/* Schönhage's 1987 algorithm, reorganized into hgcd form */ #include /* for NULL */ #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" /* For input of size n, matrix elements are of size at most ceil(n/2) - 1, but we need one limb extra. */ void mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p); #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M with elements of size at most (n+1)/2 - 1. Returns new size of a, b, or zero if no reduction is possible. */ static mp_size_t nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n, struct ngcd_matrix *M, mp_ptr tp); /* Size analysis for nhgcd: For the recursive calls, we have n1 <= ceil(n / 2). Then the storage need is determined by the storage for the recursive call computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that use M1 (after this, the storage needed for M1 can be recycled). Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2) = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2. In total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2. For the recursive call, we need S(n1) = S(ceil(n/2)). S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2)) <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k)) <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k) <= 18 ceil(n/4) + 11k + S(n/2^k) */ mp_size_t mpn_nhgcd_itch (mp_size_t n); /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M with elements of size at most (n+1)/2 - 1. Returns new size of a, b, or zero if no reduction is possible. */ mp_size_t mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n, struct ngcd_matrix *M, mp_ptr tp); #define EVEN_P(x) (((x) & 1) == 0) mp_size_t mpn_ngcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n) { mp_size_t init_scratch; mp_size_t scratch; mp_ptr tp; TMP_DECL; ASSERT (an >= n); if (BELOW_THRESHOLD (n, NGCD_THRESHOLD)) return mpn_basic_gcd (gp, ap, an, bp, n); init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2); scratch = mpn_nhgcd_itch ((n+1)/2); /* Space needed for mpn_ngcd_matrix_adjust */ if (scratch < 2*n) scratch = 2*n; TMP_MARK; if (an + 1 > init_scratch + scratch) tp = TMP_ALLOC_LIMBS (an + 1); else tp = TMP_ALLOC_LIMBS (init_scratch + scratch); if (an > n) { mp_ptr rp = tp; mp_ptr qp = rp + n; mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n); MPN_COPY (ap, rp, n); an = n; MPN_NORMALIZE (ap, an); if (an == 0) { MPN_COPY (gp, bp, n); TMP_FREE; return n; } } while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD)) { struct ngcd_matrix M; mp_size_t p = n/2; mp_size_t nn; mpn_ngcd_matrix_init (&M, n - p, tp); nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch); if (nn > 0) /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1) = 2(n-1) */ n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp + init_scratch); else { mp_size_t gn; n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp); if (n == 0) { TMP_FREE; return gn; } } } ASSERT (ap[n-1] > 0 || bp[n-1] > 0); #if 0 /* FIXME: We may want to use lehmer on some systems. */ n = mpn_ngcd_lehmer (gp, ap, bp, n, tp); TMP_FREE; return n; #endif if (ap[n-1] < bp[n-1]) MP_PTR_SWAP (ap, bp); an = n; MPN_NORMALIZE (bp, n); if (n == 0) { MPN_COPY (gp, ap, an); TMP_FREE; return an; } if (EVEN_P (bp[0])) { /* Then a must be odd (since the calling convention implies that there's no common factor of 2) */ ASSERT (!EVEN_P (ap[0])); while (bp[0] == 0) { bp++; n--; } if (EVEN_P(bp[0])) { int count; count_trailing_zeros (count, bp[0]); ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count)); n -= (bp[n-1] == 0); } } TMP_FREE; return mpn_basic_gcd (gp, ap, an, bp, n); }