULTIPLE_DIVISOR:
/* same number of low zero bits as divisor */
s[i].p[0] &= ~ LOW_ZEROS_MASK (divisor);
refmpn_sub_1 (s[i].p, s[i].p, size,
refmpn_mod_1 (s[i].p, size, divisor));
break;
case DATA_GCD:
/* s[1] no more bits than s[0] */
if (i == 1 && size2 == size)
s[1].p[size-1] &= refmpn_msbone_mask (s[0].p[size-1]);
/* high limb non-zero */
s[i].p[SRC_SIZE(i)-1] += (s[i].p[SRC_SIZE(i)-1] == 0);
/* odd */
s[i].p[0] |= 1;
break;
case DATA_SRC1_ODD:
if (i == 1)
s[i].p[0] |= 1;
break;
case DATA_SRC0_ODD:
if (i == 0)
s[i].p[0] |= 1;
break;
case DATA_SRC1_HIGHBIT:
if (i == 1)
{
if (tr->size2)
s[i].p[size2-1] |= GMP_NUMB_HIGHBIT;
else
s[i].p[size-1] |= GMP_NUMB_HIGHBIT;
}
break;
case DATA_UDIV_QRNND:
s[i].p[1] %= divisor;
break;
}
mprotect_region (&s[i].region, PROT_READ);
}
for (i = 0; i < NUM_DESTS; i++)
{
if (! tr->dst[i])
continue;
if (tr->dst0_from_src1 && i==0)
{
mp_size_t copy = MIN (d[0].size, SRC_SIZE(1));
mp_size_t fill = MAX (0, d[0].size - copy);
MPN_COPY (fun.d[0].p, s[1].region.ptr, copy);
MPN_COPY (ref.d[0].p, s[1].region.ptr, copy);
refmpn_fill (fun.d[0].p + copy, fill, DEADVAL);
refmpn_fill (ref.d[0].p + copy, fill, DEADVAL);
}
else if (tr->dst_bytes[i])
{
memset (ref.d[i].p, 0xBA, d[i].size);
memset (fun.d[i].p, 0xBA, d[i].size);
}
else
{
refmpn_fill (ref.d[i].p, d[i].size, DEADVAL);
refmpn_fill (fun.d[i].p, d[i].size, DEADVAL);
}
}
for (i = 0; i < NUM_SOURCES; i++)
{
if (! tr->src[i])
continue;
if (ref.s[i].p != s[i].p)
{
refmpn_copyi (ref.s[i].p, s[i].p, SRC_SIZE(i));
refmpn_copyi (fun.s[i].p, s[i].p, SRC_SIZE(i));
}
}
if (option_print)
print_all();
if (tr->validate != NULL)
{
trap_location = TRAP_FUN;
call (&fun, choice->function);
trap_location = TRAP_NOWHERE;
if (! CALLING_CONVENTIONS_CHECK ())
{
print_all();
abort();
}
(*tr->validate) ();
}
else
{
trap_location = TRAP_REF;
call (&ref, tr->reference);
trap_location = TRAP_FUN;
call (&fun, choice->function);
trap_location = TRAP_NOWHERE;
if (! CALLING_CONVENTIONS_CHECK ())
{
print_all();
abort();
}
compare ();
}
}
#define SIZE_ITERATION \
for (size = MAX3 (option_firstsize, \
choice->minsize, \
(tr->size == SIZE_ALLOW_ZERO) ? 0 : 1); \
size <= option_lastsize; \
size++)
#define SIZE2_FIRST \
(tr->size2 == SIZE_2 ? 2 \
: tr->size2 == SIZE_FRACTION ? option_firstsize2 \
: tr->size2 == SIZE_DOUBLE ? size*2 \
: tr->size2 == SIZE_DOUBLE_MINUS_1 ? size*2-1 \
: tr->size2 ? \
MAX (choice->minsize, (option_firstsize2 != 0 \
? option_firstsize2 : 1)) \
: 0)
#define SIZE2_LAST \
(tr->size2 == SIZE_2 ? 2 \
: tr->size2 == SIZE_FRACTION ? FRACTION_COUNT-1 \
: tr->size2 == SIZE_DOUBLE ? size*2 \
: tr->size2 == SIZE_DOUBLE_MINUS_1 ? size*2-1 \
: tr->size2 ? size \
: 0)
#define SIZE2_ITERATION \
for (size2 = SIZE2_FIRST; size2 <= SIZE2_LAST; size2++)
#define ALIGN_COUNT(cond) ((cond) ? ALIGNMENTS : 1)
#define ALIGN_ITERATION(w,n,cond) \
for (w[n].align = 0; w[n].align < ALIGN_COUNT(cond); w[n].align++)
#define HIGH_LIMIT(cond) ((cond) != 0)
#define HIGH_COUNT(cond) (HIGH_LIMIT (cond) + 1)
#define HIGH_ITERATION(w,n,cond) \
for (w[n].high = 0; w[n].high <= HIGH_LIMIT(cond); w[n].high++)
#define SHIFT_LIMIT \
((unsigned long) (tr->shift ? GMP_NUMB_BITS -1 : 1))
#define SHIFT_ITERATION \
for (shift = 1; shift <= SHIFT_LIMIT; shift++)
void
try_many (void)
{
int i;
{
unsigned long total = 1;
total *= option_repetitions;
total *= option_lastsize;
if (tr->size2 == SIZE_FRACTION) total *= FRACTION_COUNT;
else if (tr->size2 == SIZE_DOUBLE) total *= 1;
else if (tr->size2) total *= (option_lastsize+1)/2;
total *= SHIFT_LIMIT;
total *= MULTIPLIER_COUNT;
total *= DIVISOR_COUNT;
total *= ALTDIV_COUNT;
total *= CARRY_COUNT;
total *= T_RAND_COUNT;
total *= HIGH_COUNT (tr->dst[0]);
total *= HIGH_COUNT (tr->dst[1]);
total *= HIGH_COUNT (tr->src[0]);
total *= HIGH_COUNT (tr->src[1]);
total *= HIGH_COUNT (tr->src[2]);
total *= ALIGN_COUNT (tr->dst[0]);
total *= ALIGN_COUNT (tr->dst[1]);
total *= ALIGN_COUNT (tr->src[0]);
total *= ALIGN_COUNT (tr->src[1]);
total *= ALIGN_COUNT (tr->src[2]);
#if NUM_SOURCES > 3 || NUM_DESTS > 2
#error Need to adjust high_count and align_count above
#endif
total *= OVERLAP_COUNT;
printf ("%s %lu\n", choice->name, total);
}
spinner_count = 0;
for (i = 0; i < option_repetitions; i++)
SIZE_ITERATION
SIZE2_ITERATION
SHIFT_ITERATION
MULTIPLIER_ITERATION
ALTDIV_ITERATION
DIVISOR_ITERATION
CARRY_ITERATION /* must be after divisor */
T_RAND_ITERATION
HIGH_ITERATION(d,0, tr->dst[0])
HIGH_ITERATION(d,1, tr->dst[1])
HIGH_ITERATION(s,0, tr->src[0])
HIGH_ITERATION(s,1, tr->src[1])
HIGH_ITERATION(s,2, tr->src[2])
ALIGN_ITERATION(d,0, tr->dst[0])
ALIGN_ITERATION(d,1, tr->dst[1])
ALIGN_ITERATION(s,0, tr->src[0])
ALIGN_ITERATION(s,1, tr->src[1])
ALIGN_ITERATION(s,2, tr->src[2])
#if NUM_SOURCES > 3 || NUM_DESTS > 2
#error Need to adjust high_iteration and align_iteration above
#endif
OVERLAP_ITERATION
try_one();
printf("\n");
}
/* Usually print_all() doesn't show much, but it might give a hint as to
where the function was up to when it died. */
void
trap (int sig)
{
const char *name = "noname";
switch (sig) {
case SIGILL: name = "SIGILL"; break;
#ifdef SIGBUS
case SIGBUS: name = "SIGBUS"; break;
#endif
case SIGSEGV: name = "SIGSEGV"; break;
case SIGFPE: name = "SIGFPE"; break;
}
printf ("\n\nSIGNAL TRAP: %s\n", name);
switch (trap_location) {
case TRAP_REF:
printf (" in reference function: %s\n", tr->reference_name);
break;
case TRAP_FUN:
printf (" in test function: %s\n", choice->name);
print_all ();
break;
case TRAP_SETUPS:
printf (" in parameter setups\n");
print_all ();
break;
default:
printf (" somewhere unknown\n");
break;
}
exit (1);
}
void
try_init (void)
{
#if HAVE_GETPAGESIZE
/* Prefer getpagesize() over sysconf(), since on SunOS 4 sysconf() doesn't
know _SC_PAGESIZE. */
pagesize = getpagesize ();
#elif HAVE_SYSCONF
if ((pagesize = sysconf (_SC_PAGESIZE)) == -1)
{
/* According to the linux man page, sysconf doesn't set errno */
fprintf (stderr, "Cannot get sysconf _SC_PAGESIZE\n");
exit (1);
}
#elif defined( _MSC_VER )
SYSTEM_INFO si;
GetSystemInfo(&si);
pagesize = si.dwPageSize;
#else
#error Error, error, cannot get page size
#endif
printf ("pagesize is 0x%lX bytes\n", pagesize);
signal (SIGILL, trap);
#ifdef SIGBUS
signal (SIGBUS, trap);
#endif
signal (SIGSEGV, trap);
signal (SIGFPE, trap);
{
int i;
for (i = 0; i < NUM_SOURCES; i++)
{
malloc_region (&s[i].region, 2*option_lastsize+ALIGNMENTS-1);
printf ("s[%d] %p to %p (0x%lX bytes)\n",
i, s[i].region.ptr,
s[i].region.ptr + s[i].region.size,
(long) s[i].region.size * BYTES_PER_MP_LIMB);
}
#define INIT_EACH(e,es) \
for (i = 0; i < NUM_DESTS; i++) \
{ \
malloc_region (&e.d[i].region, 2*option_lastsize+ALIGNMENTS-1); \
printf ("%s d[%d] %p to %p (0x%lX bytes)\n", \
es, i, e.d[i].region.ptr, \
e.d[i].region.ptr + e.d[i].region.size, \
(long) e.d[i].region.size * BYTES_PER_MP_LIMB); \
}
INIT_EACH(ref, "ref");
INIT_EACH(fun, "fun");
}
}
int
strmatch_wild (const char *pattern, const char *str)
{
size_t plen, slen;
/* wildcard at start */
if (pattern[0] == '*')
{
pattern++;
plen = strlen (pattern);
slen = strlen (str);
return (plen == 0
|| (slen >= plen && memcmp (pattern, str+slen-plen, plen) == 0));
}
/* wildcard at end */
plen = strlen (pattern);
if (plen >= 1 && pattern[plen-1] == '*')
return (memcmp (pattern, str, plen-1) == 0);
/* no wildcards */
return (strcmp (pattern, str) == 0);
}
void
try_name (const char *name)
{
int found = 0;
int i;
for (i = 0; i < numberof (choice_array); i++)
{
if (strmatch_wild (name, choice_array[i].name))
{
choice = &choice_array[i];
tr = &param[choice->type];
try_many ();
found = 1;
}
}
if (!found)
{
printf ("%s unknown\n", name);
/* exit (1); */
}
}
void
usage (const char *prog)
{
int col = 0;
int i;
printf ("Usage: %s [options] function...\n", prog);
printf (" -1 use limb data 1,2,3,etc\n");
printf (" -9 use limb data all 0xFF..FFs\n");
printf (" -a zeros use limb data all zeros\n");
printf (" -a ffs use limb data all 0xFF..FFs (same as -9)\n");
printf (" -a 2fd use data 0x2FFF...FFFD\n");
printf (" -p print each case tried (try this if seg faulting)\n");
printf (" -R seed random numbers from time()\n");
printf (" -r reps set repetitions (default %d)\n", DEFAULT_REPETITIONS);
printf (" -s size starting size to test\n");
printf (" -S size2 starting size2 to test\n");
printf (" -s s1-s2 range of sizes to test\n");
printf (" -W don't show the spinner (use this in gdb)\n");
printf (" -z disable mprotect() redzones\n");
printf ("Default data is refmpn_random() and refmpn_random2().\n");
printf ("\n");
printf ("Functions that can be tested:\n");
for (i = 0; i < numberof (choice_array); i++)
{
if (col + 1 + strlen (choice_array[i].name) > 79)
{
printf ("\n");
col = 0;
}
printf (" %s", choice_array[i].name);
col += 1 + strlen (choice_array[i].name);
}
printf ("\n");
exit(1);
}
int
main (int argc, char *argv[])
{
int i;
/* unbuffered output */
setbuf (stdout, NULL);
setbuf (stderr, NULL);
/* default trace in hex, and in upper-case so can paste into bc */
mp_trace_base = -16;
param_init ();
{
unsigned long seed = 123;
int opt;
while ((opt = getopt(argc, argv, "19a:b:E:pRr:S:s:Wz")) != EOF)
{
switch (opt) {
case '1':
/* use limb data values 1, 2, 3, ... etc */
option_data = DATA_SEQ;
break;
case '9':
/* use limb data values 0xFFF...FFF always */
option_data = DATA_FFS;
break;
case 'a':
if (strcmp (optarg, "zeros") == 0) option_data = DATA_ZEROS;
else if (strcmp (optarg, "seq") == 0) option_data = DATA_SEQ;
else if (strcmp (optarg, "ffs") == 0) option_data = DATA_FFS;
else if (strcmp (optarg, "2fd") == 0) option_data = DATA_2FD;
else
{
fprintf (stderr, "unrecognised data option: %s\n", optarg);
exit (1);
}
break;
case 'b':
mp_trace_base = atoi (optarg);
break;
case 'E':
/* re-seed */
sscanf (optarg, "%lu", &seed);
printf ("Re-seeding with %lu\n", seed);
break;
case 'p':
option_print = 1;
break;
case 'R':
/* randomize */
seed = time (NULL);
printf ("Seeding with %lu, re-run using \"-E %lu\"\n", seed, seed);
break;
case 'r':
option_repetitions = atoi (optarg);
break;
case 's':
{
char *p;
option_firstsize = atoi (optarg);
if ((p = strchr (optarg, '-')) != NULL)
option_lastsize = atoi (p+1);
}
break;
case 'S':
/* -S <size> sets the starting size for the second of a two size
routine (like mpn_mul_basecase) */
option_firstsize2 = atoi (optarg);
break;
case 'W':
/* use this when running in the debugger */
option_spinner = 0;
break;
case 'z':
/* disable redzones */
option_redzones = 0;
break;
case '?':
usage (argv[0]);
break;
}
}
gmp_randinit_default (__gmp_rands);
__gmp_rands_initialized = 1;
gmp_randseed_ui (__gmp_rands, seed);
}
try_init();
if (argc <= optind)
usage (argv[0]);
for (i = optind; i < argc; i++)
try_name (argv[i]);
return 0;
}