/* mpn_toom3_mul and helper functions -- Multiply/square natural numbers. THE HELPER FUNCTIONS IN THIS FILE (meaning everything except mpn_mul_n) ARE INTERNAL FUNCTIONS WITH MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, Free Software Foundation, Inc. Copyright 2009 Jason Moxham Copyright 2009 William Hart This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" /****************************************************************************** * * * Toom 3-way multiplication and squaring * * * *****************************************************************************/ #define TOOM3_MUL_REC(p, a, b, n, ws) \ do { \ if (MUL_TOOM3_THRESHOLD / 3 < MUL_KARATSUBA_THRESHOLD \ && BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD)) \ mpn_mul_basecase (p, a, n, b, n); \ else if (BELOW_THRESHOLD (n, MUL_TOOM3_THRESHOLD)) \ mpn_kara_mul_n (p, a, b, n, ws); \ else \ mpn_toom3_mul_n (p, a, b, n, ws); \ } while (0) #define TOOM3_SQR_REC(p, a, n, ws) \ do { \ if (SQR_TOOM3_THRESHOLD / 3 < SQR_BASECASE_THRESHOLD \ && BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) \ mpn_mul_basecase (p, a, n, a, n); \ else if (SQR_TOOM3_THRESHOLD / 3 < SQR_KARATSUBA_THRESHOLD \ && BELOW_THRESHOLD (n, SQR_KARATSUBA_THRESHOLD)) \ mpn_sqr_basecase (p, a, n); \ else if (BELOW_THRESHOLD (n, SQR_TOOM3_THRESHOLD)) \ mpn_kara_sqr_n (p, a, n, ws); \ else \ mpn_toom3_sqr_n (p, a, n, ws); \ } while (0) /* The necessary temporary space T(n) satisfies T(n)=0 for n < THRESHOLD, and T(n) <= max(2n+2, 6k+3, 4k+3+T(k+1)) otherwise, where k = ceil(n/3). Assuming T(n) >= 2n, 6k+3 <= 4k+3+T(k+1). Similarly, 2n+2 <= 6k+2 <= 4k+3+T(k+1). With T(n) = 2n+S(n), this simplifies to S(n) <= 9 + S(k+1). Since THRESHOLD >= 17, we have n/(k+1) >= 19/8 thus S(n) <= S(n/(19/8)) + 9 thus S(n) <= 9*log(n)/log(19/8) <= 8*log2(n). We need in addition 2*r for mpn_sublsh1_n, so the total is at most 8/3*n+8*log2(n). */ void mpn_toom3_mul_n (mp_ptr c, mp_srcptr a, mp_srcptr b, mp_size_t n, mp_ptr t) { mp_size_t k, k1, kk1, r, twok, rr2; mp_limb_t cy, cc, saved, vinf0; mp_ptr trec; int sa, sb; mp_ptr c1, c2, c3, c4, c5, t1, t2, t3, t4; ASSERT(GMP_NUMB_BITS >= 6); k = (n + 2) / 3; /* ceil(n/3) */ ASSERT(GMP_NUMB_BITS >= 6); ASSERT(n >= 17); /* so that r <> 0 and 5k+3 <= 2n */ twok = 2 * k; k1 = k + 1; kk1 = k + k1; r = n - twok; /* last chunk */ rr2 = 2*r; c1 = c + k; c2 = c1 + k; c3 = c2 + k; c4 = c3 + k; c5 = c4 + k; t1 = t + k; t2 = t1 + k; t3 = t2 + k; t4 = t3 + k; trec = t + 4 * k + 4; /* put a0+a2 in {c, k+1}, and b0+b2 in {c4 + 2, k+1}; put a0+a1+a2 in {t2 + 1, k+1} and b0+b1+b2 in {t3 + 2,k+1} */ c1[0] = mpn_add_n (c, a, a + twok, r); c5[2] = mpn_add_n (c4 + 2, b, b + twok, r); if (r < k) { c1[0] = mpn_add_1 (c + r, a + r, k - r, c1[0]); c5[2] = mpn_add_1 (c4 + 2 + r, b + r, k - r, c5[2]); } t3[1] = c1[0] + mpn_add_n (t2 + 1, c, a + k, k); t4[2] = c5[2] + mpn_add_n (t3 + 2, c4 + 2, b + k, k); ASSERT(c1[0] < 2); ASSERT(c5[2] < 2); ASSERT(t3[1] < 3); ASSERT(t4[2] < 3); /* compute v1 := (a0+a1+a2)*(b0+b1+b2) in {c2, 2k+1}; since v1 < 9*B^(2k), v1 uses only 2k+1 words if GMP_NUMB_BITS >= 4 */ TOOM3_MUL_REC (c2, t2 + 1, t3 + 2, k1, trec); ASSERT(c2[k+k] < 9); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 */ /* put |a0-a1+a2| in {c,k+1} and |b0-b1+b2| in {c4 + 2,k+1} */ /* sa = sign(a0-a1+a2) */ /* sb = sign(b0-b1+b2) */ sa = (c[k] != 0) ? 1 : mpn_cmp (c, a + k, k); c[k] = (sa >= 0) ? c[k] - mpn_sub_n (c, c, a + k, k) : mpn_sub_n (c, a + k, c, k); /* b0+b2 is in {c4+2, k+1} now */ sb = (c5[2] != 0) ? 1 : mpn_cmp (c4 + 2, b + k, k); c5[2] = (sb >= 0) ? c5[2] - mpn_sub_n (c4 + 2, c4 + 2, b + k, k) : mpn_sub_n (c4 + 2, b + k, c4 + 2, k); ASSERT(c[k] < 2); ASSERT(c5[2] < 2); sa *= sb; /* sign of vm1 */ /* compute vm1 := (a0-a1+a2)*(b0-b1+b2) in {t, 2k+1}; since |vm1| < 4*B^(2k), vm1 uses only 2k+1 limbs */ TOOM3_MUL_REC (t, c, c4 + 2, k1, trec); ASSERT(t[k+k] < 4); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 */ /* compute a0+2a1+4a2 in {c, k+1} and b0+2b1+4b2 in {c4 + 2, k+1} */ #if HAVE_NATIVE_mpn_addlsh1_n c1[0] = mpn_addlsh1_n (c, a + k, a + twok, r); c5[2] = mpn_addlsh1_n (c4 + 2, b + k, b + twok, r); if (r < k) { c1[0] = mpn_add_1(c + r, a + k + r, k - r, c1[0]); c5[2] = mpn_add_1(c4 + 2 + r, b + k + r, k - r, c5[2]); } c1[0] = 2 * c1[0] + mpn_addlsh1_n (c, a, c, k); c5[2] = 2 * c5[2] + mpn_addlsh1_n (c4 + 2, b, c4 + 2, k); #else c[r] = mpn_lshift1 (c, a + twok, r); c4[r + 2] = mpn_lshift1 (c4 + 2, b + twok, r); if (r < k) { MPN_ZERO(c + r + 1, k - r); MPN_ZERO(c4 + r + 3, k - r); } c1[0] += mpn_add_n (c, c, a + k, k); c5[2] += mpn_add_n (c4 + 2, c4 + 2, b + k, k); mpn_double (c, k1); mpn_double (c4 + 2, k1); c1[0] += mpn_add_n (c, c, a, k); c5[2] += mpn_add_n (c4 + 2, c4 + 2, b, k); #endif ASSERT(c[k] < 7); ASSERT(c5[2] < 7); #define v2 (t+2*k+1) /* compute v2 := (a0+2a1+4a2)*(b0+2b1+4b2) in {t+2k+1, 2k+1} v2 < 49*B^k so v2 uses at most 2k+1 limbs if GMP_NUMB_BITS >= 6 */ TOOM3_MUL_REC (v2, c, c4 + 2, k1, trec); ASSERT(v2[k+k] < 49); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 */ /* compute v0 := a0*b0 in {c, 2k} */ TOOM3_MUL_REC (c, a, b, k, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v0 v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 */ #define vinf (c+4*k) /* compute vinf := a2*b2 in {c4, r + r2}, */ saved = c4[0]; TOOM3_MUL_REC (c4, a + twok, b + twok, r, trec); vinf0 = c4[0]; c4[0] = saved; /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v0 v1 {-}vinf {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 vinf0 = {-} */ mpn_toom3_interpolate (c, c2, v2, t, vinf, k, rr2, sa, vinf0, t4+2); #undef v2 #undef vinf } void mpn_toom3_sqr_n (mp_ptr c, mp_srcptr a, mp_size_t n, mp_ptr t) { mp_size_t k, k1, kk1, r, twok, rr2; mp_limb_t cy, cc, saved, vinf0; mp_ptr trec; int sa; mp_ptr c1, c2, c3, c4, c5, t1, t2, t3, t4; ASSERT(GMP_NUMB_BITS >= 6); k = (n + 2) / 3; /* ceil(n/3) */ ASSERT(GMP_NUMB_BITS >= 6); ASSERT(n >= 17); /* so that r <> 0 and 5k+3 <= 2n */ twok = 2 * k; k1 = k + 1; kk1 = k + k1; r = n - twok; /* last chunk */ rr2 = 2*r; c1 = c + k; c2 = c1 + k; c3 = c2 + k; c4 = c3 + k; c5 = c4 + k; t1 = t + k; t2 = t1 + k; t3 = t2 + k; t4 = t3 + k; trec = t + 4 * k + 3; /* put a0+a2 in {c, k+1} put a0+a1+a2 in {t2 + 1, k+1} */ cy = mpn_add_n (c, a, a + twok, r); if (r < k) { __GMPN_ADD_1 (cy, c + r, a + r, k - r, cy); } t3[1] = (c1[0] = cy) + mpn_add_n (t2 + 1, c, a + k, k); /* compute v1 := (a0+a1+a2)^2 in {c2, 2k+1}; since v1 < 9*B^(2k), v1 uses only 2k+1 words if GMP_NUMB_BITS >= 4 */ TOOM3_SQR_REC (c2, t2 + 1, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 */ /* put |a0-a1+a2| in {c,k+1} */ sa = (c[k] != 0) ? 1 : mpn_cmp (c, a + k, k); c[k] = (sa >= 0) ? c[k] - mpn_sub_n (c, c, a + k, k) : mpn_sub_n (c, a + k, c, k); /* compute vm1 := (a0-a1+a2)^2 in {t, 2k+1}; since |vm1| < 4*B^(2k), vm1 uses only 2k+1 limbs */ TOOM3_SQR_REC (t, c, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 */ /* compute a0+2a1+4a2 in {c, k+1} */ #if HAVE_NATIVE_mpn_addlsh1_n c1[0] = mpn_addlsh1_n (c, a + k, a + twok, r); if (r < k) { __GMPN_ADD_1 (c1[0], c + r, a + k + r, k - r, c1[0]); } c1[0] = 2 * c1[0] + mpn_addlsh1_n (c, a, c, k); #else c[r] = mpn_lshift1 (c, a + twok, r); if (r < k) { MPN_ZERO(c + r + 1, k - r); } c1[0] += mpn_add_n (c, c, a + k, k); mpn_double (c, k1); c1[0] += mpn_add_n (c, c, a, k); #endif #define v2 (t+2*k+1) /* compute v2 := (a0+2a1+4a2)^2 in {t+2k+1, 2k+1} v2 < 49*B^k so v2 uses at most 2k+1 limbs if GMP_NUMB_BITS >= 6 */ TOOM3_SQR_REC (v2, c, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 */ /* compute v0 := a0^2 in {c, 2k} */ TOOM3_SQR_REC (c, a, k, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v0 v1 {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 */ #define vinf (c+4*k) /* compute vinf := a2*b2 in {c4, r + r2}, */ saved = c4[0]; TOOM3_SQR_REC (c4, a + twok, r, trec); vinf0 = c4[0]; c4[0] = saved; /* {c,2k} {c+2k,2k+1} {c+4k+1,r+r2-1} v0 v1 {-}vinf {t, 2k+1} {t+2k+1, 2k + 1} vm1 v2 vinf0 = {-} */ mpn_toom3_interpolate (c, c2, v2, t, vinf, k, rr2, 1, vinf0, t4+2); #undef v2 #undef vinf }