/* Time routines for speed measurments. Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Usage: The code in this file implements the lowest level of time measuring, simple one-time measuring of time between two points. void speed_starttime (void) double speed_endtime (void) Call speed_starttime to start measuring, and then call speed_endtime when done. speed_endtime returns the time taken, in seconds. Or if the timebase is in CPU cycles and the CPU frequency is unknown then speed_endtime returns cycles. Applications can identify the cycles return by checking for speed_cycletime (described below) equal to 1.0. If some sort of temporary glitch occurs then speed_endtime returns 0.0. Currently this is for various cases where a negative time has occurred. This unfortunately occurs with getrusage on some systems, and with the hppa cycle counter on hpux. double speed_cycletime The time in seconds for each CPU cycle. For example on a 100 MHz CPU this would be 1.0e-8. If the CPU frequency is unknown, then speed_cycletime is either 0.0 or 1.0. It's 0.0 when speed_endtime is returning seconds, or it's 1.0 when speed_endtime is returning cycles. It may be noted that "speed_endtime() / speed_cycletime" gives a measured time in cycles, irrespective of whether speed_endtime is returning cycles or seconds. (Assuming cycles can be had, ie. it's either cycles already or the cpu frequency is known. See also speed_cycletime_need_cycles below.) double speed_unittime The unit of time measurement accuracy for the timing method in use. This is in seconds or cycles, as per speed_endtime. char speed_time_string[] A null-terminated string describing the time method in use. void speed_time_init (void) Initialize time measuring. speed_starttime() does this automatically, so it's only needed if an application wants to inspect the above global variables before making a measurement. int speed_precision The intended accuracy of time measurements. speed_measure() in common.c for instance runs target routines with enough repetitions so it takes at least "speed_unittime * speed_precision" (this expression works for both cycles or seconds from speed_endtime). A program can provide an option so the user to set speed_precision. If speed_precision is zero when speed_time_init or speed_starttime first run then it gets a default based on the measuring method chosen. (More precision for higher accuracy methods.) void speed_cycletime_need_seconds (void) Call this to demand that speed_endtime will return seconds, and not cycles. If only cycles are available then an error is printed and the program exits. void speed_cycletime_need_cycles (void) Call this to demand that speed_cycletime is non-zero, so that "speed_endtime() / speed_cycletime" will give times in cycles. Notes: Various combinations of cycle counter, read_real_time(), getrusage(), gettimeofday() and times() can arise, according to which are available and their precision. Allowing speed_endtime() to return either seconds or cycles is only a slight complication and makes it possible for the speed program to do some sensible things without demanding the CPU frequency. If seconds are being measured then it can always print seconds, and if cycles are being measured then it can always print them without needing to know how long they are. Also the tune program doesn't care at all what the units are. GMP_CPU_FREQUENCY can always be set when the automated methods in freq.c fail. This will be needed if times in seconds are wanted but a cycle counter is being used, or if times in cycles are wanted but getrusage or another seconds based timer is in use. If the measuring method uses a cycle counter but supplements it with getrusage or the like, then knowing the CPU frequency is mandatory since the code compares values from the two. Not done: Solaris gethrtime() seems no more than a slow way to access the Sparc V9 cycle counter. gethrvtime() seems to be relevant only to light weight processes, it doesn't for instance give nanosecond virtual time. So neither of these are used. Bugs: getrusage_microseconds_p is fundamentally flawed, getrusage and gettimeofday can have resolutions other than clock ticks or microseconds, for instance IRIX 5 has a tick of 10 ms but a getrusage of 1 ms. Enhancements: The SGI hardware counter has 64 bits on some machines, which could be used when available. But perhaps 32 bits is enough range, and then rely on the getrusage supplement. Maybe getrusage (or times) should be used as a supplement for any wall-clock measuring method. Currently a wall clock with a good range (eg. a 64-bit cycle counter) is used without a supplement. On PowerPC the timebase registers could be used, but would have to do something to find out the speed. On 6xx chips it's normally 1/4 bus speed, on 4xx chips it's either that or an external clock. Measuring against gettimeofday might be ok. */ #include "config.h" #include #include #include #include #include #include #include /* for getenv() */ #if HAVE_FCNTL_H #include /* for open() */ #endif #if HAVE_STDINT_H #include /* for uint64_t */ #endif #if HAVE_UNISTD_H #include /* for sysconf() */ #endif #include #if TIME_WITH_SYS_TIME # include /* for struct timeval */ # include #else # if HAVE_SYS_TIME_H # include # else # include # endif #endif #if HAVE_SYS_MMAN_H #include /* for mmap() */ #endif #if HAVE_SYS_RESOURCE_H #include /* for struct rusage */ #endif #if HAVE_SYS_SYSSGI_H #include /* for syssgi() */ #endif #if HAVE_SYS_SYSTEMCFG_H #include /* for RTC_POWER on AIX */ #endif #if HAVE_SYS_TIMES_H #include /* for times() and struct tms */ #endif #include "mpir.h" #include "gmp-impl.h" #if 1 && defined( _MSC_VER) #define HAVE_GETRUSAGE 1 #define HAVE_GETTIMEOFDAY 1 #include "getrusage.h" #include "gettimeofday.h" #endif #include "speed.h" /* strerror is only used for some stuff on newish systems, no need to have a proper replacement */ #if ! HAVE_STRERROR #define strerror(n) "" #endif char speed_time_string[256]; int speed_precision = 0; double speed_unittime; double speed_cycletime = 0.0; /* don't rely on "unsigned" to "double" conversion, it's broken in SunOS 4 native cc */ #define M_2POWU (((double) INT_MAX + 1.0) * 2.0) #define M_2POW32 4294967296.0 #define M_2POW64 (M_2POW32 * M_2POW32) /* Conditionals for the time functions available are done with normal C code, which is a lot easier than wildly nested preprocessor directives. The choice of what to use is partly made at run-time, according to whether the cycle counter works and the measured accuracy of getrusage and gettimeofday. A routine that's not available won't be getting called, but is an abort() to be sure it isn't called mistakenly. It can be assumed that if a function exists then its data type will, but if the function doesn't then the data type might or might not exist, so the type can't be used unconditionally. The "struct_rusage" etc macros provide dummies when the respective function doesn't exist. */ #if HAVE_SPEED_CYCLECOUNTER static const int have_cycles = HAVE_SPEED_CYCLECOUNTER; #else static const int have_cycles = 0; #define speed_cyclecounter(p) ASSERT_FAIL (speed_cyclecounter not available) #endif /* "stck" returns ticks since 1 Jan 1900 00:00 GMT, where each tick is 2^-12 microseconds. Same #ifdefs here as in longlong.h. */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && (defined (__i370__) || defined (__s390__) || defined (__mvs__)) static const int have_stck = 1; static const int use_stck = 1; /* always use when available */ typedef uint64_t stck_t; /* gcc for s390 is quite new, always has uint64_t */ #define STCK(timestamp) \ do { \ asm ("stck %0" : "=m" (timestamp)); \ } while (0) #else static const int have_stck = 0; static const int use_stck = 0; typedef unsigned long stck_t; /* dummy */ #define STCK(timestamp) ASSERT_FAIL (stck instruction not available) #endif #define STCK_PERIOD (1.0 / 4096e6) /* 2^-12 microseconds */ /* mftb Enhancement: On 64-bit chips mftb gives a 64-bit value, no need for mftbu and a loop (see powerpc64.asm). */ #if HAVE_HOST_CPU_FAMILY_powerpc static const int have_mftb = 1; #if defined (__GNUC__) && ! defined (NO_ASM) #define MFTB(a) \ do { \ unsigned __h1, __l, __h2; \ do { \ asm volatile ("mftbu %0\n" \ "mftb %1\n" \ "mftbu %2" \ : "=r" (__h1), \ "=r" (__l), \ "=r" (__h2)); \ } while (__h1 != __h2); \ a[0] = __l; \ a[1] = __h1; \ } while (0) #else #define MFTB(a) mftb_function (a) #endif #else /* ! powerpc */ static const int have_mftb = 0; #define MFTB(a) \ do { \ a[0] = 0; \ a[1] = 0; \ ASSERT_FAIL (mftb not available); \ } while (0) #endif /* Unicos 10.X has syssgi(), but not mmap(). */ #if HAVE_SYSSGI && HAVE_MMAP static const int have_sgi = 1; #else static const int have_sgi = 0; #endif #if HAVE_READ_REAL_TIME static const int have_rrt = 1; #else static const int have_rrt = 0; #define read_real_time(t,s) ASSERT_FAIL (read_real_time not available) #define time_base_to_time(t,s) ASSERT_FAIL (time_base_to_time not available) #define RTC_POWER 1 #define RTC_POWER_PC 2 #define timebasestruct_t struct timebasestruct_dummy struct timebasestruct_dummy { int flag; unsigned int tb_high; unsigned int tb_low; }; #endif #if HAVE_CLOCK_GETTIME static const int have_cgt = 1; #define struct_timespec struct timespec #else static const int have_cgt = 0; #define struct_timespec struct timespec_dummy #define clock_gettime(id,ts) (ASSERT_FAIL (clock_gettime not available), -1) #define clock_getres(id,ts) (ASSERT_FAIL (clock_getres not available), -1) #endif #if HAVE_GETRUSAGE static const int have_grus = 1; #define struct_rusage struct rusage #else static const int have_grus = 0; #define getrusage(n,ru) ASSERT_FAIL (getrusage not available) #define struct_rusage struct rusage_dummy #endif #if HAVE_GETTIMEOFDAY static const int have_gtod = 1; #define struct_timeval struct timeval #else static const int have_gtod = 0; #define gettimeofday(tv,tz) ASSERT_FAIL (gettimeofday not available) #define struct_timeval struct timeval_dummy #endif #if HAVE_TIMES static const int have_times = 1; #define struct_tms struct tms #else static const int have_times = 0; #define times(tms) ASSERT_FAIL (times not available) #define struct_tms struct tms_dummy #endif struct tms_dummy { long tms_utime; }; struct timeval_dummy { long tv_sec; long tv_usec; }; struct rusage_dummy { struct_timeval ru_utime; }; struct timespec_dummy { long tv_sec; long tv_nsec; }; static int use_cycles; static int use_mftb; static int use_sgi; static int use_rrt; static int use_cgt; static int use_gtod; static int use_grus; static int use_times; static int use_tick_boundary; static unsigned start_cycles[2]; static stck_t start_stck; static unsigned start_mftb[2]; static unsigned start_sgi; static timebasestruct_t start_rrt; static struct_timespec start_cgt; static struct_rusage start_grus; static struct_timeval start_gtod; static struct_tms start_times; static double cycles_limit = 1e100; static double mftb_unittime; static double sgi_unittime; static double cgt_unittime; static double grus_unittime; static double gtod_unittime; static double times_unittime; /* for RTC_POWER format, ie. seconds and nanoseconds */ #define TIMEBASESTRUCT_SECS(t) ((t)->tb_high + (t)->tb_low * 1e-9) /* Return a string representing a time in seconds, nicely formatted. Eg. "10.25ms". */ char * unittime_string (double t) { static char buf[128]; const char *unit; int prec; /* choose units and scale */ if (t < 1e-6) t *= 1e9, unit = "ns"; else if (t < 1e-3) t *= 1e6, unit = "us"; else if (t < 1.0) t *= 1e3, unit = "ms"; else unit = "s"; /* want 4 significant figures */ if (t < 1.0) prec = 4; else if (t < 10.0) prec = 3; else if (t < 100.0) prec = 2; else prec = 1; sprintf (buf, "%.*f%s", prec, t, unit); return buf; } static jmp_buf cycles_works_buf; static RETSIGTYPE cycles_works_handler (int sig) { longjmp (cycles_works_buf, 1); } int cycles_works_p (void) { static int result = -1; if (result != -1) goto done; #ifdef SIGILL { RETSIGTYPE (*old_handler) _PROTO ((int)); unsigned cycles[2]; old_handler = signal (SIGILL, cycles_works_handler); if (old_handler == SIG_ERR) { if (speed_option_verbose) printf ("cycles_works_p(): SIGILL not supported, assuming speed_cyclecounter() works\n"); goto yes; } if (setjmp (cycles_works_buf)) { if (speed_option_verbose) printf ("cycles_works_p(): SIGILL during speed_cyclecounter(), so doesn't work\n"); result = 0; goto done; } speed_cyclecounter (cycles); signal (SIGILL, old_handler); if (speed_option_verbose) printf ("cycles_works_p(): speed_cyclecounter() works\n"); } #else if (speed_option_verbose) printf ("cycles_works_p(): SIGILL not defined, assuming speed_cyclecounter() works\n"); goto yes; #endif yes: result = 1; done: return result; } /* The number of clock ticks per second, but looking at sysconf rather than just CLK_TCK, where possible. */ long clk_tck (void) { static long result = -1L; if (result != -1L) return result; #if HAVE_SYSCONF result = sysconf (_SC_CLK_TCK); if (result != -1L) { if (speed_option_verbose) printf ("sysconf(_SC_CLK_TCK) is %ld per second\n", result); return result; } fprintf (stderr, "sysconf(_SC_CLK_TCK) not working, using CLK_TCK instead\n"); #endif #ifdef CLK_TCK result = CLK_TCK; if (speed_option_verbose) printf ("CLK_TCK is %ld per second\n", result); return result; #else fprintf (stderr, "CLK_TCK not defined, cannot continue\n"); abort (); #endif } /* If two times can be observed less than half a clock tick apart, then assume "get" is microsecond accurate. Two times only 1 microsecond apart are not believed, since some kernels take it upon themselves to ensure gettimeofday doesn't return the same value twice, for the benefit of applications using it for a timestamp. This is obviously very stupid given the speed of CPUs these days. Making "reps" many calls to noop_1() is designed to waste some CPU, with a view to getting measurements 2 microseconds (or more) apart. "reps" is increased progressively until such a period is seen. The outer loop "attempts" are just to allow for any random nonsense or system load upsetting the measurements (ie. making two successive calls to "get" come out as a longer interval than normal). Bugs: The assumption that any interval less than a half tick implies microsecond resolution is obviously fairly rash, the true resolution could be anything between a microsecond and that half tick. Perhaps something special would have to be done on a system where this is the case, since there's no obvious reliable way to detect it automatically. */ #define MICROSECONDS_P(name, type, get, sec, usec) \ { \ static int result = -1; \ type st, et; \ long dt, half_tick; \ unsigned attempt, reps, i, j; \ \ if (result != -1) \ return result; \ \ result = 0; \ half_tick = (1000000L / clk_tck ()) / 2; \ \ for (attempt = 0; attempt < 5; attempt++) \ { \ reps = 0; \ for (;;) \ { \ get (st); \ for (i = 0; i < reps; i++) \ for (j = 0; j < 100; j++) \ noop_1 (CNST_LIMB(0)); \ get (et); \ \ dt = (sec(et)-sec(st))*1000000L + usec(et)-usec(st); \ \ if (speed_option_verbose >= 2) \ printf ("%s attempt=%u, reps=%u, dt=%ld\n", \ name, attempt, reps, dt); \ \ if (dt >= 2) \ break; \ \ reps = (reps == 0 ? 1 : 2*reps); \ if (reps == 0) \ break; /* uint overflow, not normal */ \ } \ \ if (dt < half_tick) \ { \ result = 1; \ break; \ } \ } \ \ if (speed_option_verbose) \ { \ if (result) \ printf ("%s is microsecond accurate\n", name); \ else \ printf ("%s is only %s clock tick accurate\n", \ name, unittime_string (1.0/clk_tck())); \ } \ return result; \ } int gettimeofday_microseconds_p (void) { #define call_gettimeofday(t) gettimeofday (&(t), NULL) #define timeval_tv_sec(t) ((t).tv_sec) #define timeval_tv_usec(t) ((t).tv_usec) MICROSECONDS_P ("gettimeofday", struct_timeval, call_gettimeofday, timeval_tv_sec, timeval_tv_usec); } int getrusage_microseconds_p (void) { #define call_getrusage(t) getrusage (0, &(t)) #define rusage_tv_sec(t) ((t).ru_utime.tv_sec) #define rusage_tv_usec(t) ((t).ru_utime.tv_usec) MICROSECONDS_P ("getrusage", struct_rusage, call_getrusage, rusage_tv_sec, rusage_tv_usec); } /* Test whether getrusage goes backwards, return non-zero if it does (suggesting it's flawed). On a macintosh m68040-unknown-netbsd1.4.1 getrusage looks like it's microsecond accurate, but has been seen remaining unchanged after many microseconds have elapsed. It also regularly goes backwards by 1000 to 5000 usecs, this has been seen after between 500 and 4000 attempts taking perhaps 0.03 seconds. We consider this too broken for good measuring. We used to have configure pretend getrusage didn't exist on this system, but a runtime test should be more reliable, since we imagine the problem is not confined to just this exact system tuple. */ int getrusage_backwards_p (void) { static int result = -1; struct_rusage start, prev, next; long d; int i; if (result != -1) return result; getrusage (0, &start); memcpy (&next, &start, sizeof (next)); result = 0; i = 0; for (;;) { memcpy (&prev, &next, sizeof (prev)); getrusage (0, &next); if (next.ru_utime.tv_sec < prev.ru_utime.tv_sec || (next.ru_utime.tv_sec == prev.ru_utime.tv_sec && next.ru_utime.tv_usec < prev.ru_utime.tv_usec)) { if (speed_option_verbose) printf ("getrusage went backwards (attempt %d: %ld.%06ld -> %ld.%06ld)\n", i, prev.ru_utime.tv_sec, prev.ru_utime.tv_usec, next.ru_utime.tv_sec, next.ru_utime.tv_usec); result = 1; break; } /* minimum 1000 attempts, then stop after either 0.1 seconds or 50000 attempts, whichever comes first */ d = 1000000 * (next.ru_utime.tv_sec - start.ru_utime.tv_sec) + (next.ru_utime.tv_usec - start.ru_utime.tv_usec); i++; if (i > 50000 || (i > 1000 && d > 100000)) break; } return result; } /* CLOCK_PROCESS_CPUTIME_ID looks like it's going to be in a future version of glibc (some time post 2.2). CLOCK_VIRTUAL is process time, available in BSD systems (though sometimes defined, but returning -1 for an error). */ #ifdef CLOCK_PROCESS_CPUTIME_ID # define CGT_ID CLOCK_PROCESS_CPUTIME_ID #else # ifdef CLOCK_VIRTUAL # define CGT_ID CLOCK_VIRTUAL # endif #endif #ifdef CGT_ID const int have_cgt_id = 1; #else const int have_cgt_id = 0; # define CGT_ID (ASSERT_FAIL (CGT_ID not determined), -1) #endif int cgt_works_p (void) { static int result = -1; struct_timespec unit; if (! have_cgt) return 0; if (! have_cgt_id) { if (speed_option_verbose) printf ("clock_gettime don't know what ID to use\n"); result = 0; return result; } if (result != -1) return result; /* trial run to see if it works */ if (clock_gettime (CGT_ID, &unit) != 0) { if (speed_option_verbose) printf ("clock_gettime id=%d error: %s\n", CGT_ID, strerror (errno)); result = 0; return result; } /* get the resolution */ if (clock_getres (CGT_ID, &unit) != 0) { if (speed_option_verbose) printf ("clock_getres id=%d error: %s\n", CGT_ID, strerror (errno)); result = 0; return result; } cgt_unittime = unit.tv_sec + unit.tv_nsec * 1e-9; printf ("clock_gettime is %s accurate\n", unittime_string (cgt_unittime)); result = 1; return result; } static double freq_measure_mftb_one (void) { #define call_gettimeofday(t) gettimeofday (&(t), NULL) #define timeval_tv_sec(t) ((t).tv_sec) #define timeval_tv_usec(t) ((t).tv_usec) FREQ_MEASURE_ONE ("mftb", struct_timeval, call_gettimeofday, MFTB, timeval_tv_sec, timeval_tv_usec); } static jmp_buf mftb_works_buf; static RETSIGTYPE mftb_works_handler (int sig) { longjmp (mftb_works_buf, 1); } int mftb_works_p (void) { unsigned a[2]; RETSIGTYPE (*old_handler) __GMP_PROTO ((int)); double cycletime; /* suppress a warning about a[] unused */ a[0] = 0; if (! have_mftb) return 0; #ifdef SIGILL old_handler = signal (SIGILL, mftb_works_handler); if (old_handler == SIG_ERR) { if (speed_option_verbose) printf ("mftb_works_p(): SIGILL not supported, assuming mftb works\n"); return 1; } if (setjmp (mftb_works_buf)) { if (speed_option_verbose) printf ("mftb_works_p(): SIGILL during mftb, so doesn't work\n"); return 0; } MFTB (a); signal (SIGILL, old_handler); if (speed_option_verbose) printf ("mftb_works_p(): mftb works\n"); #else if (speed_option_verbose) printf ("mftb_works_p(): SIGILL not defined, assuming mftb works\n"); #endif #if ! HAVE_GETTIMEOFDAY if (speed_option_verbose) printf ("mftb_works_p(): no gettimeofday available to measure mftb\n"); return 0; #endif /* The time base is normally 1/4 of the bus speed on 6xx and 7xx chips, on other chips it can be driven from an external clock. */ cycletime = freq_measure ("mftb", freq_measure_mftb_one); if (cycletime == -1.0) { if (speed_option_verbose) printf ("mftb_works_p(): cannot measure mftb period\n"); return 0; } mftb_unittime = cycletime; return 1; } volatile unsigned *sgi_addr; int sgi_works_p (void) { #if HAVE_SYSSGI && HAVE_MMAP static int result = -1; size_t pagesize, offset; __psunsigned_t phys, physpage; void *virtpage; unsigned period_picoseconds; int size, fd; if (result != -1) return result; phys = syssgi (SGI_QUERY_CYCLECNTR, &period_picoseconds); if (phys == (__psunsigned_t) -1) { /* ENODEV is the error when a counter is not available */ if (speed_option_verbose) printf ("syssgi SGI_QUERY_CYCLECNTR error: %s\n", strerror (errno)); result = 0; return result; } sgi_unittime = period_picoseconds * 1e-12; /* IRIX 5 doesn't have SGI_CYCLECNTR_SIZE, assume 32 bits in that case. Challenge/ONYX hardware has a 64 bit byte counter, but there seems no obvious way to identify that without SGI_CYCLECNTR_SIZE. */ #ifdef SGI_CYCLECNTR_SIZE size = syssgi (SGI_CYCLECNTR_SIZE); if (size == -1) { if (speed_option_verbose) { printf ("syssgi SGI_CYCLECNTR_SIZE error: %s\n", strerror (errno)); printf (" will assume size==4\n"); } size = 32; } #else size = 32; #endif if (size < 32) { printf ("syssgi SGI_CYCLECNTR_SIZE gives %d, expected 32 or 64\n", size); result = 0; return result; } pagesize = getpagesize(); offset = (size_t) phys & (pagesize-1); physpage = phys - offset; /* shouldn't cross over a page boundary */ ASSERT_ALWAYS (offset + size/8 <= pagesize); fd = open("/dev/mmem", O_RDONLY); if (fd == -1) { if (speed_option_verbose) printf ("open /dev/mmem: %s\n", strerror (errno)); result = 0; return result; } virtpage = mmap (0, pagesize, PROT_READ, MAP_PRIVATE, fd, (off_t) physpage); if (virtpage == (void *) -1) { if (speed_option_verbose) printf ("mmap /dev/mmem: %s\n", strerror (errno)); result = 0; return result; } /* address of least significant 4 bytes, knowing mips is big endian */ sgi_addr = (unsigned *) ((char *) virtpage + offset + size/8 - sizeof(unsigned)); result = 1; return result; #else /* ! (HAVE_SYSSGI && HAVE_MMAP) */ return 0; #endif } #define DEFAULT(var,n) \ do { \ if (! (var)) \ (var) = (n); \ } while (0) void speed_time_init (void) { double supplement_unittime = 0.0; static int speed_time_initialized = 0; if (speed_time_initialized) return; speed_time_initialized = 1; speed_cycletime_init (); if (have_cycles && cycles_works_p ()) { use_cycles = 1; DEFAULT (speed_cycletime, 1.0); speed_unittime = speed_cycletime; DEFAULT (speed_precision, 1000000); strcpy (speed_time_string, "CPU cycle counter"); /* only used if a supplementary method is chosen below */ cycles_limit = (have_cycles == 1 ? M_2POW32 : M_2POW64) / 2.0 * speed_cycletime; if (have_grus && getrusage_microseconds_p() && ! getrusage_backwards_p()) { /* this is a good combination */ use_grus = 1; supplement_unittime = grus_unittime = 1.0e-6; strcpy (speed_time_string, "CPU cycle counter, supplemented by microsecond getrusage()"); } else if (have_cycles == 1) { /* When speed_cyclecounter has a limited range, look for something to supplement it. */ if (have_gtod && gettimeofday_microseconds_p()) { use_gtod = 1; supplement_unittime = gtod_unittime = 1.0e-6; strcpy (speed_time_string, "CPU cycle counter, supplemented by microsecond gettimeofday()"); } else if (have_grus) { use_grus = 1; supplement_unittime = grus_unittime = 1.0 / (double) clk_tck (); sprintf (speed_time_string, "CPU cycle counter, supplemented by %s clock tick getrusage()", unittime_string (supplement_unittime)); } else if (have_times) { use_times = 1; supplement_unittime = times_unittime = 1.0 / (double) clk_tck (); sprintf (speed_time_string, "CPU cycle counter, supplemented by %s clock tick times()", unittime_string (supplement_unittime)); } else if (have_gtod) { use_gtod = 1; supplement_unittime = gtod_unittime = 1.0 / (double) clk_tck (); sprintf (speed_time_string, "CPU cycle counter, supplemented by %s clock tick gettimeofday()", unittime_string (supplement_unittime)); } else { fprintf (stderr, "WARNING: cycle counter is 32 bits and there's no other functions.\n"); fprintf (stderr, " Wraparounds may produce bad results on long measurements.\n"); } } if (use_grus || use_times || use_gtod) { /* must know cycle period to compare cycles to other measuring (via cycles_limit) */ speed_cycletime_need_seconds (); if (speed_precision * supplement_unittime > cycles_limit) { fprintf (stderr, "WARNING: requested precision can't always be achieved due to limited range\n"); fprintf (stderr, " cycle counter and limited precision supplemental method\n"); fprintf (stderr, " (%s)\n", speed_time_string); } } } else if (have_stck) { strcpy (speed_time_string, "STCK timestamp"); /* stck is in units of 2^-12 microseconds, which is very likely higher resolution than a cpu cycle */ if (speed_cycletime == 0.0) speed_cycletime_fail ("Need to know CPU frequency for effective stck unit"); speed_unittime = MAX (speed_cycletime, STCK_PERIOD); DEFAULT (speed_precision, 10000); } else if (have_mftb && mftb_works_p ()) { use_mftb = 1; DEFAULT (speed_precision, 10000); speed_unittime = mftb_unittime; sprintf (speed_time_string, "mftb counter (%s)", unittime_string (speed_unittime)); } else if (have_sgi && sgi_works_p ()) { use_sgi = 1; DEFAULT (speed_precision, 10000); speed_unittime = sgi_unittime; sprintf (speed_time_string, "syssgi() mmap counter (%s), supplemented by millisecond getrusage()", unittime_string (speed_unittime)); /* supplemented with getrusage, which we assume to have 1ms resolution */ use_grus = 1; supplement_unittime = 1e-3; } else if (have_rrt) { timebasestruct_t t; use_rrt = 1; DEFAULT (speed_precision, 10000); read_real_time (&t, sizeof(t)); switch (t.flag) { case RTC_POWER: /* FIXME: What's the actual RTC resolution? */ speed_unittime = 1e-7; strcpy (speed_time_string, "read_real_time() power nanoseconds"); break; case RTC_POWER_PC: t.tb_high = 1; t.tb_low = 0; time_base_to_time (&t, sizeof(t)); speed_unittime = TIMEBASESTRUCT_SECS(&t) / M_2POW32; sprintf (speed_time_string, "%s read_real_time() powerpc ticks", unittime_string (speed_unittime)); break; default: fprintf (stderr, "ERROR: Unrecognised timebasestruct_t flag=%d\n", t.flag); abort (); } } else if (have_cgt && cgt_works_p() && cgt_unittime < 1.5e-6) { /* use clock_gettime if microsecond or better resolution */ choose_cgt: use_cgt = 1; speed_unittime = cgt_unittime; DEFAULT (speed_precision, (cgt_unittime <= 0.1e-6 ? 10000 : 1000)); strcpy (speed_time_string, "microsecond accurate getrusage()"); } else if (have_times && clk_tck() > 1000000) { /* Cray vector systems have times() which is clock cycle resolution (eg. 450 MHz). */ DEFAULT (speed_precision, 10000); goto choose_times; } else if (have_grus && getrusage_microseconds_p() && ! getrusage_backwards_p()) { use_grus = 1; speed_unittime = grus_unittime = 1.0e-6; DEFAULT (speed_precision, 1000); strcpy (speed_time_string, "microsecond accurate getrusage()"); } else if (have_gtod && gettimeofday_microseconds_p()) { use_gtod = 1; speed_unittime = gtod_unittime = 1.0e-6; DEFAULT (speed_precision, 1000); strcpy (speed_time_string, "microsecond accurate gettimeofday()"); } else if (have_cgt && cgt_works_p() && cgt_unittime < 1.5/clk_tck()) { /* use clock_gettime if 1 tick or better resolution */ goto choose_cgt; } else if (have_times) { use_tick_boundary = 1; DEFAULT (speed_precision, 200); choose_times: use_times = 1; speed_unittime = times_unittime = 1.0 / (double) clk_tck (); sprintf (speed_time_string, "%s clock tick times()", unittime_string (speed_unittime)); } else if (have_grus) { use_grus = 1; use_tick_boundary = 1; speed_unittime = grus_unittime = 1.0 / (double) clk_tck (); DEFAULT (speed_precision, 200); sprintf (speed_time_string, "%s clock tick getrusage()\n", unittime_string (speed_unittime)); } else if (have_gtod) { use_gtod = 1; use_tick_boundary = 1; speed_unittime = gtod_unittime = 1.0 / (double) clk_tck (); DEFAULT (speed_precision, 200); sprintf (speed_time_string, "%s clock tick gettimeofday()", unittime_string (speed_unittime)); } else { fprintf (stderr, "No time measuring method available\n"); fprintf (stderr, "None of: speed_cyclecounter(), STCK(), getrusage(), gettimeofday(), times()\n"); abort (); } if (speed_option_verbose) { printf ("speed_time_init: %s\n", speed_time_string); printf (" speed_precision %d\n", speed_precision); printf (" speed_unittime %.2g\n", speed_unittime); if (supplement_unittime) printf (" supplement_unittime %.2g\n", supplement_unittime); printf (" use_tick_boundary %d\n", use_tick_boundary); if (have_cycles) printf (" cycles_limit %.2g seconds\n", cycles_limit); } } /* Burn up CPU until a clock tick boundary, for greater accuracy. Set the corresponding "start_foo" appropriately too. */ void grus_tick_boundary (void) { struct_rusage prev; getrusage (0, &prev); do { getrusage (0, &start_grus); } while (start_grus.ru_utime.tv_usec == prev.ru_utime.tv_usec); } void gtod_tick_boundary (void) { struct_timeval prev; gettimeofday (&prev, NULL); do { gettimeofday (&start_gtod, NULL); } while (start_gtod.tv_usec == prev.tv_usec); } void times_tick_boundary (void) { struct_tms prev; times (&prev); do times (&start_times); while (start_times.tms_utime == prev.tms_utime); } /* "have_" values are tested to let unused code go dead. */ void speed_starttime (void) { speed_time_init (); if (have_grus && use_grus) { if (use_tick_boundary) grus_tick_boundary (); else getrusage (0, &start_grus); } if (have_gtod && use_gtod) { if (use_tick_boundary) gtod_tick_boundary (); else gettimeofday (&start_gtod, NULL); } if (have_times && use_times) { if (use_tick_boundary) times_tick_boundary (); else times (&start_times); } if (have_cgt && use_cgt) clock_gettime (CGT_ID, &start_cgt); if (have_rrt && use_rrt) read_real_time (&start_rrt, sizeof(start_rrt)); if (have_sgi && use_sgi) start_sgi = *sgi_addr; if (have_mftb && use_mftb) MFTB (start_mftb); if (have_stck && use_stck) STCK (start_stck); /* Cycles sampled last for maximum accuracy. */ if (have_cycles && use_cycles) speed_cyclecounter (start_cycles); } /* Calculate the difference between two cycle counter samples, as a "double" counter of cycles. The start and end values are allowed to cancel in integers in case the counter values are bigger than the 53 bits that normally fit in a double. This works even if speed_cyclecounter() puts a value bigger than 32-bits in the low word (the high word always gets a 2**32 multiplier though). */ double speed_cyclecounter_diff (const unsigned end[2], const unsigned start[2]) { unsigned d; double t; if (have_cycles == 1) { t = (end[0] - start[0]); } else { d = end[0] - start[0]; t = d - (d > end[0] ? M_2POWU : 0.0); t += (end[1] - start[1]) * M_2POW32; } return t; } double speed_mftb_diff (const unsigned end[2], const unsigned start[2]) { unsigned d; double t; d = end[0] - start[0]; t = (double) d - (d > end[0] ? M_2POW32 : 0.0); t += (end[1] - start[1]) * M_2POW32; return t; } /* Calculate the difference between "start" and "end" using fields "sec" and "psec", where each "psec" is a "punit" of a second. The seconds parts are allowed to cancel before being combined with the psec parts, in case a simple "sec+psec*punit" exceeds the precision of a double. Total time is only calculated in a "double" since an integer count of psecs might overflow. 2^32 microseconds is only a bit over an hour, or 2^32 nanoseconds only about 4 seconds. The casts to "long" are for the beneifit of timebasestruct_t, where the fields are only "unsigned int", but we want a signed difference. */ #define DIFF_SECS_ROUTINE(sec, psec, punit) \ { \ long sec_diff, psec_diff; \ sec_diff = (long) end->sec - (long) start->sec; \ psec_diff = (long) end->psec - (long) start->psec; \ return (double) sec_diff + punit * (double) psec_diff; \ } double timeval_diff_secs (const struct_timeval *end, const struct_timeval *start) { DIFF_SECS_ROUTINE (tv_sec, tv_usec, 1e-6); } double rusage_diff_secs (const struct_rusage *end, const struct_rusage *start) { DIFF_SECS_ROUTINE (ru_utime.tv_sec, ru_utime.tv_usec, 1e-6); } double timespec_diff_secs (const struct_timespec *end, const struct_timespec *start) { DIFF_SECS_ROUTINE (tv_sec, tv_nsec, 1e-9); } /* This is for use after time_base_to_time, ie. for seconds and nanoseconds. */ double timebasestruct_diff_secs (const timebasestruct_t *end, const timebasestruct_t *start) { DIFF_SECS_ROUTINE (tb_high, tb_low, 1e-9); } double speed_endtime (void) { #define END_USE(name,value) \ do { \ if (speed_option_verbose >= 3) \ printf ("speed_endtime(): used %s\n", name); \ result = value; \ goto done; \ } while (0) #define END_ENOUGH(name,value) \ do { \ if (speed_option_verbose >= 3) \ printf ("speed_endtime(): %s gives enough precision\n", name); \ result = value; \ goto done; \ } while (0) #define END_EXCEED(name,value) \ do { \ if (speed_option_verbose >= 3) \ printf ("speed_endtime(): cycle counter limit exceeded, used %s\n", \ name); \ result = value; \ goto done; \ } while (0) unsigned end_cycles[2]; stck_t end_stck; unsigned end_mftb[2]; unsigned end_sgi; timebasestruct_t end_rrt; struct_timespec end_cgt; struct_timeval end_gtod; struct_rusage end_grus; struct_tms end_times; double t_gtod, t_grus, t_times, t_cgt; double t_rrt, t_sgi, t_mftb, t_stck, t_cycles; double result; /* Cycles sampled first for maximum accuracy. "have_" values tested to let unused code go dead. */ if (have_cycles && use_cycles) speed_cyclecounter (end_cycles); if (have_stck && use_stck) STCK (end_stck); if (have_mftb && use_mftb) MFTB (end_mftb); if (have_sgi && use_sgi) end_sgi = *sgi_addr; if (have_rrt && use_rrt) read_real_time (&end_rrt, sizeof(end_rrt)); if (have_cgt && use_cgt) clock_gettime (CGT_ID, &end_cgt); if (have_gtod && use_gtod) gettimeofday (&end_gtod, NULL); if (have_grus && use_grus) getrusage (0, &end_grus); if (have_times && use_times) times (&end_times); result = -1.0; if (speed_option_verbose >= 4) { printf ("speed_endtime():\n"); if (use_cycles) printf (" cycles 0x%X,0x%X -> 0x%X,0x%X\n", start_cycles[1], start_cycles[0], end_cycles[1], end_cycles[0]); if (use_stck) printf (" stck 0x%lX -> 0x%lX\n", start_stck, end_stck); if (use_mftb) printf (" mftb 0x%X,%08X -> 0x%X,%08X\n", start_mftb[1], start_mftb[0], end_mftb[1], end_mftb[0]); if (use_sgi) printf (" sgi 0x%X -> 0x%X\n", start_sgi, end_sgi); if (use_rrt) printf (" read_real_time (%d)%u,%u -> (%d)%u,%u\n", start_rrt.flag, start_rrt.tb_high, start_rrt.tb_low, end_rrt.flag, end_rrt.tb_high, end_rrt.tb_low); if (use_cgt) printf (" clock_gettime %ld.%09ld -> %ld.%09ld\n", start_cgt.tv_sec, start_cgt.tv_nsec, end_cgt.tv_sec, end_cgt.tv_nsec); if (use_gtod) printf (" gettimeofday %ld.%06ld -> %ld.%06ld\n", start_gtod.tv_sec, start_gtod.tv_usec, end_gtod.tv_sec, end_gtod.tv_usec); if (use_grus) printf (" getrusage %ld.%06ld -> %ld.%06ld\n", start_grus.ru_utime.tv_sec, start_grus.ru_utime.tv_usec, end_grus.ru_utime.tv_sec, end_grus.ru_utime.tv_usec); if (use_times) printf (" times %ld -> %ld\n", start_times.tms_utime, end_times.tms_utime); } if (use_rrt) { time_base_to_time (&start_rrt, sizeof(start_rrt)); time_base_to_time (&end_rrt, sizeof(end_rrt)); t_rrt = timebasestruct_diff_secs (&end_rrt, &start_rrt); END_USE ("read_real_time()", t_rrt); } if (use_cgt) { t_cgt = timespec_diff_secs (&end_cgt, &start_cgt); END_USE ("clock_gettime()", t_cgt); } if (use_grus) { t_grus = rusage_diff_secs (&end_grus, &start_grus); /* Use getrusage() if the cycle counter limit would be exceeded, or if it provides enough accuracy already. */ if (use_cycles) { if (t_grus >= speed_precision*grus_unittime) END_ENOUGH ("getrusage()", t_grus); if (t_grus >= cycles_limit) END_EXCEED ("getrusage()", t_grus); } } if (use_times) { t_times = (end_times.tms_utime - start_times.tms_utime) * times_unittime; /* Use times() if the cycle counter limit would be exceeded, or if it provides enough accuracy already. */ if (use_cycles) { if (t_times >= speed_precision*times_unittime) END_ENOUGH ("times()", t_times); if (t_times >= cycles_limit) END_EXCEED ("times()", t_times); } } if (use_gtod) { t_gtod = timeval_diff_secs (&end_gtod, &start_gtod); /* Use gettimeofday() if it measured a value bigger than the cycle counter can handle. */ if (use_cycles) { if (t_gtod >= cycles_limit) END_EXCEED ("gettimeofday()", t_gtod); } } if (use_mftb) { t_mftb = speed_mftb_diff (end_mftb, start_mftb) * mftb_unittime; END_USE ("mftb", t_mftb); } if (use_stck) { t_stck = (end_stck - start_stck) * STCK_PERIOD; END_USE ("stck", t_stck); } if (use_sgi) { t_sgi = (end_sgi - start_sgi) * sgi_unittime; END_USE ("SGI hardware counter", t_sgi); } if (use_cycles) { t_cycles = speed_cyclecounter_diff (end_cycles, start_cycles) * speed_cycletime; END_USE ("cycle counter", t_cycles); } if (use_grus && getrusage_microseconds_p()) END_USE ("getrusage()", t_grus); if (use_gtod && gettimeofday_microseconds_p()) END_USE ("gettimeofday()", t_gtod); if (use_times) END_USE ("times()", t_times); if (use_grus) END_USE ("getrusage()", t_grus); if (use_gtod) END_USE ("gettimeofday()", t_gtod); fprintf (stderr, "speed_endtime(): oops, no time method available\n"); abort (); done: if (result < 0.0) { if (speed_option_verbose >= 2) fprintf (stderr, "speed_endtime(): warning, treating negative time as zero: %.9f\n", result); result = 0.0; } return result; }