dnl AMD K7 mpn_divrem_1, mpn_divrem_1c, mpn_preinv_divrem_1 -- mpn by limb dnl division. dnl Copyright 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 51 Franklin Street, dnl Fifth Floor, Boston, MA 02110-1301, USA. include(`../config.m4') C K7: 17.0 cycles/limb integer part, 15.0 cycles/limb fraction part. C mp_limb_t mpn_divrem_1 (mp_ptr dst, mp_size_t xsize, C mp_srcptr src, mp_size_t size, C mp_limb_t divisor); C mp_limb_t mpn_divrem_1c (mp_ptr dst, mp_size_t xsize, C mp_srcptr src, mp_size_t size, C mp_limb_t divisor, mp_limb_t carry); C mp_limb_t mpn_preinv_divrem_1 (mp_ptr dst, mp_size_t xsize, C mp_srcptr src, mp_size_t size, C mp_limb_t divisor, mp_limb_t inverse, C unsigned shift); C C Algorithm: C C The method and nomenclature follow part 8 of "Division by Invariant C Integers using Multiplication" by Granlund and Montgomery, reference in C gmp.texi. C C The "and"s shown in the paper are done here with "cmov"s. "m" is written C for m', and "d" for d_norm, which won't cause any confusion since it's C only the normalized divisor that's of any use in the code. "b" is written C for 2^N, the size of a limb, N being 32 here. C C The step "sdword dr = n - 2^N*d + (2^N-1-q1) * d" is instead done as C "n-(q1+1)*d"; this rearrangement gives the same two-limb answer. If C q1==0xFFFFFFFF, then q1+1 would overflow. We branch to a special case C "q1_ff" if this occurs. Since the true quotient is either q1 or q1+1 then C if q1==0xFFFFFFFF that must be the right value. C C For the last and second last steps q1==0xFFFFFFFF is instead handled by an C sbbl to go back to 0xFFFFFFFF if an overflow occurs when adding 1. This C then goes through as normal, and finding no addback required. sbbl costs C an extra cycle over what the main loop code does, but it keeps code size C and complexity down. C C Notes: C C mpn_divrem_1 and mpn_preinv_divrem_1 avoid one division if the src high C limb is less than the divisor. mpn_divrem_1c doesn't check for a zero C carry, since in normal circumstances that will be a very rare event. C C The test for skipping a division is branch free (once size>=1 is tested). C The store to the destination high limb is 0 when a divide is skipped, or C if it's not skipped then a copy of the src high limb is used. The latter C is in case src==dst. C C There's a small bias towards expecting xsize==0, by having code for C xsize==0 in a straight line and xsize!=0 under forward jumps. C C Alternatives: C C If the divisor is normalized (high bit set) then a division step can C always be skipped, since the high destination limb is always 0 or 1 in C that case. It doesn't seem worth checking for this though, since it C probably occurs infrequently, in particular note that big_base for a C decimal mpn_get_str is not normalized in a 32-bit limb. dnl MUL_THRESHOLD is the value of xsize+size at which the multiply by dnl inverse method is used, rather than plain "divl"s. Minimum value 1. dnl dnl The inverse takes about 50 cycles to calculate, but after that the dnl multiply is 17 c/l versus division at 42 c/l. dnl dnl At 3 limbs the mul is a touch faster than div on the integer part, and dnl even more so on the fractional part. deflit(MUL_THRESHOLD, 3) defframe(PARAM_PREINV_SHIFT, 28) dnl mpn_preinv_divrem_1 defframe(PARAM_PREINV_INVERSE, 24) dnl mpn_preinv_divrem_1 defframe(PARAM_CARRY, 24) dnl mpn_divrem_1c defframe(PARAM_DIVISOR,20) defframe(PARAM_SIZE, 16) defframe(PARAM_SRC, 12) defframe(PARAM_XSIZE, 8) defframe(PARAM_DST, 4) defframe(SAVE_EBX, -4) defframe(SAVE_ESI, -8) defframe(SAVE_EDI, -12) defframe(SAVE_EBP, -16) defframe(VAR_NORM, -20) defframe(VAR_INVERSE, -24) defframe(VAR_SRC, -28) defframe(VAR_DST, -32) defframe(VAR_DST_STOP,-36) deflit(STACK_SPACE, 36) TEXT ALIGN(32) PROLOGUE(mpn_preinv_divrem_1) deflit(`FRAME',0) movl PARAM_XSIZE, %ecx movl PARAM_DST, %edx subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE) movl %esi, SAVE_ESI movl PARAM_SRC, %esi movl %ebx, SAVE_EBX movl PARAM_SIZE, %ebx leal 8(%edx,%ecx,4), %edx C &dst[xsize+2] movl %ebp, SAVE_EBP movl PARAM_DIVISOR, %ebp movl %edx, VAR_DST_STOP C &dst[xsize+2] movl %edi, SAVE_EDI xorl %edi, %edi C carry movl -4(%esi,%ebx,4), %eax C src high limb xor %ecx, %ecx C C cmpl %ebp, %eax C high cmp divisor cmovc( %eax, %edi) C high is carry if high n2 leal (%ebp,%esi), %edx movd %mm0, %esi cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 sbbl $0, %ebx C q cmpl %eax, %ecx movl %ebx, (%ecx) movl %ecx, VAR_DST jne L(integer_top) L(integer_loop_done): C ----------------------------------------------------------------------------- C C Here, and in integer_one_left below, an sbbl $0 is used rather than a jz C q1_ff special case. This make the code a bit smaller and simpler, and C costs only 1 cycle (each). L(integer_two_left): C eax scratch C ebx scratch (nadj, q1) C ecx scratch (src, dst) C edx scratch C esi n10 C edi n2 C ebp divisor C C mm7 rshift cmpl $0x80000000, %esi C n1 as 0=c, 1=nc movl %edi, %eax C n2 movl PARAM_SRC, %ecx leal (%ebp,%esi), %ebx cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow sbbl $-1, %eax C n2+n1 mull VAR_INVERSE C m*(n2+n1) movd (%ecx), %mm0 C src low limb movl VAR_DST_STOP, %ecx C addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag leal 1(%edi), %ebx C n2+1 movl %ebp, %eax C d adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 sbbl $0, %ebx mull %ebx C (q1+1)*d psllq $32, %mm0 psrlq %mm7, %mm0 C subl %eax, %esi C sbbl %edx, %edi C n - (q1+1)*d movl %esi, %edi C remainder -> n2 leal (%ebp,%esi), %edx movd %mm0, %esi cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 sbbl $0, %ebx C q movl %ebx, -4(%ecx) C ----------------------------------------------------------------------------- L(integer_one_left): C eax scratch C ebx scratch (nadj, q1) C ecx dst C edx scratch C esi n10 C edi n2 C ebp divisor C C mm7 rshift movl VAR_DST_STOP, %ecx cmpl $0x80000000, %esi C n1 as 0=c, 1=nc movl %edi, %eax C n2 leal (%ebp,%esi), %ebx cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow sbbl $-1, %eax C n2+n1 mull VAR_INVERSE C m*(n2+n1) C C C addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag leal 1(%edi), %ebx C n2+1 movl %ebp, %eax C d C adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 sbbl $0, %ebx C q1 if q1+1 overflowed mull %ebx C C C subl %eax, %esi C sbbl %edx, %edi C n - (q1+1)*d movl %esi, %edi C remainder -> n2 leal (%ebp,%esi), %edx cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 sbbl $0, %ebx C q movl %ebx, -8(%ecx) subl $8, %ecx L(integer_none): cmpl $0, PARAM_XSIZE jne L(fraction_some) movl %edi, %eax L(fraction_done): movl VAR_NORM, %ecx L(zero_done): movl SAVE_EBP, %ebp movl SAVE_EDI, %edi movl SAVE_ESI, %esi movl SAVE_EBX, %ebx addl $STACK_SPACE, %esp shrl %cl, %eax emms ret C ----------------------------------------------------------------------------- C C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword C of q*d is simply -d and the remainder n-q*d = n10+d L(q1_ff): C eax (divisor) C ebx (q1+1 == 0) C ecx C edx C esi n10 C edi n2 C ebp divisor movl VAR_DST, %ecx movl VAR_DST_STOP, %edx subl $4, %ecx psrlq %mm7, %mm0 leal (%ebp,%esi), %edi C n-q*d remainder -> next n2 movl %ecx, VAR_DST movd %mm0, %esi C next n10 movl $-1, (%ecx) cmpl %ecx, %edx jne L(integer_top) jmp L(integer_loop_done) C ----------------------------------------------------------------------------- C C Being the fractional part, the "source" limbs are all zero, meaning C n10=0, n1=0, and hence nadj=0, leading to many instructions eliminated. C C The loop runs at 15 cycles. The dependent chain is the same as the C general case above, but without the n2+n1 stage (due to n1==0), so 15 C would seem to be the lower bound. C C A not entirely obvious simplification is that q1+1 never overflows a limb, C and so there's no need for the sbbl $0 or jz q1_ff from the general case. C q1 is the high word of m*n2+b*n2 and the following shows q1<=b-2 always. C rnd() means rounding down to a multiple of d. C C m*n2 + b*n2 <= m*(d-1) + b*(d-1) C = m*d + b*d - m - b C = floor((b(b-d)-1)/d)*d + b*d - m - b C = rnd(b(b-d)-1) + b*d - m - b C = rnd(b(b-d)-1 + b*d) - m - b C = rnd(b*b-1) - m - b C <= (b-2)*b C C Unchanged from the general case is that the final quotient limb q can be C either q1 or q1+1, and the q1+1 case occurs often. This can be seen from C equation 8.4 of the paper which simplifies as follows when n1==0 and C n0==0. C C n-q1*d = (n2*k+q0*d)/b <= d + (d*d-2d)/b C C As before, the instruction groupings and empty comments show a naive C in-order view of the code, which is made a nonsense by out of order C execution. There's 17 cycles shown, but it executes at 15. C C Rotating the store q and remainder->n2 instructions up to the top of the C loop gets the run time down from 16 to 15. ALIGN(16) L(fraction_some): C eax C ebx C ecx C edx C esi C edi carry C ebp divisor movl PARAM_DST, %esi movl VAR_DST_STOP, %ecx C &dst[xsize+2] movl %edi, %eax subl $8, %ecx C &dst[xsize] jmp L(fraction_entry) ALIGN(16) L(fraction_top): C eax n2 carry, then scratch C ebx scratch (nadj, q1) C ecx dst, decrementing C edx scratch C esi dst stop point C edi (will be n2) C ebp divisor movl %ebx, (%ecx) C previous q movl %eax, %edi C remainder->n2 L(fraction_entry): mull VAR_INVERSE C m*n2 movl %ebp, %eax C d subl $4, %ecx C dst leal 1(%edi), %ebx C C C C addl %edx, %ebx C 1 + high(n2<<32 + m*n2) = q1+1 mull %ebx C (q1+1)*d C C C negl %eax C low of n - (q1+1)*d C sbbl %edx, %edi C high of n - (q1+1)*d, caring only about carry leal (%ebp,%eax), %edx cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1 sbbl $0, %ebx C q cmpl %esi, %ecx jne L(fraction_top) movl %ebx, (%ecx) jmp L(fraction_done) EPILOGUE()