/* floating-point Newton, with inversion in 3M(n) */ /* mpn_invert Copyright 2009 Paul Zimmermann Copyright 2009 William Hart This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" #define ZERO (mp_limb_t) 0 #define ONE (mp_limb_t) 1 #define WRAP_AROUND_BOUND 1500 int mpn_is_invert (mp_srcptr xp, mp_srcptr ap, mp_size_t n) { int res = 1; mp_size_t i; mp_ptr tp, up; mp_limb_t cy; TMP_DECL; TMP_MARK; tp = TMP_ALLOC_LIMBS (2 * n); up = TMP_ALLOC_LIMBS (2 * n); /* first check X*A < B^(2*n) */ mpn_mul_n (tp, xp, ap, n); cy = mpn_add_n (tp + n, tp + n, ap, n); /* A * msb(X) */ if (cy != 0) res = 0; /* now check B^(2n) - X*A <= A */ mpn_com_n (tp, tp, 2 * n); mpn_add_1 (tp, tp, 2 * n, 1); /* B^(2n) - X*A */ MPN_ZERO (up, 2 * n); MPN_COPY (up, ap, n); res = mpn_cmp (tp, up, 2 * n) <= 0; TMP_FREE; return res; } /* Input: A = {ap, n} with most significant bit set. Output: X = B^n + {xp, n} where B = 2^GMP_NUMB_BITS. X is a lower approximation of B^(2n)/A with implicit msb. More precisely, one has: A*X < B^(2n) <= A*(X+1) or X = ceil(B^(2n)/A) - 1. */ void mpn_invert (mp_ptr xp, mp_srcptr ap, mp_size_t n) { if (n == 1) { /* invert_limb returns min(B-1, floor(B^2/ap[0])-B), which is B-1 when ap[0]=B/2, and 1 when ap[0]=B-1. For X=B+xp[0], we have A*X < B^2 <= A*(X+1) where the equality holds only when A=B/2. We thus have A*X < B^2 <= A*(X+1). */ invert_limb (xp[0], ap[0]); } else if (n == 2) { mp_limb_t tp[4], up[2], sp[2], cy; tp[0] = ZERO; invert_limb (xp[1], ap[1]); tp[3] = mpn_mul_1 (tp + 1, ap, 2, xp[1]); cy = mpn_add_n (tp + 2, tp + 2, ap, 2); while (cy) /* Xh is too large */ { xp[1] --; cy -= mpn_sub (tp + 1, tp + 1, 3, ap, 2); } /* tp[3] should be 111...111 */ mpn_com_n (sp, tp + 1, 2); cy = mpn_add_1 (sp, sp, 2, ONE); /* cy should be 0 */ up[1] = mpn_mul_1 (up, sp + 1, 1, xp[1]); cy = mpn_add_1 (up + 1, up + 1, 1, sp[1]); /* cy should be 0 */ xp[0] = up[1]; /* update tp */ cy = mpn_addmul_1 (tp, ap, 2, xp[0]); cy = mpn_add_1 (tp + 2, tp + 2, 2, cy); do { cy = mpn_add (tp, tp, 4, ap, 2); if (cy == ZERO) mpn_add_1 (xp, xp, 2, ONE); } while (cy == ZERO); /* now A*X < B^4 <= A*(X+1) */ } else { mp_size_t l, h; mp_ptr tp, up; mp_limb_t cy, th; int special = 0; TMP_DECL; l = (n - 1) / 2; h = n - l; mpn_invert (xp + l, ap + l, h); TMP_MARK; tp = TMP_ALLOC_LIMBS (n + h); up = TMP_ALLOC_LIMBS (2 * h); if (n <= WRAP_AROUND_BOUND) { mpn_mul (tp, ap, n, xp + l, h); cy = mpn_add_n (tp + h, tp + h, ap, n); } else { mp_size_t m = n + 1; unsigned long k; int cc; k = mpn_fft_best_k (m, 0); m = mpn_fft_next_size (m, k); /* we have m >= n + 1 by construction, thus m > h */ ASSERT(m < n + h); cy = mpn_mul_fft (tp, m, ap, n, xp + l, h, k); /* cy, {tp, m} = A * {xp + l, h} mod (B^m+1) */ cy += mpn_add_n (tp + h, tp + h, ap, m - h); cc = mpn_sub_n (tp, tp, ap + m - h, n + h - m); cc = mpn_sub_1 (tp + n + h - m, tp + n + h - m, 2 * m - n - h, cc); if (cc > cy) /* can only occur if cc=1 and cy=0 */ cy = mpn_add_1 (tp, tp, m, ONE); else cy -= cc; /* cy, {tp, m} = A * Xh */ /* add B^(n+h) + B^(n+h-m) */ MPN_ZERO (tp + m, n + h - m); tp[m] = cy; /* note: since tp[n+h-1] is either 0, or cy<=1 if m=n+h-1, the mpn_incr_u() below cannot produce a carry */ mpn_incr_u (tp + n + h - m, ONE); cy = 1; do /* check if T >= B^(n+h) + 2*B^n */ { mp_size_t i; if (cy == ZERO) break; /* surely T < B^(n+h) */ if (cy == ONE) { for (i = n + h - 1; tp[i] == ZERO && i > n; i--); if (i == n && tp[i] < (mp_limb_t) 2) break; } /* subtract B^m+1 */ cy -= mpn_sub_1 (tp, tp, n + h, ONE); cy -= mpn_sub_1 (tp + m, tp + m, n + h - m, ONE); } while (1); } while (cy) { mpn_sub_1 (xp + l, xp + l, h, ONE); cy -= mpn_sub (tp, tp, n + h, ap, n); } mpn_com_n (tp, tp, n); th = ~tp[n] + mpn_add_1 (tp, tp, n, ONE); mpn_mul_n (up, tp + l, xp + l, h); cy = mpn_add_n (up + h, up + h, tp + l, h); if (th != ZERO) { cy += ONE + mpn_add_n (up + h, up + h, xp + l, h); } if (up[2*h-l-1] + 4 <= CNST_LIMB(3)) special = 1; MPN_COPY (xp, up + 2 * h - l, l); mpn_add_1 (xp + l, xp + l, h, cy); TMP_FREE; if ((special) && !mpn_is_invert(xp, ap, n)) mpn_add_1 (xp, xp, n, 1); } } void mpn_invert_truncate(mp_ptr x_new, mp_size_t m, mp_srcptr xp, mp_size_t n, mp_srcptr ap) { mp_ptr tp; mp_limb_t cy; TMP_DECL; TMP_MARK; tp = TMP_ALLOC_LIMBS (2 * m); MPN_COPY(x_new, xp + n - m, m); ap += (n - m); mpn_mul_n (tp, x_new, ap, m); mpn_add_n (tp + m, tp + m, ap, m); /* A * msb(X) */ /* now check B^(2n) - X*A <= A */ mpn_com_n (tp, tp, 2 * m); mpn_add_1 (tp, tp, 2 * m, 1); /* B^(2m) - X*A */ while (tp[m] || mpn_cmp (tp, ap, m) > 0) { mpn_add_1(x_new, x_new, m, 1); tp[m] -= mpn_sub_n(tp, tp, ap, m); } TMP_FREE; }