/* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k Contributed to the GNU project by Niels Möller THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 2009 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ #include "mpir.h" #include "gmp-impl.h" /* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */ int mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k, mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift, mp_ptr tp) { unsigned i; int neg; #if HAVE_NATIVE_mpn_addlsh_n mp_limb_t cy; #endif ASSERT (k >= 3); ASSERT (shift*k < GMP_NUMB_BITS); ASSERT (hn > 0); ASSERT (hn <= n); /* The degree k is also the number of full-size coefficients, so * that last coefficient, of size hn, starts at xp + k*n. */ #if HAVE_NATIVE_mpn_addlsh_n xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift); for (i = 4; i < k; i += 2) xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift); tp[n] = mpn_lshift (tp, xp+n, n, shift); for (i = 3; i < k; i+= 2) tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift); if (k & 1) { cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift); MPN_INCR_U (tp + hn, n+1 - hn, cy); } else { cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift); MPN_INCR_U (xp2 + hn, n+1 - hn, cy); } #else /* !HAVE_NATIVE_mpn_addlsh_n */ xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift); xp2[n] += mpn_add_n (xp2, xp, tp, n); for (i = 4; i < k; i += 2) { xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift); xp2[n] += mpn_add_n (xp2, xp2, tp, n); } tp[n] = mpn_lshift (tp, xp+n, n, shift); for (i = 3; i < k; i+= 2) { tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift); tp[n] += mpn_add_n (tp, tp, xm2, n); } xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift); if (k & 1) mpn_add (tp, tp, n+1, xm2, hn+1); else mpn_add (xp2, xp2, n+1, xm2, hn+1); #endif /* !HAVE_NATIVE_mpn_addlsh_n */ neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0; #if HAVE_NATIVE_mpn_add_n_sub_n if (neg) mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1); else mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1); #else /* !HAVE_NATIVE_mpn_add_n_sub_n */ if (neg) mpn_sub_n (xm2, tp, xp2, n + 1); else mpn_sub_n (xm2, xp2, tp, n + 1); mpn_add_n (xp2, xp2, tp, n + 1); #endif /* !HAVE_NATIVE_mpn_add_n_sub_n */ /* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */ ASSERT ((k+1)*shift >= GMP_LIMB_BITS || xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<= GMP_LIMB_BITS || xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<