/* Copyright 2009 Jason Moxham This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" int mpz_probable_prime_p (mpz_srcptr N, gmp_randstate_t STATE, int PROB, unsigned long td) { int d, t, i, r; mpz_t base, nm1, x, e, n; ALLOC (n) = ALLOC (N); SIZ (n) = ABSIZ (N); PTR (n) = PTR (N); // fake up an absolute value that we dont have de-allocate // algorithm dose not handle small values , get rid of them here if (mpz_cmp_ui (n, 2) == 0 || mpz_cmp_ui (n, 3) == 0) return 1; if (mpz_cmp_ui (n, 5) < 0 || mpz_even_p (n)) return 0; // we assume we know nothing about N ie it is a random integer // so we try here anything which speeds up the average case // we try some trial division #define LIM 1024 d=mpz_trial_division(n,3,LIM); if(d!=0) {if(mpz_cmp_ui(n, d) == 0)return 1; return 0;} if (mpz_cmp_ui (n, LIM * LIM) < 0) return 1; ASSERT (mpz_odd_p (n)); ASSERT (mpz_cmp_ui (n, 5) >= 0); // now do some random strong pseudoprime tests mpz_init (base); mpz_init_set (nm1, n); mpz_sub_ui (nm1, nm1, 1); mpz_init (e); mpz_init (x); t = mpz_scan1 (nm1, 0); // so 2^t divides nm1 ASSERT (t > 0); mpz_tdiv_q_2exp (e, nm1, t); // so e=nm1/2^t r = 1; while (PROB > 0) { PROB -= 2; do { mpz_urandomm (base, STATE, nm1); } while (mpz_cmp_ui (base, 1) <= 0); mpz_powm (x, base, e, n); // x=base^e mod n if (mpz_cmp_ui (x, 1) == 0 || mpz_cmp (x, nm1) == 0) continue; for (i = t - 1; i > 0; i--) { mpz_mul (x, x, x); mpz_mod (x, x, n); if (mpz_cmp (x, nm1) == 0) break; if (mpz_cmp_ui (x, 1) == 0) { r=0; break; } } if (i == 0 || r == 0) { r=0; break; } } mpz_clear (nm1); mpz_clear (x); mpz_clear (e); mpz_clear (base); return r; }