/* mpz_lucnum_ui -- calculate Lucas number. Copyright 2001, 2003, 2005 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "mpir.h" #include "gmp-impl.h" /* change this to "#define TRACE(x) x" for diagnostics */ #define TRACE(x) /* Notes: For the +4 in L[2k+1] when k is even, all L[4m+3] == 4, 5 or 7 mod 8, so there can't be an overflow applying +4 to just the low limb (since that would leave 0, 1, 2 or 3 mod 8). For the -4 in L[2k+1] when k is even, it seems (no proof) that L[3*2^(b-2)-3] == -4 mod 2^b, so for instance with a 32-bit limb L[0xBFFFFFFD] == 0xFFFFFFFC mod 2^32, and this implies a borrow from the low limb. Obviously L[0xBFFFFFFD] is a huge number, but it's at least conceivable to calculate it, so it probably should be handled. For the -2 in L[2k] with k even, it seems (no proof) L[2^(b-1)] == -1 mod 2^b, so for instance in 32-bits L[0x80000000] has a low limb of 0xFFFFFFFF so there would have been a borrow. Again L[0x80000000] is obviously huge, but probably should be made to work. */ void mpz_lucnum_ui (mpz_ptr ln, unsigned long n) { mp_size_t lalloc, xalloc, lsize, xsize; mp_ptr lp, xp; mp_limb_t c; int zeros; TMP_DECL; TRACE (printf ("mpn_lucnum_ui n=%lu\n", n)); if (n <= FIB_TABLE_LUCNUM_LIMIT) { /* L[n] = F[n] + 2F[n-1] */ PTR(ln)[0] = FIB_TABLE(n) + 2 * FIB_TABLE ((int) n - 1); SIZ(ln) = 1; return; } /* +1 since L[n]=F[n]+2F[n-1] might be 1 limb bigger than F[n], further +1 since square or mul used below might need an extra limb over the true size */ lalloc = MPN_FIB2_SIZE (n) + 2; MPZ_REALLOC (ln, lalloc); lp = PTR (ln); TMP_MARK; xalloc = lalloc; xp = TMP_ALLOC_LIMBS (xalloc); /* Strip trailing zeros from n, until either an odd number is reached where the L[2k+1] formula can be used, or until n fits within the FIB_TABLE data. The table is preferred of course. */ zeros = 0; for (;;) { if (n & 1) { /* L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k */ mp_size_t yalloc, ysize; mp_ptr yp; TRACE (printf (" initial odd n=%lu\n", n)); yalloc = MPN_FIB2_SIZE (n/2); yp = TMP_ALLOC_LIMBS (yalloc); ASSERT (xalloc >= yalloc); xsize = mpn_fib2_ui (xp, yp, n/2); /* possible high zero on F[k-1] */ ysize = xsize; ysize -= (yp[ysize-1] == 0); ASSERT (yp[ysize-1] != 0); /* xp = 2*F[k] + F[k-1] */ #if HAVE_NATIVE_mpn_addlsh1_n c = mpn_addlsh1_n (xp, yp, xp, xsize); #else c = mpn_lshift1 (xp, xp, xsize); c += mpn_add_n (xp, xp, yp, xsize); #endif ASSERT (xalloc >= xsize+1); xp[xsize] = c; xsize += (c != 0); ASSERT (xp[xsize-1] != 0); ASSERT (lalloc >= xsize + ysize); c = mpn_mul (lp, xp, xsize, yp, ysize); lsize = xsize + ysize; lsize -= (c == 0); /* lp = 5*lp */ #if HAVE_NATIVE_mpn_addlshift c = mpn_addlshift (lp, lp, lsize, 2); #else c = mpn_lshift2 (xp, lp, lsize); c += mpn_add_n (lp, lp, xp, lsize); #endif ASSERT (lalloc >= lsize+1); lp[lsize] = c; lsize += (c != 0); /* lp = lp - 4*(-1)^k */ if (n & 2) { /* no overflow, see comments above */ ASSERT (lp[0] <= MP_LIMB_T_MAX-4); lp[0] += 4; } else { /* won't go negative */ MPN_DECR_U (lp, lsize, CNST_LIMB(4)); } TRACE (mpn_trace (" l",lp, lsize)); break; } MP_PTR_SWAP (xp, lp); /* balance the swaps wanted in the L[2k] below */ zeros++; n /= 2; if (n <= FIB_TABLE_LUCNUM_LIMIT) { /* L[n] = F[n] + 2F[n-1] */ lp[0] = FIB_TABLE (n) + 2 * FIB_TABLE ((int) n - 1); lsize = 1; TRACE (printf (" initial small n=%lu\n", n); mpn_trace (" l",lp, lsize)); break; } } for ( ; zeros != 0; zeros--) { /* L[2k] = L[k]^2 + 2*(-1)^k */ TRACE (printf (" zeros=%d\n", zeros)); ASSERT (xalloc >= 2*lsize); mpn_sqr (xp, lp, lsize); lsize *= 2; lsize -= (xp[lsize-1] == 0); /* First time around the loop k==n determines (-1)^k, after that k is always even and we set n=0 to indicate that. */ if (n & 1) { /* L[n]^2 == 0 or 1 mod 4, like all squares, so +2 gives no carry */ ASSERT (xp[0] <= MP_LIMB_T_MAX-2); xp[0] += 2; n = 0; } else { /* won't go negative */ MPN_DECR_U (xp, lsize, CNST_LIMB(2)); } MP_PTR_SWAP (xp, lp); ASSERT (lp[lsize-1] != 0); } /* should end up in the right spot after all the xp/lp swaps */ ASSERT (lp == PTR(ln)); SIZ(ln) = lsize; TMP_FREE; }