dnl Alpha mpn_divexact_by3c -- mpn division by 3, expecting no remainder. dnl Copyright 2004, 2005 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of the GNU Lesser General Public License as published dnl by the Free Software Foundation; either version 2.1 of the License, or (at dnl your option) any later version. dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public dnl License for more details. dnl You should have received a copy of the GNU Lesser General Public License dnl along with the GNU MP Library; see the file COPYING.LIB. If not, write dnl to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, dnl Boston, MA 02110-1301, USA. include(`../config.m4') C cycles/limb C EV4: 22 C EV5: 11.5 C EV6: 6.3 C TODO C * Trim this to 6.0 c/l for ev6. C * Write special ev5 version, should reach 9 c/l, and could be smaller. C * Try prefetch for destination, using lds. C * Improve feed-in code, by moving initial mulq earlier; make initial load C to u0/u0 to save some copying. C * Combine u0 and u2, u1 and u3. C INPUT PARAMETERS define(`rp', `r16') define(`up', `r17') define(`n', `r18') define(`cy', `r19') ASM_START() DATASTART(L(LC)) .quad 0xAAAAAAAAAAAAAAAB .quad 0x5555555555555555 .quad 0xAAAAAAAAAAAAAAAA DATAEND() define(`xAAAAAAAAAAAAAAAB', `r20') define(`x5555555555555555', `r21') define(`xAAAAAAAAAAAAAAAA', `r22') define(`u0', `r0') define(`u1', `r1') define(`u2', `r2') define(`u3', `r3') define(`l0', `r25') define(`x', `r8') define(`q0', `r4') define(`q1', `r5') define(`p6', `r6') define(`p7', `r7') define(`t0', `r23') define(`t1', `r24') define(`cymask',`r28') PROLOGUE(mpn_divexact_by3c,gp) ldq r28, 0(up) C load first limb early C Put magic constants in registers lda r0, L(LC) ldq xAAAAAAAAAAAAAAAB, 0(r0) ldq x5555555555555555, 8(r0) ldq xAAAAAAAAAAAAAAAA, 16(r0) C Compute initial l0 value cmpeq cy, 1, p6 cmpeq cy, 2, p7 negq p6, p6 and p6, x5555555555555555, l0 cmovne p7, xAAAAAAAAAAAAAAAA, l0 C Feed-in depending on (n mod 4) and n, 3, r8 lda n, -3(n) cmpeq r8, 1, r4 cmpeq r8, 2, r5 bne r4, $Lb01 bne r5, $Lb10 beq r8, $Lb00 $Lb11: ldq u3, 8(up) lda up, -24(up) lda rp, -24(rp) mulq r28, xAAAAAAAAAAAAAAAB, q0 mov r28, u2 br r31, $L11 $Lb00: ldq u2, 8(up) lda up, -16(up) lda rp, -16(rp) mulq r28, xAAAAAAAAAAAAAAAB, q1 mov r28, u1 br r31, $L00 $Lb01: lda rp, -8(rp) mulq r28, xAAAAAAAAAAAAAAAB, q0 mov r28, u0 blt n, $Lcj1 ldq u1, 8(up) lda up, -8(up) br r31, $L01 $Lb10: ldq u0, 8(up) mulq r28, xAAAAAAAAAAAAAAAB, q1 mov r28, u3 blt n, $Lend ALIGN(16) $Ltop: C 0 cmpult u3, cy, cy C L0 mulq u0, xAAAAAAAAAAAAAAAB, q0 C U1 ldq u1, 16(up) C L1 addq q1, l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 unop unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, 0(rp) C L1 unop $L01: C 0 cmpult u0, cy, cy C L0 mulq u1, xAAAAAAAAAAAAAAAB, q1 C U1 ldq u2, 24(up) C L1 addq q0, l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 unop unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, 8(rp) C L1 unop $L00: C 0 cmpult u1, cy, cy C L0 mulq u2, xAAAAAAAAAAAAAAAB, q0 C U1 ldq u3, 32(up) C L1 addq q1, l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 unop unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, 16(rp) C L1 unop $L11: C 0 cmpult u2, cy, cy C L0 mulq u3, xAAAAAAAAAAAAAAAB, q1 C U1 ldq u0, 40(up) C L1 addq q0, l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 lda n, -4(n) C L1 bookkeeping unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, 24(rp) C L1 lda up, 32(up) C ldl r31, 256(up) C prefetch unop lda rp, 32(rp) bge n, $Ltop C U1 C *** MAIN LOOP END *** $Lend: cmpult u3, cy, cy C L0 mulq u0, xAAAAAAAAAAAAAAAB, q0 C U1 unop addq q1, l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 unop unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, 0(rp) C L1 unop $Lcj1: cmpult u0, cy, cy C L0 addq q0, l0, x C U0 cmpult x5555555555555555, x, p6 C U0 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 addq p6, cy, cy addq p7, cy, r0 stq x, 8(rp) C L1 ret r31,(r26),1 EPILOGUE() ASM_END() C This is useful for playing with various schedules. C Expand as: one(0)one(1)one(2)one(3) define(`one',` C 0 cmpult `$'eval(($1+3)%4), cy, cy C L0 mulq `$'$1, xAAAAAAAAAAAAAAAB, `$'eval(4+$1%2) C U1 ldq `$'eval(($1+1)%4), eval($1*8+16)(up) C L1 addq `$'eval(4+($1+1)%2), l0, x C U0 C 1 negq cy, cymask C L0 unop C U1 unop C L1 cmpult x5555555555555555, x, p6 C U0 C 2 cmpult xAAAAAAAAAAAAAAAA, x, p7 C U1 unop unop negq p6, t0 C L0 C 3 negq p7, t1 C L0 and cymask, x5555555555555555, l0 C U1 addq p6, cy, cy and t0, x5555555555555555, t0 C 4 and t1, x5555555555555555, t1 addq p7, cy, cy unop addq t0, l0, l0 C 5 addq t1, l0, l0 unop stq x, eval($1*8)(rp) C L1 unop ')