/* mpn_sbpi1_div_q -- Schoolbook division using the Möller-Granlund 3/2 division algorithm. Contributed to the GNU project by Torbjorn Granlund. THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE. Copyright 2007, 2009 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" mp_limb_t mpn_sb_div_q (mp_ptr qp, mp_ptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn, mp_limb_t dinv) { mp_limb_t qh; mp_size_t qn, i; mp_limb_t n1, n0; mp_limb_t d1, d0; mp_limb_t cy, cy1; mp_limb_t q; mp_limb_t flag; mp_size_t dn_orig = dn; mp_srcptr dp_orig = dp; mp_ptr np_orig = np; ASSERT (dn > 2); ASSERT (nn >= dn); ASSERT ((dp[dn-1] & GMP_NUMB_HIGHBIT) != 0); np += nn; qn = nn - dn; if (qn + 1 < dn) { dp += dn - (qn + 1); dn = qn + 1; } qh = mpn_cmp (np - dn, dp, dn) >= 0; if (qh != 0) mpn_sub_n (np - dn, np - dn, dp, dn); qp += qn; dn -= 2; /* offset dn by 2 for main division loops, saving two iterations in mpn_submul_1. */ d1 = dp[dn + 1]; d0 = dp[dn + 0]; np -= 2; n1 = np[1]; for (i = qn - (dn + 2); i >= 0; i--) { np--; if (UNLIKELY (n1 == d1) && np[1] == d0) { q = GMP_NUMB_MASK; mpn_submul_1 (np - dn, dp, dn + 2, q); n1 = np[1]; /* update n1, last loop's value will now be invalid */ } else { tdiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv); cy = mpn_submul_1 (np - dn, dp, dn, q); cy1 = n0 < cy; n0 = (n0 - cy) & GMP_NUMB_MASK; cy = n1 < cy1; n1 -= cy1; np[0] = n0; if (UNLIKELY (cy != 0)) { n1 += d1 + mpn_add_n (np - dn, np - dn, dp, dn + 1); q--; } } *--qp = q; } flag = ~CNST_LIMB(0); if (dn >= 0) { for (i = dn; i > 0; i--) { np--; if (UNLIKELY (n1 >= (d1 & flag))) { q = GMP_NUMB_MASK; cy = mpn_submul_1 (np - dn, dp, dn + 2, q); if (UNLIKELY (n1 != cy)) { if (n1 < (cy & flag)) { q--; mpn_add_n (np - dn, np - dn, dp, dn + 2); } else flag = 0; } n1 = np[1]; } else { tdiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv); cy = mpn_submul_1 (np - dn, dp, dn, q); cy1 = n0 < cy; n0 = (n0 - cy) & GMP_NUMB_MASK; cy = n1 < cy1; n1 -= cy1; np[0] = n0; if (UNLIKELY (cy != 0)) { n1 += d1 + mpn_add_n (np - dn, np - dn, dp, dn + 1); q--; } } *--qp = q; /* Truncate operands. */ dn--; dp++; } np--; if (UNLIKELY (n1 >= (d1 & flag))) { q = GMP_NUMB_MASK; cy = mpn_submul_1 (np, dp, 2, q); if (UNLIKELY (n1 != cy)) { if (n1 < (cy & flag)) { q--; add_ssaaaa (np[1], np[0], np[1], np[0], dp[1], dp[0]); } else flag = 0; } n1 = np[1]; } else { tdiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv); np[0] = n0; np[1] = n1; } *--qp = q; } ASSERT_ALWAYS (np[1] == n1); np += 2; dn = dn_orig; if (UNLIKELY (n1 < (dn & flag))) { mp_limb_t q, x; /* The quotient may be too large if the remainder is small. Recompute for above ignored operand parts, until the remainder spills. FIXME: The quality of this code isn't the same as the code above. 1. We don't compute things in an optimal order, high-to-low, in order to terminate as quickly as possible. 2. We mess with pointers and sizes, adding and subtracting and adjusting to get things right. It surely could be streamlined. 3. The only termination criteria are that we determine that the quotient needs to be adjusted, or that we have recomputed everything. We should stop when the remainder is so large that no additional subtracting could make it spill. 4. If nothing else, we should not do two loops of submul_1 over the data, instead handle both the triangularization and chopping at once. */ x = n1; if (dn > 2) { /* Compensate for triangularization. */ mp_limb_t y; dp = dp_orig; if (qn + 1 < dn) { dp += dn - (qn + 1); dn = qn + 1; } y = np[-2]; for (i = dn - 3; i >= 0; i--) { q = qp[i]; cy = mpn_submul_1 (np - (dn - i), dp, dn - i - 2, q); if (y < cy) { if (x == 0) { cy = mpn_sub_1 (qp, qp, qn, 1); ASSERT_ALWAYS (cy == 0); return qh - cy; } x--; } y -= cy; } np[-2] = y; } dn = dn_orig; if (qn + 1 < dn) { /* Compensate for ignored dividend and divisor tails. */ dp = dp_orig; np = np_orig; if (qh != 0) { cy = mpn_sub_n (np + qn, np + qn, dp, dn - (qn + 1)); if (cy != 0) { if (x == 0) { if (qn != 0) cy = mpn_sub_1 (qp, qp, qn, 1); return qh - cy; } x--; } } if (qn == 0) return qh; for (i = dn - qn - 2; i >= 0; i--) { cy = mpn_submul_1 (np + i, qp, qn, dp[i]); cy = mpn_sub_1 (np + qn + i, np + qn + i, dn - qn - i - 1, cy); if (cy != 0) { if (x == 0) { cy = mpn_sub_1 (qp, qp, qn, 1); return qh; } x--; } } } } return qh; }