; Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. ; ; Copyright 2008 Brian Gladman ; ; This file is part of the MPIR Library. ; ; The MPIR Library is free software; you can redistribute it and/or ; modify it under the terms of the GNU Lesser General Public License as ; published by the Free Software Foundation; either version 2.1 of the ; License, or (at your option) any later version. ; ; The MPIR Library is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ; Lesser General Public License for more details. ; ; You should have received a copy of the GNU Lesser General Public ; License along with the MPIR Library; see the file COPYING.LIB. If ; not, write to the Free Software Foundation, Inc., 51 Franklin Street, ; Fifth Floor, Boston, MA 02110-1301, USA. ; AMD64 mpn_divexact_1 -- mpn by limb exact division ; ; Calling interface: ; ; void mpn_divexact_1( ; mp_ptr dst, rcx ; mp_srcptr src, rdx ; mp_size_t size, r8 ; mp_limb_t divisor r9 ; ) ; ; since the inverse takes a while to setup,plain division is used for small ; Multiplying works out faster for size>=3 when the divisor is odd or size>=4 ; when the divisor is even. ; ; This is an SEH Frame Function with a leaf prologue %include "x86_64_asm.inc" %define reg_save_list rsi, rdi bits 64 section .text extern __gmp_modlimb_invert_table global __gmpn_divexact_1 %ifdef DLL export __gmpn_divexact_1 %endif __gmpn_divexact_1: movsxd r8,r8d mov r10,rdx mov rax,r9 and rax,byte 1 add rax,r8 cmp rax,byte 4 jae L_mul_by_inverse xor rdx,rdx L_div_top: mov rax,[r10+r8*8-8] div r9 mov [rcx+r8*8-8],rax dec r8 jnz L_div_top rep ret ; avoid single byte return prologue L_mul_by_inverse, 0, reg_save_list mov rsi,rdx ; src pointer mov rdi,rcx ; dst pointer mov rax,r9 stc sbb rcx,rcx ; -1 -> rcx, r11 mov r11,rcx L_strip_twos: shr rax,1 inc rcx jnc L_strip_twos lea r9,[rax+rax+1] and rax,byte 127 lea rdx,[rel __gmp_modlimb_invert_table] movzx rax,byte [rdx+rax] ; If f(x) = 0, then x[n+1] = x[n] - f(x) / f'(x) is Newton's iteration for a ; root. With f(x) = 1/x - v we obtain x[n + 1] = 2 * x[n] - v * x[n] * x[n] ; as an iteration for x = 1 / v. This provides quadratic convergence so ; that the number of bits of precision doubles on each iteration. The ; iteration starts with 8-bit precision. lea edx, [rax+rax] imul eax, eax imul eax, r9d sub edx, eax ; inv -> rdx (16-bit approx) lea eax, [rdx+rdx] imul edx, edx imul edx, r9d sub eax, edx ; inv -> rcx (32-bit approx) lea rdx, [rax+rax] imul rax, rax imul rax, r9 sub rdx, rax ; inv -> rcx (64-bit approx) mov r8,r8 lea rsi,[rsi+r8*8] lea rdi,[rdi+r8*8] neg r8 mov r10,rdx xor r11,r11 mov rax,[rsi+r8*8] or rcx,rcx mov rdx,[rsi+r8*8+8] jz L_odd_entry shrd rax, rdx, cl inc r8 jmp L_even_entry L_odd_top: mul r9 mov rax,[rsi+r8*8] sub rdx,r11 sub rax,rdx sbb r11,r11 L_odd_entry: imul rax,r10 mov [rdi+r8*8],rax inc r8 jnz L_odd_top jmp L_exit L_even_top: mul r9 sub rdx,r11 mov rax,[rsi+r8*8-8] mov r11,[rsi+r8*8] shrd rax,r11,cl sub rax,rdx sbb r11,r11 L_even_entry: imul rax,r10 mov [rdi+r8*8-8],rax inc r8 jnz L_even_top mul r9 mov rax,[rsi-8] sub rdx,r11 shr rax,cl sub rax,rdx imul rax,r10 mov [rdi-8],rax L_exit: epilogue reg_save_list end