/* mpz_powm(res,base,exp,mod) -- Set RES to (base**exp) mod MOD. Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2002, 2005 Free Software Foundation, Inc. Contributed by Paul Zimmermann. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" #ifdef BERKELEY_MP #include "mp.h" #endif /* Compute t = a mod m, a is defined by (ap,an), m is defined by (mp,mn), and t is defined by (tp,mn). */ static void reduce (mp_ptr tp, mp_srcptr ap, mp_size_t an, mp_srcptr mp, mp_size_t mn) { mp_ptr qp; TMP_DECL; TMP_MARK; qp = TMP_ALLOC_LIMBS (an - mn + 1); mpn_tdiv_qr (qp, tp, 0L, ap, an, mp, mn); TMP_FREE; } #if REDUCE_EXPONENT /* Return the group order of the ring mod m. */ static mp_limb_t phi (mp_limb_t t) { mp_limb_t d, m, go; go = 1; if (t % 2 == 0) { t = t / 2; while (t % 2 == 0) { go *= 2; t = t / 2; } } for (d = 3;; d += 2) { m = d - 1; for (;;) { unsigned long int q = t / d; if (q < d) { if (t <= 1) return go; if (t == d) return go * m; return go * (t - 1); } if (t != q * d) break; go *= m; m = d; t = q; } } } #endif /* average number of calls to redc for an exponent of n bits with the sliding window algorithm of base 2^k: the optimal is obtained for the value of k which minimizes 2^(k-1)+n/(k+1): n\k 4 5 6 7 8 128 156* 159 171 200 261 256 309 307* 316 343 403 512 617 607* 610 632 688 1024 1231 1204 1195* 1207 1256 2048 2461 2399 2366 2360* 2396 4096 4918 4787 4707 4665* 4670 */ /* Use REDC instead of usual reduction for sizes < POWM_THRESHOLD. In REDC each modular multiplication costs about 2*n^2 limbs operations, whereas using usual reduction it costs 3*K(n), where K(n) is the cost of a multiplication using Karatsuba, and a division is assumed to cost 2*K(n), for example using Burnikel-Ziegler's algorithm. This gives a theoretical threshold of a*SQR_KARATSUBA_THRESHOLD, with a=(3/2)^(1/(2-ln(3)/ln(2))) ~ 2.66. */ /* For now, also disable REDC when MOD is even, as the inverse can't handle that. At some point, we might want to make the code faster for that case, perhaps using CRR. */ #ifndef POWM_THRESHOLD #define POWM_THRESHOLD ((8 * SQR_KARATSUBA_THRESHOLD) / 3) #endif #define HANDLE_NEGATIVE_EXPONENT 1 #undef REDUCE_EXPONENT void #ifndef BERKELEY_MP mpz_powm (mpz_ptr r, mpz_srcptr b, mpz_srcptr e, mpz_srcptr m) #else /* BERKELEY_MP */ pow (mpz_srcptr b, mpz_srcptr e, mpz_srcptr m, mpz_ptr r) #endif /* BERKELEY_MP */ { mp_ptr xp, tp, qp, gp, this_gp; mp_srcptr bp, ep, mp; mp_size_t bn, es, en, mn, xn; mp_limb_t invm, c; unsigned long int enb; mp_size_t i, K, j, l, k; int m_zero_cnt, e_zero_cnt; int sh; int use_redc; #if HANDLE_NEGATIVE_EXPONENT mpz_t new_b; #endif #if REDUCE_EXPONENT mpz_t new_e; #endif TMP_DECL; mp = PTR(m); mn = ABSIZ (m); if (mn == 0) DIVIDE_BY_ZERO; TMP_MARK; es = SIZ (e); if (es <= 0) { if (es == 0) { /* Exponent is zero, result is 1 mod m, i.e., 1 or 0 depending on if m equals 1. */ SIZ(r) = (mn == 1 && mp[0] == 1) ? 0 : 1; PTR(r)[0] = 1; TMP_FREE; /* we haven't really allocated anything here */ return; } #if HANDLE_NEGATIVE_EXPONENT MPZ_TMP_INIT (new_b, mn + 1); if (! mpz_invert (new_b, b, m)) DIVIDE_BY_ZERO; b = new_b; es = -es; #else DIVIDE_BY_ZERO; #endif } en = es; #if REDUCE_EXPONENT /* Reduce exponent by dividing it by phi(m) when m small. */ if (mn == 1 && mp[0] < 0x7fffffffL && en * GMP_NUMB_BITS > 150) { MPZ_TMP_INIT (new_e, 2); mpz_mod_ui (new_e, e, phi (mp[0])); e = new_e; } #endif use_redc = mn < POWM_THRESHOLD && mp[0] % 2 != 0; if (use_redc) { /* invm = -1/m mod 2^BITS_PER_MP_LIMB, must have m odd */ modlimb_invert (invm, mp[0]); invm = -invm; } else { /* Normalize m (i.e. make its most significant bit set) as required by division functions below. */ count_leading_zeros (m_zero_cnt, mp[mn - 1]); m_zero_cnt -= GMP_NAIL_BITS; if (m_zero_cnt != 0) { mp_ptr new_mp; new_mp = TMP_ALLOC_LIMBS (mn); mpn_lshift (new_mp, mp, mn, m_zero_cnt); mp = new_mp; } } /* Determine optimal value of k, the number of exponent bits we look at at a time. */ count_leading_zeros (e_zero_cnt, PTR(e)[en - 1]); e_zero_cnt -= GMP_NAIL_BITS; enb = en * GMP_NUMB_BITS - e_zero_cnt; /* number of bits of exponent */ k = 1; K = 2; while (2 * enb > K * (2 + k * (3 + k))) { k++; K *= 2; if (k == 10) /* cap allocation */ break; } tp = TMP_ALLOC_LIMBS (2 * mn); qp = TMP_ALLOC_LIMBS (mn + 1); gp = __GMP_ALLOCATE_FUNC_LIMBS (K / 2 * mn); /* Compute x*R^n where R=2^BITS_PER_MP_LIMB. */ bn = ABSIZ (b); bp = PTR(b); /* Handle |b| >= m by computing b mod m. FIXME: It is not strictly necessary for speed or correctness to do this when b and m have the same number of limbs, perhaps remove mpn_cmp call. */ if (bn > mn || (bn == mn && mpn_cmp (bp, mp, mn) >= 0)) { /* Reduce possibly huge base while moving it to gp[0]. Use a function call to reduce, since we don't want the quotient allocation to live until function return. */ if (use_redc) { reduce (tp + mn, bp, bn, mp, mn); /* b mod m */ MPN_ZERO (tp, mn); mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); /* unnormnalized! */ } else { reduce (gp, bp, bn, mp, mn); } } else { /* |b| < m. We pad out operands to become mn limbs, which simplifies the rest of the function, but slows things down when the |b| << m. */ if (use_redc) { MPN_ZERO (tp, mn); MPN_COPY (tp + mn, bp, bn); MPN_ZERO (tp + mn + bn, mn - bn); mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); } else { MPN_COPY (gp, bp, bn); MPN_ZERO (gp + bn, mn - bn); } } /* Compute xx^i for odd g < 2^i. */ xp = TMP_ALLOC_LIMBS (mn); mpn_sqr (tp, gp, mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); /* xx = x^2*R^n */ else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); this_gp = gp; for (i = 1; i < K / 2; i++) { mpn_mul_n (tp, this_gp, xp, mn); this_gp += mn; if (use_redc) mpn_redc_basecase (this_gp, mp, mn, invm, tp); /* g[i] = x^(2i+1)*R^n */ else mpn_tdiv_qr (qp, this_gp, 0L, tp, 2 * mn, mp, mn); } /* Start the real stuff. */ ep = PTR (e); i = en - 1; /* current index */ c = ep[i]; /* current limb */ sh = GMP_NUMB_BITS - e_zero_cnt; /* significant bits in ep[i] */ sh -= k; /* index of lower bit of ep[i] to take into account */ if (sh < 0) { /* k-sh extra bits are needed */ if (i > 0) { i--; c <<= (-sh); sh += GMP_NUMB_BITS; c |= ep[i] >> sh; } } else c >>= sh; for (j = 0; c % 2 == 0; j++) c >>= 1; MPN_COPY (xp, gp + mn * (c >> 1), mn); while (--j >= 0) { mpn_sqr (tp, xp, mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); } while (i > 0 || sh > 0) { c = ep[i]; l = k; /* number of bits treated */ sh -= l; if (sh < 0) { if (i > 0) { i--; c <<= (-sh); sh += GMP_NUMB_BITS; c |= ep[i] >> sh; } else { l += sh; /* last chunk of bits from e; l < k */ } } else c >>= sh; c &= ((mp_limb_t) 1 << l) - 1; /* This while loop implements the sliding window improvement--loop while the most significant bit of c is zero, squaring xx as we go. */ while ((c >> (l - 1)) == 0 && (i > 0 || sh > 0)) { mpn_sqr (tp, xp, mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); if (sh != 0) { sh--; c = (c << 1) + ((ep[i] >> sh) & 1); } else { i--; sh = GMP_NUMB_BITS - 1; c = (c << 1) + (ep[i] >> sh); } } /* Replace xx by xx^(2^l)*x^c. */ if (c != 0) { for (j = 0; c % 2 == 0; j++) c >>= 1; /* c0 = c * 2^j, i.e. xx^(2^l)*x^c = (A^(2^(l - j))*c)^(2^j) */ l -= j; while (--l >= 0) { mpn_sqr (tp, xp, mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); } mpn_mul_n (tp, xp, gp + mn * (c >> 1), mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); } else j = l; /* case c=0 */ while (--j >= 0) { mpn_sqr (tp, xp, mn); if (use_redc) mpn_redc_basecase (xp, mp, mn, invm, tp); else mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); } } if (use_redc) { /* Convert back xx to xx/R^n. */ MPN_COPY (tp, xp, mn); MPN_ZERO (tp + mn, mn); mpn_redc_basecase (xp, mp, mn, invm, tp); if (mpn_cmp (xp, mp, mn) >= 0) mpn_sub_n (xp, xp, mp, mn); } else { if (m_zero_cnt != 0) { mp_limb_t cy; cy = mpn_lshift (tp, xp, mn, m_zero_cnt); tp[mn] = cy; mpn_tdiv_qr (qp, xp, 0L, tp, mn + (cy != 0), mp, mn); mpn_rshift (xp, xp, mn, m_zero_cnt); } } xn = mn; MPN_NORMALIZE (xp, xn); if ((ep[0] & 1) && SIZ(b) < 0 && xn != 0) { mp = PTR(m); /* want original, unnormalized m */ mpn_sub (xp, mp, mn, xp, xn); xn = mn; MPN_NORMALIZE (xp, xn); } MPZ_REALLOC (r, xn); SIZ (r) = xn; MPN_COPY (PTR(r), xp, xn); __GMP_FREE_FUNC_LIMBS (gp, K / 2 * mn); TMP_FREE; }