/* mpz_bin_ui - compute n over k. Copyright 1998, 1999, 2000, 2001, 2002, 2012 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" /* This is a poor implementation. Look at bin_uiui.c for improvement ideas. In fact consider calling mpz_bin_uiui() when the arguments fit, leaving the code here only for big n. The identity bin(n,k) = (-1)^k * bin(-n+k-1,k) can be found in Knuth vol 1 section 1.2.6 part G. */ #define DIVIDE() \ do { \ ASSERT (SIZ(r) > 0); \ MPN_DIVREM_OR_DIVEXACT_1 (PTR(r), PTR(r), (mp_size_t) SIZ(r), kacc); \ SIZ(r) -= (PTR(r)[SIZ(r)-1] == 0); \ } while (0) void mpz_bin_ui (mpz_ptr r, mpz_srcptr n, mpir_ui k) { mpz_t ni; mp_limb_t i; mpz_t nacc; mp_limb_t kacc; mp_size_t negate; if (SIZ (n) < 0) { /* bin(n,k) = (-1)^k * bin(-n+k-1,k), and set ni = -n+k-1 - k = -n-1 */ mpz_init (ni); mpz_neg (ni, n); mpz_sub_ui (ni, ni, 1L); negate = (k & 1); /* (-1)^k */ } else { /* bin(n,k) == 0 if k>n (no test for this under the n<0 case, since -n+k-1 >= k there) */ if (mpz_cmp_ui (n, k) < 0) { SIZ (r) = 0; return; } /* set ni = n-k */ mpz_init (ni); mpz_sub_ui (ni, n, k); negate = 0; } /* Now wanting bin(ni+k,k), with ni positive, and "negate" is the sign (0 for positive, 1 for negative). */ SIZ (r) = 1; PTR (r)[0] = 1; /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. In this case it's whether ni+k-k < k meaning ni>= 1; nacclow >>= 1; } mpz_div_2exp (nacc, nacc, c); #endif mpz_add_ui (ni, ni, 1L); mpz_mul (nacc, nacc, ni); umul_ppmm (k1, k0, kacc, i << GMP_NAIL_BITS); if (k1 != 0) { /* Accumulator overflow. Perform bignum step. */ mpz_mul (r, r, nacc); SIZ (nacc) = 1; PTR (nacc)[0] = 1; DIVIDE (); kacc = i; } else { /* Save new products in accumulators to keep accumulating. */ kacc = k0 >> GMP_NAIL_BITS; } } mpz_mul (r, r, nacc); DIVIDE (); SIZ(r) = (SIZ(r) ^ -negate) + negate; mpz_clear (nacc); mpz_clear (ni); }