/* mpn_mulmod_2expm1 Copyright 2009 Jason Moxham This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" // (xp,n)=(yp,n)*(zp,n) % 2^b-1 // needs (tp,2n) temp space , everything reduced mod 2^b // inputs,outputs not fully reduced // NOTE: 2n is not the same as 2b rounded up to nearest limb // NOTE: not reduced fully means the representation is redundant , although only 0 has two representations ie 0 and 2^b-1 inline static void mpn_mulmod_2expm1_basecase (mp_ptr xp, mp_srcptr yp, mp_srcptr zp, gmp_ui b, mp_ptr tp) { mp_size_t n, k; mp_limb_t c; n = BITS_TO_LIMBS (b); k = GMP_NUMB_BITS * n - b; ASSERT (n > 0); ASSERT_MPN (yp, n); ASSERT_MPN (zp, n); ASSERT (!MPN_OVERLAP_P (tp, 2 * n, yp, n)); ASSERT (!MPN_OVERLAP_P (tp, 2 * n, zp, n)); ASSERT (MPN_SAME_OR_SEPARATE_P (xp, tp, n)); ASSERT (MPN_SAME_OR_SEPARATE_P (xp, tp + n, n)); ASSERT (k == 0 || yp[n - 1] >> (GMP_NUMB_BITS - k) == 0); ASSERT (k == 0 || zp[n - 1] >> (GMP_NUMB_BITS - k) == 0); mpn_mul_n (tp, yp, zp, n); // n is small is could use mpn_mul_basecase , and save a fn call , but this code is also used for large n when b is odd if (k == 0) { c = mpn_add_n (xp, tp, tp + n, n); MPN_INCR_U (xp, n, c); return; } c = tp[n - 1]; tp[n - 1] &= GMP_NUMB_MASK >> k; #if HAVE_NATIVE_mpn_addlsh_nc ASSERT_NOCARRY (mpn_addlsh_nc (xp, tp, tp + n, n, k, c)); #else { mp_limb_t c1; c1 = mpn_lshift (tp + n, tp + n, n, k); tp[n] |= c >> (GMP_NUMB_BITS - k); c = mpn_add_n (xp, tp, tp + n, n) + c1; ASSERT (c == 0); } #endif c = xp[n - 1] >> (GMP_NUMB_BITS - k); xp[n - 1] &= GMP_NUMB_MASK >> k; MPN_INCR_U (xp, n, c); return; } /* Improvements use 2^3n-1 , 2^4n+2+1 factorizations or others shift by byte values , ie copy unaligned addsublshift or a rshift1_lshift dual_rshift ie for both the mods separate out the k=0 case unroll the recursion if yp=zp ie a square then could do better different thresholds depending on how many twos divide b */ // tp requires 5(n+lg(b)) space void mpn_mulmod_2expm1 (mp_ptr xp, mp_ptr yp, mp_ptr zp, gmp_ui b, mp_ptr tp) { mp_size_t h, n, m, k; int bor, c, c1, c2; mp_ptr S, D, typm, tzpm, typp, tzpp, temp; mp_limb_t car, Dm, car1; // want y*z %(2^n-1) // want y*z%(2^(2m)-1) = y*z%((2^m-1)(2^m+1)) // use CRT // note (2^m-1)*2^(m-1) == 1 mod 2^m+1 // note (2^m+1)*2^(m-1) == 1 mod 2^m-1 // let A=y*z%(2^m-1) B=y*z%(2^m+1) // then A(2^m+1)2^(m-1)+B(2^m-1)2^(m-1) = ((A-B)+(A+B)2^m)2^(m-1) ASSERT (b > 0); n = BITS_TO_LIMBS (b); if (b % 2 == 1 || BELOW_THRESHOLD (n, MULMOD_2EXPM1_THRESHOLD)) { mpn_mulmod_2expm1_basecase (xp, yp, zp, b, tp); return; } h = b / 2; m = BITS_TO_LIMBS (h); k = GMP_NUMB_BITS * m - h; // if k==0 then n=2*m ASSERT_MPN (yp, n); ASSERT_MPN (zp, n); ASSERT (GMP_NUMB_BITS * n - b == 0 || yp[n - 1] >> (GMP_NUMB_BITS - (GMP_NUMB_BITS * n - b)) == 0); ASSERT (GMP_NUMB_BITS * n - b == 0 || zp[n - 1] >> (GMP_NUMB_BITS - (GMP_NUMB_BITS * n - b)) == 0); ASSERT (!MPN_OVERLAP_P (yp, n, tp, 5 * n)); ASSERT (!MPN_OVERLAP_P (zp, n, tp, 5 * n)); ASSERT (!MPN_OVERLAP_P (xp, n, tp, 5 * n)); ASSERT (!MPN_OVERLAP_P (xp, n, yp, n)); ASSERT (!MPN_OVERLAP_P (xp, n, zp, n)); // S,D,typm,tzpm,typp,tzpp all require m limbs S = xp; D = tp; typm = tp + m; typp = typm + m; tzpm = typp + m; tzpp = tzpm + m; temp = tzpp + m; if (k == 0) D = xp + m; //mpn_mod_2expm1(typm,yp,n,h);c1=mpn_mod_2expp1(typp,yp,n,h); if (k == 0) { c = mpn_sumdiff_n (typm, typp, yp, yp + m, m); MPN_INCR_U (typm, m, c >> 1); c1 = mpn_add_1 (typp, typp, m, c & 1); } else { mpn_rshift (typp, yp + m - 1, m, GMP_NUMB_BITS - k); if (n == 2 * m) { typp[m - 1] |= yp[2 * m - 1] << k; ASSERT (yp[2 * m - 1] >> (GMP_NUMB_BITS - k) == 0); } ASSERT (typp[m - 1] >> (GMP_NUMB_BITS - k) == 0); // have h bits car = yp[m - 1]; yp[m - 1] &= GMP_NUMB_MASK >> k; ASSERT (yp[m - 1] >> (GMP_NUMB_BITS - k) == 0); // have h bits c1 = mpn_sumdiff_n (typm, typp, yp, typp, m); c = typm[m - 1] >> (GMP_NUMB_BITS - k); yp[m - 1] = car; MPN_INCR_U (typm, m, c); c1 = mpn_add_1 (typp, typp, m, c1); typm[m - 1] &= GMP_NUMB_MASK >> k; typp[m - 1] &= GMP_NUMB_MASK >> k; } //mpn_mod_2expm1(tzpm,zp,n,h);c2=mpn_mod_2expp1(tzpp,zp,n,h); if (k == 0) { c = mpn_sumdiff_n (tzpm, tzpp, zp, zp + m, m); MPN_INCR_U (tzpm, m, c >> 1); c2 = mpn_add_1 (tzpp, tzpp, m, c & 1); } else { mpn_rshift (tzpp, zp + m - 1, m, GMP_NUMB_BITS - k); if (n == 2 * m) { tzpp[m - 1] |= zp[2 * m - 1] << k; ASSERT (zp[2 * m - 1] >> (GMP_NUMB_BITS - k) == 0); } ASSERT (tzpp[m - 1] >> (GMP_NUMB_BITS - k) == 0); // have h bits car = zp[m - 1]; zp[m - 1] &= GMP_NUMB_MASK >> k; ASSERT (zp[m - 1] >> (GMP_NUMB_BITS - k) == 0); // have h bits c2 = mpn_sumdiff_n (tzpm, tzpp, zp, tzpp, m); c = tzpm[m - 1] >> (GMP_NUMB_BITS - k); zp[m - 1] = car; MPN_INCR_U (tzpm, m, c); c2 = mpn_add_1 (tzpp, tzpp, m, c2); tzpm[m - 1] &= GMP_NUMB_MASK >> k; tzpp[m - 1] &= GMP_NUMB_MASK >> k; } mpn_mulmod_2expm1 (S, typm, tzpm, h, temp); // unroll this recursion S=A rename c = mpn_mulmod_2expp1 (D, typp, tzpp, c1 * 2 + c2, h, temp); // D=B rename if (LIKELY (c == 0)) { c1 = mpn_sumdiff_n (S, D, S, D, m); bor = c1 & 1; c = c1 >> 1; D[m - 1] &= GMP_NUMB_MASK >> k; if (k != 0 && S[m - 1] >> (GMP_NUMB_BITS - k) != 0) c = 1; S[m - 1] &= GMP_NUMB_MASK >> k; } else { c = 1; bor = 1; MPN_COPY (D, S, m); } bor = mpn_sub_1 (S, S, m, bor); S[m - 1] &= GMP_NUMB_MASK >> k; if (bor == 0) { c = mpn_add_1 (D, D, m, c); if (k != 0 && D[m - 1] >> (GMP_NUMB_BITS - k) != 0) c = 1; D[m - 1] &= GMP_NUMB_MASK >> k; if (c != 0) S[0] |= 1; } if (k == 0) { car = mpn_half (xp, n); xp[n - 1] |= car; } // C sequence pt rule else { car = mpn_half (xp, m); car1 = xp[m - 1]; if (GMP_NUMB_BITS - k - 1 != 0) { Dm = mpn_lshift (xp + m - 1, D, m, GMP_NUMB_BITS - k - 1); } else { Dm = 0; MPN_COPY (xp + m - 1, D, m); } xp[m - 1] |= car1; if (2 * m == n) xp[n - 1] = Dm; xp[n - 1] |= car >> (GMP_NUMB_BITS * n - b); } return; } /* DO WE STILL WANT TO KEEP THIS JUNK??????? // (xp,n) = (yp,yn)%(2^(GMP_NUMB_BITS*n)-1) not fully reduced void mpn_mod_2expm1_limb(mp_ptr xp,mp_srcptr yp,mp_size_t yn,mp_size_t n) {mp_limb_t c=0; ASSERT(yn>0);ASSERT(n>0);ASSERT_MPN(yp,yn);ASSERT(MPN_SAME_OR_SEPARATE2_P(xp,n,yp,yn)); if(yn<=n) {if(xp!=yp)MPN_COPY(xp,yp,yn); MPN_ZERO(xp+yn,n-yn);return;} if(xp!=yp)MPN_COPY(xp,yp,n); yp+=n;yn-=n; while(yn>=n){c+=mpn_add_n(xp,xp,yp,n);yp+=n;yn-=n;} if(yn>0)c+=mpn_add(xp,xp,n,yp,yn); c=mpn_add_1(xp,xp,n,c); ASSERT_NOCARRY(mpn_add_1(xp,xp,n,c)); return;} // (xp,n) = (yp,yn)%(2^b-1) not fully reduced , reduced to nearest limb void mpn_mod_2expm1(mp_ptr xp,mp_srcptr yp,mp_size_t yn,gmp_ui b) {mp_limb_t c=0;mp_size_t n; ASSERT(yn>0);//ASSERT(n>0); ASSERT_MPN(yp,yn);//ASSERT(MPN_SAME_OR_SEPARATE2_P(xp,n,yp,yn)); n=BITS_TO_LIMBS(b); if(b%GMP_NUMB_BITS==0){mpn_mod_2expm1_limb(xp,yp,yn,b/GMP_NUMB_BITS);return;} if(yn<=n) {if(xp!=yp)MPN_COPY(xp,yp,yn); MPN_ZERO(xp+yn,n-yn);return;} // so yn > n ??????????????????? if(xp!=yp)MPN_COPY(xp,yp,n); yp+=n;yn-=n; while(yn>=n){c+=mpn_add_n(xp,xp,yp,n);yp+=n;yn-=n;} if(yn>0)c+=mpn_add(xp,xp,n,yp,yn); c=mpn_add_1(xp,xp,n,c); ASSERT_NOCARRY(mpn_add_1(xp,xp,n,c)); return;} // (xp,n)+ret*2^(GMP_NUMB_BITS*n) = (yp,yn)%(2^(GMP_NUMB_BITS*n)+1) not fully reduced // ret =0 or 1 mp_limb_t mpn_mod_2expp1_limb(mp_ptr xp,mp_srcptr yp,mp_size_t yn,mp_size_t n) {mp_size_t c=0,s=-1; ASSERT(yn>0);ASSERT(n>0);ASSERT_MPN(yp,yn);ASSERT(MPN_SAME_OR_SEPARATE2_P(xp,n,yp,yn)); if(yn<=n) {if(xp!=yp)MPN_COPY(xp,yp,yn); MPN_ZERO(xp+yn,n-yn);return 0;} if(xp!=yp)MPN_COPY(xp,yp,n); yp+=n;yn-=n; while(yn>=n) {if(s==1){c+=mpn_add_n(xp,xp,yp,n);}else{c-=mpn_sub_n(xp,xp,yp,n);} yp+=n;yn-=n;s=-s;} if(yn>0){if(s==1){c+=mpn_add(xp,xp,n,yp,yn);}else{c-=mpn_sub(xp,xp,n,yp,yn);}} if(c>=0){c=mpn_sub_1(xp,xp,n,c);}else{c=-c;} c=mpn_add_1(xp,xp,n,c); return c;} void mpn_mod_2expm1(mp_ptr xp,mp_ptr tp,mp_size_t m,gmp_ui b) {mp_limb_t c;mp_size_t n,k;mp_ptr ttp; n=BITS_TO_LIMBS(b);k=GMP_NUMB_BITS*n-b; ttp=__GMP_ALLOCATE_FUNC_LIMBS(2*n);MPN_ZERO(ttp,2*n);MPN_COPY(ttp,tp,m); if(k==0){c=mpn_add_n(xp,ttp,ttp+n,n);MPN_INCR_U(xp,n,c);return;} c=ttp[n-1];ttp[n-1]&=GMP_NUMB_MASK>>k; ASSERT_NOCARRY(mpn_addlsh(xp,ttp,ttp+n,n,k,c)); c=xp[n-1]>>(GMP_NUMB_BITS-k);xp[n-1]&=GMP_NUMB_MASK>>k; MPN_INCR_U(xp,n,c);return;} int mpn_mod_2expp1(mp_ptr xp,mp_ptr tp,mp_size_t m,gmp_ui b) {mp_size_t n,k;mp_limb_t c;mp_ptr ttp; n=BITS_TO_LIMBS(b);k=GMP_NUMB_BITS*n-b; ttp=__GMP_ALLOCATE_FUNC_LIMBS(2*n);MPN_ZERO(ttp,2*n);MPN_COPY(ttp,tp,m); if(k==0){c=mpn_sub_n(xp,ttp,ttp+n,n);return mpn_add_1(xp,xp,n,c);} c=ttp[n-1];ttp[n-1]&=GMP_NUMB_MASK>>k; c=mpn_sublsh(xp,ttp,ttp+n,n,k,c); c=mpn_add_1(xp,xp,n,c); xp[n-1]&=GMP_NUMB_MASK>>k; return c;} void mpn_mulmod_2expm1_new(mp_ptr xp,mp_ptr yp,mp_ptr zp,gmp_ui b,mp_ptr tp) {mp_size_t h,n,m,k;int bor,c,c1,c2;mp_ptr S,D,typm,tzpm,typp,tzpp,temp;mp_limb_t car; // want y*z %(2^n-1) // want y*z%(2^(2m)-1) = y*z%((2^m-1)(2^m+1)) // use CRT // note (2^m-1)*2^(m-1) == 1 mod 2^m+1 // note (2^m+1)*2^(m-1) == 1 mod 2^m-1 // let A=y*z%(2^m-1) B=y*z%(2^m+1) // then A(2^m+1)2^(m-1)+B(2^m-1)2^(m-1) = ((A-B)+(A+B)2^m)2^(m-1) if(b%2==1 || b<2){mpn_mulmod_2expm1(xp,yp,zp,b,tp);return;} h=b/2;n=BITS_TO_LIMBS(b);m=BITS_TO_LIMBS(h); S=__GMP_ALLOCATE_FUNC_LIMBS(m+1);D=__GMP_ALLOCATE_FUNC_LIMBS(m+1); typm=__GMP_ALLOCATE_FUNC_LIMBS(m);tzpm=__GMP_ALLOCATE_FUNC_LIMBS(m); typp=__GMP_ALLOCATE_FUNC_LIMBS(m);tzpp=__GMP_ALLOCATE_FUNC_LIMBS(m);temp=__GMP_ALLOCATE_FUNC_LIMBS(2*m); k=GMP_NUMB_BITS*m-h;// if k==0 then n=2*m //mpn_mod_2expm1(typm,yp,n,h);c1=mpn_mod_2expp1(typp,yp,n,h); if(k==0){c=mpn_sumdiff_n(typm,typp,yp,yp+m,m);MPN_INCR_U(typm,m,c>>1);c1=mpn_add_1(typp,typp,m,c&1);} else {MPN_COPY(typm,yp,m);typm[m-1]&=GMP_NUMB_MASK>>k;ASSERT(typm[m-1]>>(GMP_NUMB_BITS-k)==0);// have h bits mpn_rshift(typp,yp+m-1,m,GMP_NUMB_BITS-k); if(n==2*m){typp[m-1]|=yp[2*m-1]<>(GMP_NUMB_BITS-k)==0);} ASSERT(typp[m-1]>>(GMP_NUMB_BITS-k)==0);// have h bits c1=mpn_sumdiff_n(typm,typp,typm,typp,m); c=typm[m-1]>>(GMP_NUMB_BITS-k); MPN_INCR_U(typm,m,c); c1=mpn_add_1(typp,typp,m,c1); typm[m-1]&=GMP_NUMB_MASK>>k; typp[m-1]&=GMP_NUMB_MASK>>k;} //mpn_mod_2expm1(tzpm,zp,n,h);c2=mpn_mod_2expp1(tzpp,zp,n,h); if(k==0){c=mpn_sumdiff_n(tzpm,tzpp,zp,zp+m,m);MPN_INCR_U(tzpm,m,c>>1);c2=mpn_add_1(tzpp,tzpp,m,c&1);} else {MPN_COPY(tzpm,zp,m);tzpm[m-1]&=GMP_NUMB_MASK>>k;ASSERT(tzpm[m-1]>>(GMP_NUMB_BITS-k)==0);// have h bits mpn_rshift(tzpp,zp+m-1,m,GMP_NUMB_BITS-k); if(n==2*m){tzpp[m-1]|=zp[2*m-1]<>(GMP_NUMB_BITS-k)==0);} ASSERT(tzpp[m-1]>>(GMP_NUMB_BITS-k)==0);// have h bits c2=mpn_sumdiff_n(tzpm,tzpp,tzpm,tzpp,m); c=tzpm[m-1]>>(GMP_NUMB_BITS-k); MPN_INCR_U(tzpm,m,c); c2=mpn_add_1(tzpp,tzpp,m,c2); tzpm[m-1]&=GMP_NUMB_MASK>>k; tzpp[m-1]&=GMP_NUMB_MASK>>k;} mpn_mulmod_2expm1_new(S,typm,tzpm,h,temp);// unroll this recursion S=A rename c=mpn_mulmod_2expp1(D,typp,tzpp,c1*2+c2,h,temp); // D=B rename __GMP_FREE_FUNC_LIMBS(typm,m);__GMP_FREE_FUNC_LIMBS(tzpm,m);__GMP_FREE_FUNC_LIMBS(typp,m);__GMP_FREE_FUNC_LIMBS(tzpp,m); __GMP_FREE_FUNC_LIMBS(temp,2*m); if(LIKELY(c==0)) {c1=mpn_sumdiff_n(S,D,S,D,m);bor=c1&1;c=c1>>1; D[m-1]&=GMP_NUMB_MASK>>k; if(k!=0 && S[m-1]>>(GMP_NUMB_BITS-k)!=0){c=1;} S[m-1]&=GMP_NUMB_MASK>>k;} else{c=1;bor=1;MPN_COPY(D,S,m);//MPN_COPY(S,S,m); } bor=mpn_sub_1(S,S,m,bor); S[m-1]&=GMP_NUMB_MASK>>k; if(bor==0) {// only got a possible carry left c=mpn_add_1(D,D,m,c); if(k!=0 && D[m-1]>>(GMP_NUMB_BITS-k)!=0){c=1;} D[m-1]&=GMP_NUMB_MASK>>k; if(c!=0) {// before D=111111 now D=00000 // so A=11111,B=0 or B=A+1 , if was A=111111,B=0 then A+B<2^h so no carry , therefore B=A+1 and had a borrow // S=A+B-borrow=2A+1-borrow=2A , so can add carry to it with no furthur carry S[0]|=1;// could just or| it in low bit } } else {// before S=0000 now S=1111 // so A+B=0 or 2^h , if was 0 then D=A-B=0 no borrow so A+B=2^h and carry was 1 ASSERT(c==1); // this new borrow cancles with old carry so nothing to do } // so join together D,S MPN_COPY(xp,S,m); if(k==0){MPN_COPY(xp+m,D,m);ASSERT(n==2*m);} else{D[m]=mpn_lshift(D,D,m,GMP_NUMB_BITS-k); xp[m-1]|=D[0];MPN_COPY(xp+m,D+1,m-1); ASSERT(2*m>=n); if(D[m]!=0){xp[2*m-1]=D[m];}else{if(2*m==n)xp[n-1]=0;}} car=mpn_rshift(xp,xp,n,1); xp[n-1]|=car>>(GMP_NUMB_BITS*n-b);// rotate __GMP_FREE_FUNC_LIMBS(S,m+1);__GMP_FREE_FUNC_LIMBS(D,m+1); return;} */