/* mpn_sqr_basecase -- Internal routine to square a natural number of length n. THIS IS AN INTERNAL FUNCTION WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH THIS FUNCTION THROUGH DOCUMENTED INTERFACES. Copyright 1991, 1992, 1993, 1994, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" #if HAVE_NATIVE_mpn_sqr_diagonal #define MPN_SQR_DIAGONAL(rp, up, n) \ mpn_sqr_diagonal (rp, up, n) #else #define MPN_SQR_DIAGONAL(rp, up, n) \ do { \ mp_size_t _i; \ for (_i = 0; _i < (n); _i++) \ { \ mp_limb_t ul, lpl; \ ul = (up)[_i]; \ umul_ppmm ((rp)[2 * _i + 1], lpl, ul, ul << GMP_NAIL_BITS); \ (rp)[2 * _i] = lpl >> GMP_NAIL_BITS; \ } \ } while (0) #endif #undef READY_WITH_mpn_sqr_basecase #if ! defined (READY_WITH_mpn_sqr_basecase) && HAVE_NATIVE_mpn_addmul_2s void mpn_sqr_basecase (mp_ptr rp, mp_srcptr up, mp_size_t n) { mp_size_t i; mp_limb_t tarr[2 * SQR_KARATSUBA_THRESHOLD]; mp_ptr tp = tarr; mp_limb_t cy; /* must fit 2*n limbs in tarr */ ASSERT (n <= SQR_KARATSUBA_THRESHOLD); if ((n & 1) != 0) { if (n == 1) { mp_limb_t ul, lpl; ul = up[0]; umul_ppmm (rp[1], lpl, ul, ul << GMP_NAIL_BITS); rp[0] = lpl >> GMP_NAIL_BITS; return; } MPN_ZERO (tp, n); for (i = 0; i <= n - 2; i += 2) { cy = mpn_addmul_2s (tp + 2 * i, up + i + 1, n - (i + 1), up + i); tp[n + i] = cy; } } else { if (n == 2) { rp[0] = 0; rp[1] = 0; rp[3] = mpn_addmul_2 (rp, up, 2, up); return; } MPN_ZERO (tp, n); for (i = 0; i <= n - 4; i += 2) { cy = mpn_addmul_2s (tp + 2 * i, up + i + 1, n - (i + 1), up + i); tp[n + i] = cy; } cy = mpn_addmul_1 (tp + 2 * n - 4, up + n - 1, 1, up[n - 2]); tp[2 * n - 3] = cy; } MPN_SQR_DIAGONAL (rp, up, n); #if HAVE_NATIVE_mpn_addlsh1_n cy = mpn_addlsh1_n (rp + 1, rp + 1, tp, 2 * n - 2); #else cy = mpn_double (tp, 2 * n - 2); cy += mpn_add_n (rp + 1, rp + 1, tp, 2 * n - 2); rp[2 * n - 1] += cy; #endif } #define READY_WITH_mpn_sqr_basecase #endif #if ! defined (READY_WITH_mpn_sqr_basecase) && HAVE_NATIVE_mpn_addmul_2 /* mpn_sqr_basecase using plain mpn_addmul_2. This is tricky, since we have to let mpn_addmul_2 make some undesirable multiplies, u[k]*u[k], that we would like to let mpn_sqr_diagonal handle. This forces us to conditionally add or subtract the mpn_sqr_diagonal results. Examples of the product we form: n = 4 n = 5 n = 6 u1u0 * u3u2u1 u1u0 * u4u3u2u1 u1u0 * u5u4u3u2u1 u2 * u3 u3u2 * u4u3 u3u2 * u5u4u3 u4 * u5 add: u0 u2 u3 add: u0 u2 u4 add: u0 u2 u4 u5 sub: u1 sub: u1 u3 sub: u1 u3 */ void mpn_sqr_basecase (mp_ptr rp, mp_srcptr up, mp_size_t n) { mp_size_t i; mp_limb_t tarr[2 * SQR_KARATSUBA_THRESHOLD]; mp_ptr tp = tarr; mp_limb_t cy; /* must fit 2*n limbs in tarr */ ASSERT (n <= SQR_KARATSUBA_THRESHOLD); if ((n & 1) != 0) { mp_limb_t x0, x1; if (n == 1) { mp_limb_t ul, lpl; ul = up[0]; umul_ppmm (rp[1], lpl, ul, ul << GMP_NAIL_BITS); rp[0] = lpl >> GMP_NAIL_BITS; return; } /* The code below doesn't like unnormalized operands. Since such operands are unusual, handle them with a dumb recursion. */ if (up[n - 1] == 0) { rp[2 * n - 2] = 0; rp[2 * n - 1] = 0; mpn_sqr_basecase (rp, up, n - 1); return; } MPN_ZERO (tp, n); for (i = 0; i <= n - 2; i += 2) { cy = mpn_addmul_2 (tp + 2 * i, up + i + 1, n - (i + 1), up + i); tp[n + i] = cy; } MPN_SQR_DIAGONAL (rp, up, n); for (i = 2;; i += 4) { x0 = rp[i + 0]; rp[i + 0] = (-x0) & GMP_NUMB_MASK; x1 = rp[i + 1]; rp[i + 1] = (-x1 - (x0 != 0)) & GMP_NUMB_MASK; __GMPN_SUB_1 (cy, rp + i + 2, rp + i + 2, 2, (x1 | x0) != 0); if (i + 4 >= 2 * n) break; mpn_incr_u (rp + i + 4, cy); } } else { mp_limb_t x0, x1; if (n == 2) { rp[0] = 0; rp[1] = 0; rp[3] = mpn_addmul_2 (rp, up, 2, up); return; } /* The code below doesn't like unnormalized operands. Since such operands are unusual, handle them with a dumb recursion. */ if (up[n - 1] == 0) { rp[2 * n - 2] = 0; rp[2 * n - 1] = 0; mpn_sqr_basecase (rp, up, n - 1); return; } MPN_ZERO (tp, n); for (i = 0; i <= n - 4; i += 2) { cy = mpn_addmul_2 (tp + 2 * i, up + i + 1, n - (i + 1), up + i); tp[n + i] = cy; } cy = mpn_addmul_1 (tp + 2 * n - 4, up + n - 1, 1, up[n - 2]); tp[2 * n - 3] = cy; MPN_SQR_DIAGONAL (rp, up, n); for (i = 2;; i += 4) { x0 = rp[i + 0]; rp[i + 0] = (-x0) & GMP_NUMB_MASK; x1 = rp[i + 1]; rp[i + 1] = (-x1 - (x0 != 0)) & GMP_NUMB_MASK; if (i + 6 >= 2 * n) break; __GMPN_SUB_1 (cy, rp + i + 2, rp + i + 2, 2, (x1 | x0) != 0); mpn_incr_u (rp + i + 4, cy); } mpn_decr_u (rp + i + 2, (x1 | x0) != 0); } #if HAVE_NATIVE_mpn_addlsh1_n cy = mpn_addlsh1_n (rp + 1, rp + 1, tp, 2 * n - 2); #else cy = mpn_double (tp, 2 * n - 2); cy += mpn_add_n (rp + 1, rp + 1, tp, 2 * n - 2); #endif rp[2 * n - 1] += cy; } #define READY_WITH_mpn_sqr_basecase #endif #if ! defined (READY_WITH_mpn_sqr_basecase) /* Default mpn_sqr_basecase using mpn_addmul_1. */ void mpn_sqr_basecase (mp_ptr rp, mp_srcptr up, mp_size_t n) { mp_size_t i; ASSERT (n >= 1); ASSERT (! MPN_OVERLAP_P (rp, 2*n, up, n)); { mp_limb_t ul, lpl; ul = up[0]; umul_ppmm (rp[1], lpl, ul, ul << GMP_NAIL_BITS); rp[0] = lpl >> GMP_NAIL_BITS; } if (n > 1) { mp_limb_t tarr[2 * SQR_KARATSUBA_THRESHOLD]; mp_ptr tp = tarr; mp_limb_t cy; /* must fit 2*n limbs in tarr */ ASSERT (n <= SQR_KARATSUBA_THRESHOLD); cy = mpn_mul_1 (tp, up + 1, n - 1, up[0]); tp[n - 1] = cy; for (i = 2; i < n; i++) { mp_limb_t cy; cy = mpn_addmul_1 (tp + 2 * i - 2, up + i, n - i, up[i - 1]); tp[n + i - 2] = cy; } MPN_SQR_DIAGONAL (rp + 2, up + 1, n - 1); { mp_limb_t cy; #if HAVE_NATIVE_mpn_addlsh1_n cy = mpn_addlsh1_n (rp + 1, rp + 1, tp, 2 * n - 2); #else cy = mpn_double (tp, 2 * n - 2); cy += mpn_add_n (rp + 1, rp + 1, tp, 2 * n - 2); #endif rp[2 * n - 1] += cy; } } } #endif