dnl PowerPC-32/VMX and PowerPC-64/VMX mpn_and_n, mpn_andn_n, mpn_nand_n, dnl mpn_ior_n, mpn_iorn_n, mpn_nior_n, mpn_xor_n, mpn_xnor_n -- mpn bitwise dnl logical operations. dnl Copyright 2006 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of the GNU Lesser General Public License as published dnl by the Free Software Foundation; either version 2.1 of the License, or (at dnl your option) any later version. dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public dnl License for more details. dnl You should have received a copy of the GNU Lesser General Public License dnl along with the GNU MP Library; see the file COPYING.LIB. If not, write dnl to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, dnl Boston, MA 02110-1301, USA. include(`../config.m4') C and,ior,andn,nior,xor iorn,xnor nand C cycles/limb cycles/limb cycles/limb C 7400,7410 (G4): 1.39 ? ? C 744x,745x (G4+): 1.14 1.39 1.39 C 970: 1.7 2.0 2.0 C STATUS C * Works for all sizes and alignment for 32-bit limbs. C * Works for n >= 4 for 64-bit limbs; untested for smaller operands. C * Current performance makes this pointless for 970 C TODO C * Might want to make variants when just one of the source operands needs C vperm, and when neither needs it. The latter runs 50% faster on 7400. C * Idea: If the source operands are equally aligned, we could do the logops C first, then vperm before storing! That means we never need more than one C vperm, ever! C * Perhaps align `rp' after initial alignment loop? C * Instead of having scalar code in the beginning and end, consider using C read-modify-write vector code. C * Software pipeline? Hopefully not too important, this is hairy enough C already. C * At least be more clever about operand loading, i.e., load v operands before C u operands, since v operands are sometimes negated. define(`GMP_LIMB_BYTES', eval(GMP_LIMB_BITS/8)) define(`LIMBS_PER_VR', eval(16/GMP_LIMB_BYTES)) define(`LIMBS_PER_2VR', eval(32/GMP_LIMB_BYTES)) define(`vnegb', `') C default neg-before to null define(`vnega', `') C default neg-before to null define(OPERATION_xor_n,1) ifdef(`OPERATION_and_n', ` define(`func', `mpn_and_n') define(`logopS',`and $1,$2,$3') define(`logop', `vand $1,$2,$3')') ifdef(`OPERATION_andn_n', ` define(`func', `mpn_andn_n') define(`logopS',`andc $1,$2,$3') define(`logop', `vandc $1,$2,$3')') ifdef(`OPERATION_nand_n', ` define(`func', `mpn_nand_n') define(`logopS',`nand $1,$2,$3') define(`logop', `vand $1,$2,$3') define(`vnega', `vnor $1,$2,$2')') ifdef(`OPERATION_ior_n', ` define(`func', `mpn_ior_n') define(`logopS',`or $1,$2,$3') define(`logop', `vor $1,$2,$3')') ifdef(`OPERATION_iorn_n', ` define(`func', `mpn_iorn_n') define(`logopS',`orc $1,$2,$3') define(`vnegb', `vnor $1,$2,$2') define(`logop', `vor $1,$2,$3')') ifdef(`OPERATION_nior_n', ` define(`func', `mpn_nior_n') define(`logopS',`nor $1,$2,$3') define(`logop', `vnor $1,$2,$3')') ifdef(`OPERATION_xor_n', ` define(`func', `mpn_xor_n') define(`logopS',`xor $1,$2,$3') define(`logop', `vxor $1,$2,$3')') ifdef(`OPERATION_xnor_n', ` define(`func',`mpn_xnor_n') define(`logopS',`eqv $1,$2,$3') define(`vnegb', `vnor $1,$2,$2') define(`logop', `vxor $1,$2,$3')') ifelse(GMP_LIMB_BITS,`32',` define(`LIMB32',` $1') define(`LIMB64',`') ',` define(`LIMB32',`') define(`LIMB64',` $1') ') C INPUT PARAMETERS define(`rp', `r3') define(`up', `r4') define(`vp', `r5') define(`n', `r6') define(`us', `v8') define(`vs', `v9') ASM_START() PROLOGUE(func) LIMB32(`cmpwi cr0, n, 8 ') LIMB64(`cmpdi cr0, n, 4 ') bge L(big) mtctr n LIMB32(`lwz r8, 0(up) ') LIMB32(`lwz r9, 0(vp) ') LIMB32(`logopS( r0, r8, r9) ') LIMB32(`stw r0, 0(rp) ') LIMB32(`bdz L(endS) ') L(topS): LIMB32(`lwzu r8, 4(up) ') LIMB64(`ld r8, 0(up) ') LIMB64(`addi up, up, GMP_LIMB_BYTES ') LIMB32(`lwzu r9, 4(vp) ') LIMB64(`ld r9, 0(vp) ') LIMB64(`addi vp, vp, GMP_LIMB_BYTES ') logopS( r0, r8, r9) LIMB32(`stwu r0, 4(rp) ') LIMB64(`std r0, 0(rp) ') LIMB64(`addi rp, rp, GMP_LIMB_BYTES ') bdnz L(topS) L(endS): blr L(big): mfspr r12, 256 oris r0, r12, 0xfffc C Set VRSAVE bit 0-13 FIXME mtspr 256, r0 C First loop until the destination is 16-byte aligned. This will execute 0 or 1 C times for 64-bit machines, and 0 to 3 times for 32-bit machines. LIMB32(`rlwinm. r0, rp, 30,30,31') C (rp >> 2) mod 4 LIMB64(`rlwinm. r0, rp, 29,31,31') C (rp >> 3) mod 2 beq L(aligned) subfic r7, r0, LIMBS_PER_VR LIMB32(`li r10, 0 ') subf n, r7, n L(top0): LIMB32(`lwz r8, 0(up) ') LIMB64(`ld r8, 0(up) ') addi up, up, GMP_LIMB_BYTES LIMB32(`lwz r9, 0(vp) ') LIMB64(`ld r9, 0(vp) ') addi vp, vp, GMP_LIMB_BYTES LIMB32(`addic. r7, r7, -1 ') logopS( r0, r8, r9) LIMB32(`stwx r0, r10, rp ') LIMB64(`std r0, 0(rp) ') LIMB32(`addi r10, r10, GMP_LIMB_BYTES') LIMB32(`bne L(top0) ') addi rp, rp, 16 C update rp, but preserve its alignment L(aligned): LIMB64(`srdi r7, n, 1 ') C loop count corresponding to n LIMB32(`srwi r7, n, 2 ') C loop count corresponding to n mtctr r7 C copy n to count register li r10, 16 lvsl us, 0, up lvsl vs, 0, vp lvx v2, 0, up lvx v3, 0, vp bdnz L(gt1) lvx v0, r10, up lvx v1, r10, vp vperm v4, v2, v0, us vperm v5, v3, v1, vs vnegb( v5, v5) logop( v6, v4, v5) vnega( v6, v6) stvx v6, 0, rp addi up, up, 16 addi vp, vp, 16 addi rp, rp, 4 b L(tail) L(gt1): addi up, up, 16 addi vp, vp, 16 L(top): lvx v0, 0, up lvx v1, 0, vp vperm v4, v2, v0, us vperm v5, v3, v1, vs vnegb( v5, v5) logop( v6, v4, v5) vnega( v6, v6) stvx v6, 0, rp bdz L(end) lvx v2, r10, up lvx v3, r10, vp vperm v4, v0, v2, us vperm v5, v1, v3, vs vnegb( v5, v5) logop( v6, v4, v5) vnega( v6, v6) stvx v6, r10, rp addi up, up, 32 addi vp, vp, 32 addi rp, rp, 32 bdnz L(top) andi. r0, up, 15 vxor v0, v0, v0 beq 1f lvx v0, 0, up 1: andi. r0, vp, 15 vxor v1, v1, v1 beq 1f lvx v1, 0, vp 1: vperm v4, v2, v0, us vperm v5, v3, v1, vs vnegb( v5, v5) logop( v6, v4, v5) vnega( v6, v6) stvx v6, 0, rp addi rp, rp, 4 b L(tail) L(end): andi. r0, up, 15 vxor v2, v2, v2 beq 1f lvx v2, r10, up 1: andi. r0, vp, 15 vxor v3, v3, v3 beq 1f lvx v3, r10, vp 1: vperm v4, v0, v2, us vperm v5, v1, v3, vs vnegb( v5, v5) logop( v6, v4, v5) vnega( v6, v6) stvx v6, r10, rp addi up, up, 16 addi vp, vp, 16 addi rp, rp, 20 L(tail): LIMB32(`rlwinm. r7, n, 0,30,31 ') C r7 = n mod 4 LIMB64(`rlwinm. r7, n, 0,31,31 ') C r7 = n mod 2 beq L(ret) addi rp, rp, 15 LIMB32(`rlwinm rp, rp, 0,0,27 ') LIMB64(`rldicr rp, rp, 0,59 ') li r10, 0 L(top2): LIMB32(`lwzx r8, r10, up ') LIMB64(`ldx r8, r10, up ') LIMB32(`lwzx r9, r10, vp ') LIMB64(`ldx r9, r10, vp ') LIMB32(`addic. r7, r7, -1 ') logopS( r0, r8, r9) LIMB32(`stwx r0, r10, rp ') LIMB64(`std r0, 0(rp) ') LIMB32(`addi r10, r10, GMP_LIMB_BYTES') LIMB32(`bne L(top2) ') L(ret): mtspr 256, r12 blr EPILOGUE() C This works for 64-bit PowerPC, since a limb ptr can only be aligned C in 2 relevant ways, which means we can always find a pair of aligned C pointers of rp, up, and vp. C process words until rp is 16-byte aligned C if (((up | vp) & 15) == 0) C process with VMX without any vperm C else if ((up & 15) != 0 && (vp & 15) != 0) C process with VMX using vperm on store data C else if ((up & 15) != 0) C process with VMX using vperm on up data C else C process with VMX using vperm on vp data C C rlwinm, r0, up, 0,28,31 C rlwinm r0, vp, 0,28,31 C cmpwi cr7, r0, 0 C cror cr6, cr0, cr7 C crand cr0, cr0, cr7 C