/* mpn_inv_div_qr -- division with remainder for arbitrary size operands using a precomputed inverse. Derived from a file originally contributed to the GMP project by Torbjorn Granlund. THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE. Copyright 2006, 2007, 2009 Free Software Foundation, Inc. Copyright 2010 William Hart This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library. If not, see http://www.gnu.org/licenses/. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" mp_limb_t mpn_inv_div_qr (mp_ptr qp, mp_ptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn, mp_srcptr dinv) { mp_size_t qn; mp_limb_t qh, cy, dinv2; mp_ptr tp; TMP_DECL; TMP_MARK; ASSERT (dn >= 6); /* to adhere to mpn_sb_div_qr's limits */ ASSERT (nn - dn >= 3); /* to adhere to mpn_sb_div_qr's limits */ ASSERT (dp[dn-1] & GMP_NUMB_HIGHBIT); invert_1(dinv2, dp[dn - 1], dp[dn - 2]); tp = TMP_ALLOC_LIMBS (DC_DIVAPPR_Q_N_ITCH(dn)); qn = nn - dn; qp += qn; np += nn; dp += dn; if (qn > dn) { /* Reduce qn mod dn without division, optimizing small operations. */ do qn -= dn; while (qn > dn); qp -= qn; /* point at low limb of next quotient block */ np -= qn; /* point in the middle of partial remainder */ /* Perform the typically smaller block first. */ if (qn == 1) { mp_limb_t q, n2, n1, n0, d1, d0; /* Handle qh up front, for simplicity. */ qh = mpn_cmp (np - dn + 1, dp - dn, dn) >= 0; if (qh) ASSERT_NOCARRY (mpn_sub_n (np - dn + 1, np - dn + 1, dp - dn, dn)); /* A single iteration of schoolbook: One 3/2 division, followed by the bignum update and adjustment. */ n2 = np[0]; n1 = np[-1]; n0 = np[-2]; d1 = dp[-1]; d0 = dp[-2]; ASSERT (n2 < d1 || (n2 == d1 && n1 <= d0)); if (UNLIKELY (n2 == d1) && n1 == d0) { q = GMP_NUMB_MASK; cy = mpn_submul_1 (np - dn, dp - dn, dn, q); ASSERT (cy == n2); } else { tdiv_qr_3by2 (q, n1, n0, n2, n1, n0, d1, d0, dinv2); if (dn > 2) { mp_limb_t cy, cy1; cy = mpn_submul_1 (np - dn, dp - dn, dn - 2, q); cy1 = n0 < cy; n0 = (n0 - cy) & GMP_NUMB_MASK; cy = n1 < cy1; n1 = (n1 - cy1) & GMP_NUMB_MASK; np[-2] = n0; if (UNLIKELY (cy != 0)) { n1 += d1 + mpn_add_n (np - dn, np - dn, dp - dn, dn - 1); qh -= (q == 0); q = (q - 1) & GMP_NUMB_MASK; } } else np[-2] = n0; np[-1] = n1; } qp[0] = q; } else { /* Do a 2qn / qn division */ if (qn == 2) qh = mpn_divrem_2 (qp, 0L, np - 2, 4, dp - 2); /* FIXME: obsolete function. Use 5/3 division? */ else if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD)) qh = mpn_sb_div_qr (qp, np - qn, 2 * qn, dp - qn, qn, dinv2); else if (BELOW_THRESHOLD (qn, INV_DIV_QR_THRESHOLD)) qh = mpn_dc_div_qr_n (qp, np - qn, dp - qn, qn, dinv2, tp); else { mpn_invert_truncate(tp, qn, dinv, dn, dp - dn); qh = mpn_inv_div_qr_n (qp, np - qn, dp - qn, qn, tp); } if (qn != dn) { if (qn > dn - qn) mpn_mul (tp, qp, qn, dp - dn, dn - qn); else mpn_mul (tp, dp - dn, dn - qn, qp, qn); cy = mpn_sub_n (np - dn, np - dn, tp, dn); if (qh != 0) cy += mpn_sub_n (np - dn + qn, np - dn + qn, dp - dn, dn - qn); while (cy != 0) { qh -= mpn_sub_1 (qp, qp, qn, 1); cy -= mpn_add_n (np - dn, np - dn, dp - dn, dn); } } } qn = nn - dn - qn; do { qp -= dn; np -= dn; ASSERT_NOCARRY(mpn_inv_div_qr_n (qp, np - dn, dp - dn, dn, dinv)); qn -= dn; } while (qn > 0); } else { qp -= qn; /* point at low limb of next quotient block */ np -= qn; /* point in the middle of partial remainder */ if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD)) qh = mpn_sb_div_qr (qp, np - qn, 2 * qn, dp - qn, qn, dinv2); else if (BELOW_THRESHOLD (qn, INV_DIV_QR_THRESHOLD)) qh = mpn_dc_div_qr_n (qp, np - qn, dp - qn, qn, dinv2, tp); else { mpn_invert_truncate(tp, qn, dinv, dn, dp - dn); qh = mpn_inv_div_qr_n (qp, np - qn, dp - qn, qn, tp); } if (qn != dn) { if (qn > dn - qn) mpn_mul (tp, qp, qn, dp - dn, dn - qn); else mpn_mul (tp, dp - dn, dn - qn, qp, qn); cy = mpn_sub_n (np - dn, np - dn, tp, dn); if (qh != 0) cy += mpn_sub_n (np - dn + qn, np - dn + qn, dp - dn, dn - qn); while (cy != 0) { qh -= mpn_sub_1 (qp, qp, qn, 1); cy -= mpn_add_n (np - dn, np - dn, dp - dn, dn); } } } TMP_FREE; return qh; }