mpir/mpn/generic/tdiv_q.c
2015-11-13 14:47:44 +00:00

296 lines
9.1 KiB
C

/* mpn_tdiv_q -- division for arbitrary size operands.
Contributed to the GNU project by Torbjorn Granlund.
Copyright 2009, 2010 Free Software Foundation, Inc.
Copyright 2010 William Hart (modified to work with MPIR functions).
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
/* The DIV_QR_THRESHOLDs should be replaced with DIV_Q_THRESHOLDs */
/* Compute Q = N/D with truncation.
N = {np,nn}
D = {dp,dn}
Q = {qp,nn-dn+1}
T = {scratch,nn+1} is scratch space
N and D are both untouched by the computation.
N and T may overlap; pass the same space if N is irrelevant after the call,
but note that tp needs an extra limb.
Operand requirements:
N >= D > 0
dp[dn-1] != 0
No overlap between the N, D, and Q areas.
This division function does not clobber its input operands, since it is
intended to support average-O(qn) division, and for that to be effective, it
cannot put requirements on callers to copy a O(nn) operand.
If a caller does not care about the value of {np,nn+1} after calling this
function, it should pass np also for the scratch argument. This function
will then save some time and space by avoiding allocation and copying.
(FIXME: Is this a good design? We only really save any copying for
already-normalised divisors, which should be rare. It also prevents us from
reasonably asking for all scratch space we need.)
We write nn-dn+1 limbs for the quotient, but return void. Why not return
the most significant quotient limb? Look at the 4 main code blocks below
(consisting of an outer if-else where each arm contains an if-else). It is
tricky for the first code block, since the mpn_*_div_q calls will typically
generate all nn-dn+1 and return 0 or 1. I don't see how to fix that unless
we generate the most significant quotient limb here, before calling
mpn_*_div_q, or put the quotient in a temporary area. Since this is a
critical division case (the SB sub-case in particular) copying is not a good
idea.
It might make sense to split the if-else parts of the (qn + FUDGE
>= dn) blocks into separate functions, since we could promise quite
different things to callers in these two cases. The 'then' case
benefits from np=scratch, and it could perhaps even tolerate qp=np,
saving some headache for many callers.
FIXME: Scratch allocation leaves a lot to be desired. E.g., for the MU size
operands, we do not reuse the huge scratch for adjustments. This can be a
serious waste of memory for the largest operands.
*/
/* FUDGE determines when to try getting an approximate quotient from the upper
parts of the dividend and divisor, then adjust. N.B. FUDGE must be >= 2
for the code to be correct. */
#define FUDGE 5 /* FIXME: tune this */
void
mpn_tdiv_q (mp_ptr qp,
mp_srcptr np, mp_size_t nn,
mp_srcptr dp, mp_size_t dn)
{
mp_ptr new_dp, new_np, tp, rp, scratch;
mp_limb_t cy, dh, qh;
mp_size_t new_nn, qn;
mp_limb_t dinv;
int cnt;
TMP_DECL;
TMP_MARK;
ASSERT (nn >= dn);
ASSERT (dn > 0);
ASSERT (dp[dn - 1] != 0);
ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1, np, nn));
ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1, dp, dn));
ASSERT_ALWAYS (FUDGE >= 2);
if (dn == 1)
{
mpn_divrem_1 (qp, 0L, np, nn, dp[dn - 1]);
return;
}
scratch = TMP_ALLOC_LIMBS(nn + 1);
qn = nn - dn + 1; /* Quotient size, high limb might be zero */
if (qn + FUDGE >= dn)
{
/* |________________________|
|_______| */
new_np = scratch;
dh = dp[dn - 1];
if (LIKELY ((dh & GMP_NUMB_HIGHBIT) == 0))
{
count_leading_zeros (cnt, dh);
cy = mpn_lshift (new_np, np, nn, cnt);
new_np[nn] = cy;
new_nn = nn + (cy != 0);
new_dp = TMP_ALLOC_LIMBS (dn);
mpn_lshift (new_dp, dp, dn, cnt);
if (dn == 2)
{
qh = mpn_divrem_2 (qp, 0L, new_np, new_nn, new_dp);
}
else if (BELOW_THRESHOLD (dn, DC_DIV_Q_THRESHOLD) ||
BELOW_THRESHOLD (new_nn - dn, DC_DIV_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, new_dp[dn - 1], new_dp[dn - 2]);
qh = mpn_sb_div_q (qp, new_np, new_nn, new_dp, dn, dinv);
}
else if (BELOW_THRESHOLD (dn, INV_DIV_Q_THRESHOLD) ||
BELOW_THRESHOLD (nn, 2 * INV_DIV_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, new_dp[dn - 1], new_dp[dn - 2]);
qh = mpn_dc_div_q (qp, new_np, new_nn, new_dp, dn, dinv);
}
else
{
mp_ptr inv = TMP_ALLOC_LIMBS(dn);
mpn_invert(inv, new_dp, dn);
qh = mpn_inv_div_q (qp, new_np, new_nn, new_dp, dn, inv);
}
if (cy == 0)
qp[qn - 1] = qh;
else if (UNLIKELY (qh != 0))
{
/* This happens only when the quotient is close to B^n and
mpn_*_divappr_q returned B^n. */
mp_size_t i, n;
n = new_nn - dn;
for (i = 0; i < n; i++)
qp[i] = GMP_NUMB_MAX;
qh = 0; /* currently ignored */
}
}
else /* divisor is already normalised */
{
MPN_COPY (new_np, np, nn);
if (dn == 2)
{
qh = mpn_divrem_2 (qp, 0L, new_np, nn, dp);
}
else if (BELOW_THRESHOLD (dn, DC_DIV_Q_THRESHOLD) ||
BELOW_THRESHOLD (nn - dn, DC_DIV_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, dh, dp[dn - 2]);
qh = mpn_sb_div_q (qp, new_np, nn, dp, dn, dinv);
}
else if (BELOW_THRESHOLD (dn, INV_DIV_Q_THRESHOLD) ||
BELOW_THRESHOLD (nn, 2 * INV_DIV_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, dh, dp[dn - 2]);
qh = mpn_dc_div_q (qp, new_np, nn, dp, dn, dinv);
}
else
{
mp_ptr inv = TMP_ALLOC_LIMBS(dn);
mpn_invert(inv, dp, dn);
qh = mpn_inv_div_q (qp, new_np, nn, dp, dn, inv);
}
qp[nn - dn] = qh;
}
}
else
{
/* |________________________|
|_________________| */
tp = TMP_ALLOC_LIMBS (qn + 1);
new_np = scratch;
new_nn = 2 * qn + 1;
dh = dp[dn - 1];
if (LIKELY ((dh & GMP_NUMB_HIGHBIT) == 0))
{
count_leading_zeros (cnt, dh);
cy = mpn_lshift (new_np, np + nn - new_nn, new_nn, cnt);
new_np[new_nn] = cy;
new_nn += (cy != 0);
new_dp = TMP_ALLOC_LIMBS (qn + 1);
mpn_lshift (new_dp, dp + dn - (qn + 1), qn + 1, cnt);
new_dp[0] |= dp[dn - (qn + 1) - 1] >> (GMP_NUMB_BITS - cnt);
if (qn + 1 == 2)
{
qh = mpn_divrem_2 (tp, 0L, new_np, new_nn, new_dp);
}
else if (BELOW_THRESHOLD (qn - 1, DC_DIVAPPR_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, new_dp[qn], new_dp[qn - 1]);
qh = mpn_sb_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, dinv);
}
else if (BELOW_THRESHOLD (qn - 1, INV_DIVAPPR_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, new_dp[qn], new_dp[qn - 1]);
qh = mpn_dc_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, dinv);
}
else
{
mp_ptr inv = TMP_ALLOC_LIMBS(qn + 1);
mpn_invert(inv, new_dp, qn + 1);
qh = mpn_inv_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, inv);
}
if (cy == 0)
tp[qn] = qh;
else if (UNLIKELY (qh != 0))
{
/* This happens only when the quotient is close to B^n and
mpn_*_divappr_q returned B^n. */
mp_size_t i, n;
n = new_nn - (qn + 1);
for (i = 0; i < n; i++)
tp[i] = GMP_NUMB_MAX;
qh = 0; /* currently ignored */
}
}
else /* divisor is already normalised */
{
MPN_COPY (new_np, np + nn - new_nn, new_nn);
new_dp = (mp_ptr) dp + dn - (qn + 1);
if (qn == 2 - 1)
{
qh = mpn_divrem_2 (tp, 0L, new_np, new_nn, new_dp);
}
else if (BELOW_THRESHOLD (qn - 1, DC_DIVAPPR_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, dh, new_dp[qn - 1]);
qh = mpn_sb_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, dinv);
}
else if (BELOW_THRESHOLD (qn - 1, INV_DIVAPPR_Q_THRESHOLD))
{
mpir_invert_pi1(dinv, dh, new_dp[qn - 1]);
qh = mpn_dc_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, dinv);
}
else
{
mp_ptr inv = TMP_ALLOC_LIMBS(qn + 1);
mpn_invert(inv, new_dp, qn + 1);
qh = mpn_inv_divappr_q (tp, new_np, new_nn, new_dp, qn + 1, inv);
}
tp[qn] = qh;
}
MPN_COPY (qp, tp + 1, qn);
if (UNLIKELY(tp[0] <= 4))
{
mp_size_t rn;
rp = TMP_ALLOC_LIMBS (dn + qn);
mpn_mul (rp, dp, dn, tp + 1, qn);
rn = dn + qn;
rn -= rp[rn - 1] == 0;
if (rn > nn || mpn_cmp (np, rp, nn) < 0)
mpn_decr_u (qp, 1);
}
}
TMP_FREE;
}