/* Exercise mpz_*_kronecker_*() and mpz_jacobi() functions. Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* With no arguments the various Kronecker/Jacobi symbol routines are checked against some test data and a lot of derived data. To check the test data against PARI-GP, run t-jac -p | gp -q It takes a while because the output from "t-jac -p" is big. Enhancements: More big test cases than those given by check_squares_zi would be good. */ #include #include #include #include "mpir.h" #include "gmp-impl.h" #include "tests.h" #ifdef _LONG_LONG_LIMB #define LL(l,ll) ll #else #define LL(l,ll) l #endif int option_pari = 0; unsigned long mpz_mod4 (mpz_srcptr z) { mpz_t m; unsigned long ret; mpz_init (m); mpz_fdiv_r_2exp (m, z, 2); ret = mpz_get_ui (m); mpz_clear (m); return ret; } int mpz_fits_ulimb_p (mpz_srcptr z) { return (SIZ(z) == 1 || SIZ(z) == 0); } mp_limb_t mpz_get_ulimb (mpz_srcptr z) { if (SIZ(z) == 0) return 0; else return PTR(z)[0]; } void try_base (mp_limb_t a, mp_limb_t b, int answer) { int got; if ((b & 1) == 0 || b == 1 || a > b) return; got = mpn_jacobi_base (a, b, 0); if (got != answer) { printf (LL("mpn_jacobi_base (%lu, %lu) is %d should be %d\n", "mpn_jacobi_base (%llu, %llu) is %d should be %d\n"), a, b, got, answer); abort (); } } void try_zi_ui (mpz_srcptr a, unsigned long b, int answer) { int got; got = mpz_kronecker_ui (a, b); if (got != answer) { printf ("mpz_kronecker_ui ("); mpz_out_str (stdout, 10, a); printf (", %lu) is %d should be %d\n", b, got, answer); abort (); } } void try_zi_si (mpz_srcptr a, long b, int answer) { int got; got = mpz_kronecker_si (a, b); if (got != answer) { printf ("mpz_kronecker_si ("); mpz_out_str (stdout, 10, a); printf (", %ld) is %d should be %d\n", b, got, answer); abort (); } } void try_ui_zi (unsigned long a, mpz_srcptr b, int answer) { int got; got = mpz_ui_kronecker (a, b); if (got != answer) { printf ("mpz_ui_kronecker (%lu, ", a); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } void try_si_zi (long a, mpz_srcptr b, int answer) { int got; got = mpz_si_kronecker (a, b); if (got != answer) { printf ("mpz_si_kronecker (%ld, ", a); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } /* Don't bother checking mpz_jacobi, since it only differs for b even, and we don't have an actual expected answer for it. tests/devel/try.c does some checks though. */ void try_zi_zi (mpz_srcptr a, mpz_srcptr b, int answer) { int got; got = mpz_kronecker (a, b); if (got != answer) { printf ("mpz_kronecker ("); mpz_out_str (stdout, 10, a); printf (", "); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } void try_pari (mpz_srcptr a, mpz_srcptr b, int answer) { printf ("try("); mpz_out_str (stdout, 10, a); printf (","); mpz_out_str (stdout, 10, b); printf (",%d)\n", answer); } void try_each (mpz_srcptr a, mpz_srcptr b, int answer) { if (option_pari) { try_pari (a, b, answer); return; } if (mpz_fits_ulimb_p (a) && mpz_fits_ulimb_p (b)) try_base (mpz_get_ulimb (a), mpz_get_ulimb (b), answer); if (mpz_fits_ulong_p (b)) try_zi_ui (a, mpz_get_ui (b), answer); if (mpz_fits_slong_p (b)) try_zi_si (a, mpz_get_si (b), answer); if (mpz_fits_ulong_p (a)) try_ui_zi (mpz_get_ui (a), b, answer); if (mpz_fits_sint_p (a)) try_si_zi (mpz_get_si (a), b, answer); try_zi_zi (a, b, answer); } /* Try (a/b) and (a/-b). */ void try_pn (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b; mpz_init_set (b, b_orig); try_each (a, b, answer); mpz_neg (b, b); if (mpz_sgn (a) < 0) answer = -answer; try_each (a, b, answer); mpz_clear (b); } /* Try (a+k*p/b) for various k, using the fact (a/b) is periodic in a with period p. For b>0, p=b if b!=2mod4 or p=4*b if b==2mod4. */ void try_periodic_num (mpz_srcptr a_orig, mpz_srcptr b, int answer) { mpz_t a, a_period; int i; if (mpz_sgn (b) <= 0) return; mpz_init_set (a, a_orig); mpz_init_set (a_period, b); if (mpz_mod4 (b) == 2) mpz_mul_ui (a_period, a_period, 4); /* don't bother with these tests if they're only going to produce even/even */ if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (a_period)) goto done; for (i = 0; i < 6; i++) { mpz_add (a, a, a_period); try_pn (a, b, answer); } mpz_set (a, a_orig); for (i = 0; i < 6; i++) { mpz_sub (a, a, a_period); try_pn (a, b, answer); } done: mpz_clear (a); mpz_clear (a_period); } /* Try (a/b+k*p) for various k, using the fact (a/b) is periodic in b of period p. period p a==0,1mod4 a a==2mod4 4*a a==3mod4 and b odd 4*a a==3mod4 and b even 8*a In Henri Cohen's book the period is given as 4*a for all a==2,3mod4, but a counterexample would seem to be (3/2)=-1 which with (3/14)=+1 doesn't have period 4*a (but rather 8*a with (3/26)=-1). Maybe the plain 4*a is to be read as applying to a plain Jacobi symbol with b odd, rather than the Kronecker extension to b even. */ void try_periodic_den (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b, b_period; int i; if (mpz_sgn (a) == 0 || mpz_sgn (b_orig) == 0) return; mpz_init_set (b, b_orig); mpz_init_set (b_period, a); if (mpz_mod4 (a) == 3 && mpz_even_p (b)) mpz_mul_ui (b_period, b_period, 8L); else if (mpz_mod4 (a) >= 2) mpz_mul_ui (b_period, b_period, 4L); /* don't bother with these tests if they're only going to produce even/even */ if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (b_period)) goto done; for (i = 0; i < 6; i++) { mpz_add (b, b, b_period); try_pn (a, b, answer); } mpz_set (b, b_orig); for (i = 0; i < 6; i++) { mpz_sub (b, b, b_period); try_pn (a, b, answer); } done: mpz_clear (b); mpz_clear (b_period); } static const unsigned long ktable[] = { 0, 1, 2, 3, 4, 5, 6, 7, GMP_NUMB_BITS-1, GMP_NUMB_BITS, GMP_NUMB_BITS+1, 2*GMP_NUMB_BITS-1, 2*GMP_NUMB_BITS, 2*GMP_NUMB_BITS+1, 3*GMP_NUMB_BITS-1, 3*GMP_NUMB_BITS, 3*GMP_NUMB_BITS+1 }; /* Try (a/b*2^k) for various k. */ void try_2den (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b; int kindex; int answer_a2, answer_k; unsigned long k; /* don't bother when b==0 */ if (mpz_sgn (b_orig) == 0) return; mpz_init_set (b, b_orig); /* (a/2) is 0 if a even, 1 if a==1 or 7 mod 8, -1 if a==3 or 5 mod 8 */ answer_a2 = (mpz_even_p (a) ? 0 : (((SIZ(a) >= 0 ? PTR(a)[0] : -PTR(a)[0]) + 2) & 7) < 4 ? 1 : -1); for (kindex = 0; kindex < numberof (ktable); kindex++) { k = ktable[kindex]; /* answer_k = answer*(answer_a2^k) */ answer_k = (answer_a2 == 0 && k != 0 ? 0 : (k & 1) == 1 && answer_a2 == -1 ? -answer : answer); mpz_mul_2exp (b, b_orig, k); try_pn (a, b, answer_k); } mpz_clear (b); } /* Try (a*2^k/b) for various k. If it happens mpz_ui_kronecker() gets (2/b) wrong it will show up as wrong answers demanded. */ void try_2num (mpz_srcptr a_orig, mpz_srcptr b, int answer) { mpz_t a; int kindex; int answer_2b, answer_k; unsigned long k; /* don't bother when a==0 */ if (mpz_sgn (a_orig) == 0) return; mpz_init (a); /* (2/b) is 0 if b even, 1 if b==1 or 7 mod 8, -1 if b==3 or 5 mod 8 */ answer_2b = (mpz_even_p (b) ? 0 : (((SIZ(b) >= 0 ? PTR(b)[0] : -PTR(b)[0]) + 2) & 7) < 4 ? 1 : -1); for (kindex = 0; kindex < numberof (ktable); kindex++) { k = ktable[kindex]; /* answer_k = answer*(answer_2b^k) */ answer_k = (answer_2b == 0 && k != 0 ? 0 : (k & 1) == 1 && answer_2b == -1 ? -answer : answer); mpz_mul_2exp (a, a_orig, k); try_pn (a, b, answer_k); } mpz_clear (a); } /* The try_2num() and try_2den() routines don't in turn call try_periodic_num() and try_periodic_den() because it hugely increases the number of tests performed, without obviously increasing coverage. Useful extra derived cases can be added here. */ void try_all (mpz_t a, mpz_t b, int answer) { try_pn (a, b, answer); try_periodic_num (a, b, answer); try_periodic_den (a, b, answer); try_2num (a, b, answer); try_2den (a, b, answer); } void check_data (void) { static const struct { const char *a; const char *b; int answer; } data[] = { /* Note that the various derived checks in try_all() reduce the cases that need to be given here. */ /* some zeros */ { "0", "0", 0 }, { "0", "2", 0 }, { "0", "6", 0 }, { "5", "0", 0 }, { "24", "60", 0 }, /* (a/1) = 1, any a In particular note (0/1)=1 so that (a/b)=(a mod b/b). */ { "0", "1", 1 }, { "1", "1", 1 }, { "2", "1", 1 }, { "3", "1", 1 }, { "4", "1", 1 }, { "5", "1", 1 }, /* (0/b) = 0, b != 1 */ { "0", "3", 0 }, { "0", "5", 0 }, { "0", "7", 0 }, { "0", "9", 0 }, { "0", "11", 0 }, { "0", "13", 0 }, { "0", "15", 0 }, /* (1/b) = 1 */ { "1", "1", 1 }, { "1", "3", 1 }, { "1", "5", 1 }, { "1", "7", 1 }, { "1", "9", 1 }, { "1", "11", 1 }, /* (-1/b) = (-1)^((b-1)/2) which is -1 for b==3 mod 4 */ { "-1", "1", 1 }, { "-1", "3", -1 }, { "-1", "5", 1 }, { "-1", "7", -1 }, { "-1", "9", 1 }, { "-1", "11", -1 }, { "-1", "13", 1 }, { "-1", "15", -1 }, { "-1", "17", 1 }, { "-1", "19", -1 }, /* (2/b) = (-1)^((b^2-1)/8) which is -1 for b==3,5 mod 8. try_2num() will exercise multiple powers of 2 in the numerator. */ { "2", "1", 1 }, { "2", "3", -1 }, { "2", "5", -1 }, { "2", "7", 1 }, { "2", "9", 1 }, { "2", "11", -1 }, { "2", "13", -1 }, { "2", "15", 1 }, { "2", "17", 1 }, /* (-2/b) = (-1)^((b^2-1)/8)*(-1)^((b-1)/2) which is -1 for b==5,7mod8. try_2num() will exercise multiple powers of 2 in the numerator, which will test that the shift in mpz_si_kronecker() uses unsigned not signed. */ { "-2", "1", 1 }, { "-2", "3", 1 }, { "-2", "5", -1 }, { "-2", "7", -1 }, { "-2", "9", 1 }, { "-2", "11", 1 }, { "-2", "13", -1 }, { "-2", "15", -1 }, { "-2", "17", 1 }, /* (a/2)=(2/a). try_2den() will exercise multiple powers of 2 in the denominator. */ { "3", "2", -1 }, { "5", "2", -1 }, { "7", "2", 1 }, { "9", "2", 1 }, { "11", "2", -1 }, /* Harriet Griffin, "Elementary Theory of Numbers", page 155, various examples. */ { "2", "135", 1 }, { "135", "19", -1 }, { "2", "19", -1 }, { "19", "135", 1 }, { "173", "135", 1 }, { "38", "135", 1 }, { "135", "173", 1 }, { "173", "5", -1 }, { "3", "5", -1 }, { "5", "173", -1 }, { "173", "3", -1 }, { "2", "3", -1 }, { "3", "173", -1 }, { "253", "21", 1 }, { "1", "21", 1 }, { "21", "253", 1 }, { "21", "11", -1 }, { "-1", "11", -1 }, /* Griffin page 147 */ { "-1", "17", 1 }, { "2", "17", 1 }, { "-2", "17", 1 }, { "-1", "89", 1 }, { "2", "89", 1 }, /* Griffin page 148 */ { "89", "11", 1 }, { "1", "11", 1 }, { "89", "3", -1 }, { "2", "3", -1 }, { "3", "89", -1 }, { "11", "89", 1 }, { "33", "89", -1 }, /* H. Davenport, "The Higher Arithmetic", page 65, the quadratic residues and non-residues mod 19. */ { "1", "19", 1 }, { "4", "19", 1 }, { "5", "19", 1 }, { "6", "19", 1 }, { "7", "19", 1 }, { "9", "19", 1 }, { "11", "19", 1 }, { "16", "19", 1 }, { "17", "19", 1 }, { "2", "19", -1 }, { "3", "19", -1 }, { "8", "19", -1 }, { "10", "19", -1 }, { "12", "19", -1 }, { "13", "19", -1 }, { "14", "19", -1 }, { "15", "19", -1 }, { "18", "19", -1 }, /* Residues and non-residues mod 13 */ { "0", "13", 0 }, { "1", "13", 1 }, { "2", "13", -1 }, { "3", "13", 1 }, { "4", "13", 1 }, { "5", "13", -1 }, { "6", "13", -1 }, { "7", "13", -1 }, { "8", "13", -1 }, { "9", "13", 1 }, { "10", "13", 1 }, { "11", "13", -1 }, { "12", "13", 1 }, /* various */ { "5", "7", -1 }, { "15", "17", 1 }, { "67", "89", 1 }, /* special values inducing a==b==1 at the end of jac_or_kron() */ { "0x10000000000000000000000000000000000000000000000001", "0x10000000000000000000000000000000000000000000000003", 1 }, }; int i; mpz_t a, b; mpz_init (a); mpz_init (b); for (i = 0; i < numberof (data); i++) { mpz_set_str_or_abort (a, data[i].a, 0); mpz_set_str_or_abort (b, data[i].b, 0); try_all (a, b, data[i].answer); } mpz_clear (a); mpz_clear (b); } /* (a^2/b)=1 if gcd(a,b)=1, or (a^2/b)=0 if gcd(a,b)!=1. This includes when a=0 or b=0. */ void check_squares_zi (void) { gmp_randstate_t rands; mpz_t a, b, g; int i, answer; mp_size_t size_range, an, bn; mpz_t bs; mpz_init (bs); mpz_init (a); mpz_init (b); mpz_init (g); gmp_randinit_default(rands); for (i = 0; i < 50; i++) { mpz_urandomb (bs, rands, 32); size_range = mpz_get_ui (bs) % 10 + 2; mpz_urandomb (bs, rands, size_range); an = mpz_get_ui (bs); mpz_rrandomb (a, rands, an); mpz_urandomb (bs, rands, size_range); bn = mpz_get_ui (bs); mpz_rrandomb (b, rands, bn); mpz_gcd (g, a, b); if (mpz_cmp_ui (g, 1L) == 0) answer = 1; else answer = 0; mpz_mul (a, a, a); try_all (a, b, answer); } mpz_clear (bs); mpz_clear (a); mpz_clear (b); mpz_clear (g); gmp_randclear(rands); } /* Check the handling of asize==0, make sure it isn't affected by the low limb. */ void check_a_zero (void) { mpz_t a, b; mpz_init_set_ui (a, 0); mpz_init (b); mpz_set_ui (b, 1L); PTR(a)[0] = 0; try_all (a, b, 1); /* (0/1)=1 */ PTR(a)[0] = 1; try_all (a, b, 1); /* (0/1)=1 */ mpz_set_si (b, -1L); PTR(a)[0] = 0; try_all (a, b, 1); /* (0/-1)=1 */ PTR(a)[0] = 1; try_all (a, b, 1); /* (0/-1)=1 */ mpz_set_ui (b, 0); PTR(a)[0] = 0; try_all (a, b, 0); /* (0/0)=0 */ PTR(a)[0] = 1; try_all (a, b, 0); /* (0/0)=0 */ mpz_set_ui (b, 2); PTR(a)[0] = 0; try_all (a, b, 0); /* (0/2)=0 */ PTR(a)[0] = 1; try_all (a, b, 0); /* (0/2)=0 */ mpz_clear (a); mpz_clear (b); } int main (int argc, char *argv[]) { tests_start (); if (argc >= 2 && strcmp (argv[1], "-p") == 0) { option_pari = 1; printf ("\ try(a,b,answer) =\n\ {\n\ if (kronecker(a,b) != answer,\n\ print(\"wrong at \", a, \",\", b,\n\ \" expected \", answer,\n\ \" pari says \", kronecker(a,b)))\n\ }\n"); } check_data (); check_squares_zi (); check_a_zero (); tests_end (); exit (0); }